You are currently browsing the category archive for the ‘math.NT’ category.

Let be a finite field of order , and let be an absolutely irreducible smooth projective curve defined over (and hence over the algebraic closure of that field). For instance, could be the projective elliptic curve

in the projective plane , where are coefficients whose discriminant is non-vanishing, which is the projective version of the affine elliptic curve

To each such curve one can associate a genus , which we will define later; for instance, elliptic curves have genus . We can also count the cardinality of the set of -points of . The *Hasse-Weil bound* relates the two:

The usual proofs of this bound proceed by first establishing a trace formula of the form

for some complex numbers independent of ; this is in fact a special case of the Lefschetz-Grothendieck trace formula, and can be interpreted as an assertion that the zeta function associated to the curve is rational. The task is then to establish a bound for all ; this (or more precisely, the slightly stronger assertion ) is the Riemann hypothesis for such curves. This can be done either by passing to the Jacobian variety of and using a certain duality available on the cohomology of such varieties, known as Rosati involution; alternatively, one can pass to the product surface and apply the Riemann-Roch theorem for that surface.

In 1969, Stepanov introduced an elementary method (a version of what is now known as the polynomial method) to count (or at least to upper bound) the quantity . The method was initially restricted to hyperelliptic curves, but was soon extended to general curves. In particular, Bombieri used this method to give a short proof of the following weaker version of the Hasse-Weil bound:

Theorem 2 (Weak Hasse-Weil bound)If is a perfect square, and , then .

In fact, the bound on can be sharpened a little bit further, as we will soon see.

Theorem 2 is only an upper bound on , but there is a Galois-theoretic trick to convert (a slight generalisation of) this upper bound to a matching lower bound, and if one then uses the trace formula (1) (and the “tensor power trick” of sending to infinity to control the weights ) one can then recover the full Hasse-Weil bound. We discuss these steps below the fold.

I’ve discussed Bombieri’s proof of Theorem 2 in this previous post (in the special case of hyperelliptic curves), but now wish to present the full proof, with some minor simplifications from Bombieri’s original presentation; it is mostly elementary, with the deepest fact from algebraic geometry needed being Riemann’s inequality (a weak form of the Riemann-Roch theorem).

The first step is to reinterpret as the number of points of intersection between two curves in the surface . Indeed, if we define the Frobenius endomorphism on any projective space by

then this map preserves the curve , and the fixed points of this map are precisely the points of :

Thus one can interpret as the number of points of intersection between the diagonal curve

and the Frobenius graph

which are copies of inside . But we can use the additional hypothesis that is a perfect square to write this more symmetrically, by taking advantage of the fact that the Frobenius map has a square root

with also preserving . One can then also interpret as the number of points of intersection between the curve

Let be the field of rational functions on (with coefficients in ), and define , , and analogously )(although is likely to be disconnected, so will just be a ring rather than a field. We then (morally) have the commuting square

if we ignore the issue that a rational function on, say, , might blow up on all of and thus not have a well-defined restriction to . We use and to denote the restriction maps. Furthermore, we have obvious isomorphisms , coming from composing with the graphing maps and .

The idea now is to find a rational function on the surface of controlled degree which vanishes when restricted to , but is non-vanishing (and not blowing up) when restricted to . On , we thus get a non-zero rational function of controlled degree which vanishes on – which then lets us bound the cardinality of in terms of the degree of . (In Bombieri’s original argument, one required vanishing to high order on the side, but in our presentation, we have factored out a term which removes this high order vanishing condition.)

To find this , we will use linear algebra. Namely, we will locate a finite-dimensional subspace of (consisting of certain “controlled degree” rational functions) which projects injectively to , but whose projection to has strictly smaller dimension than itself. The rank-nullity theorem then forces the existence of a non-zero element of whose projection to vanishes, but whose projection to is non-zero.

Now we build . Pick a point of , which we will think of as being a point at infinity. (For the purposes of proving Theorem 2, we may clearly assume that is non-empty.) Thus is fixed by . To simplify the exposition, we will also assume that is fixed by the square root of ; in the opposite case when has order two when acting on , the argument is essentially the same, but all references to in the second factor of need to be replaced by (we leave the details to the interested reader).

