Exercise 2.2.2.

Lemma 2.2.10. Let “a” be a positive number. Then there

exists exactly one natural number b such that b++ = a.

I am an autodidact person , but i can’t solve this exercise. please help.

]]>My name is Ishreet and I study in Sydney in Australia.I am in grade 3.Do you have any grade 3 books for me?Can you please advice?

Thanks

]]>I find it amazing that you have written all these books considering you are a Fields Medalist and do so much research. How do you complete the books without it interfering with your research? Or is it just that you don’t see yourself as being on the clock to produce your life’s work? I noticed some of these were produced before you got the award, so it doesn’t seem like a “going soft”. Do you feel these projects have somehow helped your research?

]]>I remember reading a comment/article where Mr. Tao stated a book or books that he used when he was a child that presented math in a fun way; numbers/primes were imagined as small creatures or something like that; I just need someone to point me to that article/ comment. And if there are any

other comments/articles where Mr.Tao states the different “fun” books he

read so that I can find them for my son . Thank you. Be forever grateful if someone replies. Kristoffer Baker ]]>

When i read “Set theory”, i get confused. Fox example, when you talk about intersections of families of sets, you used the word “for all a belongs to I”. I dont know what the exactly meaning of “all” here. Is it mean “every”? for a set, can we always choose or point out “every element” of it ? is it another assumption?

Thanks for your great work, and sorry for my poor English.

and by the way, is there a solution to your exercise? Thanks for your time.

]]>I’ve just started my studies in Random Matrices. Could you please tell me what foundations do I need to have before I can delve into the advanced theory of Random Matrix. Do I need to have foundation in Analysis, Measure Theory, Probability, Algebra or I can exclude Analysis??

Thanks. ]]>