I’ve just uploaded to the arXiv my article “Algebraic combinatorial geometry: the polynomial method in arithmetic combinatorics, incidence combinatorics, and number theory“, submitted to the new journal “EMS surveys in the mathematical sciences“.  This is the first draft of a survey article on the polynomial method – a technique in combinatorics and number theory for controlling a relevant set of points by comparing it with the zero set of a suitably chosen polynomial, and then using tools from algebraic geometry (e.g. Bezout’s theorem) on that zero set. As such, the method combines algebraic geometry with combinatorial geometry, and could be viewed as the philosophy of a combined field which I dub “algebraic combinatorial geometry”.   There is also an important extension of this method when one is working overthe reals, in which methods from algebraic topology (e.g. the ham sandwich theorem and its generalisation to polynomials), and not just algebraic geometry, come into play also.

The polynomial method has been used independently many times in mathematics; for instance, it plays a key role in the proof of Baker’s theorem in transcendence theory, or Stepanov’s method in giving an elementary proof of the Riemann hypothesis for finite fields over curves; in combinatorics, the nullstellenatz of Alon is also another relatively early use of the polynomial method.  More recently, it underlies Dvir’s proof of the Kakeya conjecture over finite fields and Guth and Katz’s near-complete solution to the Erdos distance problem in the plane, and can be used to give a short proof of the Szemeredi-Trotter theorem.  One of the aims of this survey is to try to present all of these disparate applications of the polynomial method in a somewhat unified context; my hope is that there will eventually be a systematic foundation for algebraic combinatorial geometry which naturally contains all of these different instances the polynomial method (and also suggests new instances to explore); but the field is unfortunately not at that stage of maturity yet.

This is something of a first draft, so comments and suggestions are even more welcome than usual.  (For instance, I have already had my attention drawn to some additional uses of the polynomial method in the literature that I was not previously aware of.)