For any natural number , define to be the set of rational functions which are allowed to have a pole of order up to at , but have no other poles on ; note that as we are assuming to be smooth, it is unambiguous what a pole is (and what order it will have). (In the fancier language of divisors and Cech cohomology, we have .) The space is clearly a vector space over ; one can view intuitively as the space of “polynomials” on of “degree” at most . When , consists just of the constant functions. Indeed, if , then the image of avoids and so lies in the affine line ; but as is projective, the image needs to be compact (hence closed) in , and must therefore be a point, giving the claim.

For higher , we have the easy relations

The former inequality just comes from the trivial inclusion . For the latter, observe that if two functions lie in , so that they each have a pole of order at most at , then some linear combination of these functions must have a pole of order at most at ; thus has codimension at most one in , giving the claim.

From (3) and induction we see that each of the are finite dimensional, with the trivial upper bound

*Riemann’s inequality* complements this with the lower bound

thus one has for all but at most exceptions (in fact, exactly exceptions as it turns out). This is a consequence of the Riemann-Roch theorem; it can be proven from abstract nonsense (the snake lemma) if one defines the genus in a non-standard fashion (as the dimension of the first Cech cohomology of the structure sheaf of ), but to obtain this inequality with a standard definition of (e.g. as the dimension of the zeroth Cech cohomolgy of the line bundle of differentials) requires the more non-trivial tool of Serre duality.

At any rate, now that we have these vector spaces , we will define to be a tensor product space

for some natural numbers which we will optimise in later. That is to say, is spanned by functions of the form with and . This is clearly a linear subspace of of dimension , and hence by Rieman’s inequality we have

Observe that maps a tensor product to a function . If and , then we see that the function has a pole of order at most at . We conclude that

and in particular by (4)

We will choose to be a bit bigger than , to make the image of smaller than that of . From (6), (10) we see that if we have the inequality

(together with (7)) then cannot be injective.

On the other hand, we have the following basic fact:

*Proof:* From (3), we can find a linear basis of such that each of the has a distinct order of pole at (somewhere between and inclusive). Similarly, we may find a linear basis of such that each of the has a distinct order of pole at (somewhere between and inclusive). The functions then span , and the order of pole at is . But since , these orders are all distinct, and so these functions must be linearly independent. The claim follows.

This gives us the following bound:

Proposition 4Let be natural numbers such that (7), (11), (12) hold. Then .

*Proof:* As is not injective, we can find with vanishing. By the above lemma, the function is then non-zero, but it must also vanish on , which has cardinality . On the other hand, by (8), has a pole of order at most at and no other poles. Since the number of poles and zeroes of a rational function on a projective curve must add up to zero, the claim follows.

If , we may make the explicit choice

and a brief calculation then gives Theorem 2. In some cases one can optimise things a bit further. For instance, in the genus zero case (e.g. if is just the projective line ) one may take and conclude the absolutely sharp bound in this case; in the case of the projective line , the function is in fact the very concrete function .

Remark 1When is not a perfect square, one can try to run the above argument using the factorisation instead of . This gives a weaker version of the above bound, of the shape . In the hyperelliptic case at least, one can erase this loss by working with a variant of the argument in which one requires to vanish to high order at , rather than just to first order; see this survey article of mine for details.

This is the eighth thread for the Polymath8b project to obtain new bounds for the quantity

either for small values of (in particular ) or asymptotically as . The previous thread may be found here. The currently best known bounds on can be found at the wiki page.

The big news since the last thread is that we have managed to obtain the (sieve-theoretically) optimal bound of assuming the generalised Elliott-Halberstam conjecture (GEH), which pretty much closes off that part of the story. Unconditionally, our bound on is still . This bound was obtained using the “vanilla” Maynard sieve, in which the cutoff was supported in the original simplex , and only Bombieri-Vinogradov was used. In principle, we can enlarge the sieve support a little bit further now; for instance, we can enlarge to , but then have to shrink the J integrals to , provided that the marginals vanish for . However, we do not yet know how to numerically work with these expanded problems.

Given the substantial progress made so far, it looks like we are close to the point where we should declare victory and write up the results (though we should take one last look to see if there is any room to improve the bounds). There is actually a fair bit to write up:

- Improvements to the Maynard sieve (pushing beyond the simplex, the epsilon trick, and pushing beyond the cube);
- Asymptotic bounds for and hence ;
- Explicit bounds for (using the Polymath8a results)
- ;
- on GEH (and parity obstructions to any further improvement).

I will try to create a skeleton outline of such a paper in the Polymath8 Dropbox folder soon. It shouldn’t be nearly as big as the Polymath8a paper, but it will still be quite sizeable.

There are multiple purposes to this blog post.

The first purpose is to announce the uploading of the paper “New equidistribution estimates of Zhang type, and bounded gaps between primes” by D.H.J. Polymath, which is the main output of the Polymath8a project on bounded gaps between primes, to the arXiv, and to describe the main results of this paper below the fold.

The second purpose is to roll over the previous thread on all remaining Polymath8a-related matters (e.g. updates on the submission status of the paper) to a fresh thread. (Discussion of the ongoing Polymath8b project is however being kept on a separate thread, to try to reduce confusion.)

The final purpose of this post is to coordinate the writing of a retrospective article on the Polymath8 experience, which has been solicited for the Newsletter of the European Mathematical Society. I suppose that this could encompass both the Polymath8a and Polymath8b projects, even though the second one is still ongoing (but I think we will soon be entering the endgame there). I think there would be two main purposes of such a retrospective article. The first one would be to tell a story about the *process* of conducting mathematical research, rather than just describe the *outcome* of such research; this is an important aspect of the subject which is given almost no attention in most mathematical writing, and it would be good to be able to capture some sense of this process while memories are still relatively fresh. The other would be to draw some tentative conclusions with regards to what the strengths and weaknesses of a Polymath project are, and how appropriate such a format would be for other mathematical problems than bounded gaps between primes. In my opinion, the bounded gaps problem had some fairly unique features that made it particularly amenable to a Polymath project, such as (a) a high level of interest amongst the mathematical community in the problem; (b) a very focused objective (“improve !”), which naturally provided an obvious metric to measure progress; (c) the modular nature of the project, which allowed for people to focus on one aspect of the problem only, and still make contributions to the final goal; and (d) a very reasonable level of ambition (for instance, we did not attempt to prove the twin prime conjecture, which in my opinion would make a terrible Polymath project at our current level of mathematical technology). This is not an exhaustive list of helpful features of the problem; I would welcome other diagnoses of the project by other participants.

With these two objectives in mind, I propose a format for the retrospective article consisting of a brief introduction to the polymath concept in general and the polymath8 project in particular, followed by a collection of essentially independent contributions by different participants on their own experiences and thoughts. Finally we could have a conclusion section in which we make some general remarks on the polymath project (such as the remarks above). I’ve started a dropbox subfolder for this article (currently in a very skeletal outline form only), and will begin writing a section on my own experiences; other participants are of course encouraged to add their own sections (it is probably best to create separate files for these, and then input them into the main file retrospective.tex, to reduce edit conflicts. If there are participants who wish to contribute but do not currently have access to the Dropbox folder, please email me and I will try to have you added (or else you can supply your thoughts by email, or in the comments to this post; we may have a section for shorter miscellaneous comments from more casual participants, for people who don’t wish to write a lengthy essay on the subject).

As for deadlines, the EMS Newsletter would like a submitted article by mid-April in order to make the June issue, but in the worst case, it will just be held over until the issue after that.

This is the seventh thread for the Polymath8b project to obtain new bounds for the quantity

either for small values of (in particular ) or asymptotically as . The previous thread may be found here. The currently best known bounds on can be found at the wiki page.

The current focus is on improving the upper bound on under the assumption of the generalised Elliott-Halberstam conjecture (GEH) from to . Very recently, we have been able to exploit GEH more fully, leading to a promising new expansion of the sieve support region. The problem now reduces to the following:

Problem 1Does there exist a (not necessarily convex) polytope with quantities , and a non-trivial square-integrable function supported on such that

- when ;
- when ;
- when ;
and such that we have the inequality

An affirmative answer to this question will imply on GEH. We are “within two percent” of this claim; we cannot quite reach yet, but have got as far as . However, we have not yet fully optimised in the above problem. In particular, the simplex

is now available, and should lead to some noticeable improvement in the numerology.

There is also a *very* slim chance that the twin prime conjecture is now provable on GEH. It would require an affirmative solution to the following problem:

Problem 2Does there exist a (not necessarily convex) polytope with quantities , and a non-trivial square-integrable function supported on such that

- when ;
- when ;
and such that we have the inequality

We suspect that the answer to this question is negative, but have not formally ruled it out yet.

For the rest of this post, I will justify why positive answers to these sorts of variational problems are sufficient to get bounds on (or more generally ).

This is the fourth thread for the Polymath8b project to obtain new bounds for the quantity

either for small values of (in particular ) or asymptotically as . The previous thread may be found here. The currently best known bounds on are:

- (Maynard) Assuming the Elliott-Halberstam conjecture, .
- (Polymath8b, tentative) . Assuming Elliott-Halberstam, .
- (Polymath8b, tentative) . Assuming Elliott-Halberstam, .
- (Polymath8b, tentative) . (Presumably a comparable bound also holds for on Elliott-Halberstam, but this has not been computed.)
- (Polymath8b) for sufficiently large . Assuming Elliott-Halberstam, for sufficiently large .

While the bound on the Elliott-Halberstam conjecture has not improved since the start of the Polymath8b project, there is reason to hope that it will soon fall, hopefully to . This is because we have begun to exploit more fully the fact that when using “multidimensional Selberg-GPY” sieves of the form

with

where , it is not necessary for the smooth function to be supported on the simplex

but can in fact be allowed to range on larger sets. First of all, may instead be supported on the slightly larger polytope

However, it turns out that more is true: given a sufficiently general version of the Elliott-Halberstam conjecture at the given value of , one may work with functions supported on more general domains , so long as the sumset is contained in the non-convex region

and also provided that the restriction

More precisely, if is a smooth function, not identically zero, with the above properties for some , and the ratio

is larger than , then the claim holds (assuming ), and in particular .

I’ll explain why one can do this below the fold. Taking this for granted, we can rewrite this criterion in terms of the mixed derivative , the upshot being that if one can find a smooth function supported on that obeys the vanishing marginal conditions

and

then holds. (To equate these two formulations, it is convenient to assume that is a downset, in the sense that whenever , the entire box lie in , but one can easily enlarge to be a downset without destroying the containment of in the non-convex region (1).) One initially requires to be smooth, but a limiting argument allows one to relax to bounded measurable . (To approximate a rough by a smooth while retaining the required moment conditions, one can first apply a slight dilation and translation so that the marginals of are supported on a slightly smaller version of the simplex , and then convolve by a smooth approximation to the identity to make smooth, while keeping the marginals supported on .)

We are now exploring various choices of to work with, including the prism

and the symmetric region

By suitably subdividing these regions into polytopes, and working with piecewise polynomial functions that are polynomial of a specified degree on each subpolytope, one can phrase the problem of optimising (4) as a quadratic program, which we have managed to work with for . Extending this program to , there is a decent chance that we will be able to obtain on EH.

We have also been able to numerically optimise quite accurately for medium values of (e.g. ), which has led to improved values of without EH. For large , we now also have the asymptotic with explicit error terms (details here) which have allowed us to slightly improve the numerology, and also to get explicit numerology for the first time.

Mertens’ theorems are a set of classical estimates concerning the asymptotic distribution of the prime numbers:

Theorem 1 (Mertens’ theorems)In the asymptotic limit , we havewhere is the Euler-Mascheroni constant, defined by requiring that

The third theorem (3) is usually stated in exponentiated form

but in the logarithmic form (3) we see that it is strictly stronger than (2), in view of the asymptotic .

Remarkably, these theorems can be proven without the assistance of the prime number theorem

which was proven about two decades after Mertens’ work. (But one can certainly use versions of the prime number theorem with good error term, together with summation by parts, to obtain good estimates on the various errors in Mertens’ theorems.) Roughly speaking, the reason for this is that Mertens’ theorems only require control on the Riemann zeta function in the neighbourhood of the pole at , whereas (as discussed in this previous post) the prime number theorem requires control on the zeta function on (a neighbourhood of) the line . Specifically, Mertens’ theorem is ultimately deduced from the Euler product formula

valid in the region (which is ultimately a Fourier-Dirichlet transform of the fundamental theorem of arithmetic), and following crude asymptotics:

Proposition 2 (Simple pole)For sufficiently close to with , we have

*Proof:* For as in the proposition, we have for any natural number and , and hence

Summing in and using the identity , we obtain the first claim. Similarly, we have

and by summing in and using the identity (the derivative of the previous identity) we obtain the claim.

The first two of Mertens’ theorems (1), (2) are relatively easy to prove, and imply the third theorem (3) except with replaced by an unspecified absolute constant. To get the specific constant requires a little bit of additional effort. From (4), one might expect that the appearance of arises from the refinement

that one can obtain to (6). However, it turns out that the connection is not so much with the zeta function, but with the Gamma function, and specifically with the identity (which is of course related to (7) through the functional equation for zeta, but can be proven without any reference to zeta functions). More specifically, we have the following asymptotic for the exponential integral:

Proposition 3 (Exponential integral asymptotics)For sufficiently small , one has

A routine integration by parts shows that this asymptotic is equivalent to the identity

which is the identity mentioned previously.

*Proof:* We start by using the identity to express the harmonic series as

or on summing the geometric series

Since , we thus have

making the change of variables , this becomes

As , converges pointwise to and is pointwise dominated by . Taking limits as using dominated convergence, we conclude that

or equivalently

The claim then follows by bounding the portion of the integral on the left-hand side.

Below the fold I would like to record how Proposition 2 and Proposition 3 imply Theorem 1; the computations are utterly standard, and can be found in most analytic number theory texts, but I wanted to write them down for my own benefit (I always keep forgetting, in particular, how the third of Mertens’ theorems is proven).

This is the third thread for the Polymath8b project to obtain new bounds for the quantity

either for small values of (in particular ) or asymptotically as . The previous thread may be found here. The currently best known bounds on are:

- (Maynard) Assuming the Elliott-Halberstam conjecture, .
- (Polymath8b, tentative) . Assuming Elliott-Halberstam, .
- (Polymath8b, tentative) . Assuming Elliott-Halberstam, .
- (Polymath8b) for sufficiently large . Assuming Elliott-Halberstam, for sufficiently large .

Much of the current focus of the Polymath8b project is on the quantity

where ranges over square-integrable functions on the simplex

with being the quadratic forms

and

It was shown by Maynard that one has whenever , where is the narrowest diameter of an admissible -tuple. As discussed in the previous post, we have slight improvements to this implication, but they are currently difficult to implement, due to the need to perform high-dimensional integration. The quantity does seem however to be close to the theoretical limit of what the Selberg sieve method can achieve for implications of this type (at the Bombieri-Vinogradov level of distribution, at least); it seems of interest to explore more general sieves, although we have not yet made much progress in this direction.

The best asymptotic bounds for we have are

which we prove below the fold. The upper bound holds for all ; the lower bound is only valid for sufficiently large , and gives the upper bound on Elliott-Halberstam.

For small , the upper bound is quite competitive, for instance it provides the upper bound in the best values

and

we have for and . The situation is a little less clear for medium values of , for instance we have

and so it is not yet clear whether (which would imply ). See this wiki page for some further upper and lower bounds on .

The best lower bounds are not obtained through the asymptotic analysis, but rather through quadratic programming (extending the original method of Maynard). This has given significant numerical improvements to our best bounds (in particular lowering the bound from to ), but we have not yet been able to combine this method with the other potential improvements (enlarging the simplex, using MPZ distributional estimates, and exploiting upper bounds on two-point correlations) due to the computational difficulty involved.

This is the second thread for the Polymath8b project to obtain new bounds for the quantity

either for small values of (in particular ) or asymptotically as . The previous thread may be found here. The currently best known bounds on are:

- (Maynard) .
- (Polymath8b, tentative) .
- (Polymath8b, tentative) for sufficiently large .
- (Maynard) Assuming the Elliott-Halberstam conjecture, , , and .

Following the strategy of Maynard, the bounds on proceed by combining four ingredients:

- Distribution estimates or for the primes (or related objects);
- Bounds for the minimal diameter of an admissible -tuple;
- Lower bounds for the optimal value to a certain variational problem;
- Sieve-theoretic arguments to convert the previous three ingredients into a bound on .

Accordingly, the most natural routes to improve the bounds on are to improve one or more of the above four ingredients.

Ingredient 1 was studied intensively in Polymath8a. The following results are known or conjectured (see the Polymath8a paper for notation and proofs):

- (Bombieri-Vinogradov) is true for all .
- (Polymath8a) is true for .
- (Polymath8a, tentative) is true for .
- (Elliott-Halberstam conjecture) is true for all .

Ingredient 2 was also studied intensively in Polymath8a, and is more or less a solved problem for the values of of interest (with exact values of for , and quite good upper bounds for for , available at this page). So the main focus currently is on improving Ingredients 3 and 4.

For Ingredient 3, the basic variational problem is to understand the quantity

for bounded measurable functions, not identically zero, on the simplex

with being the quadratic forms

and

Equivalently, one has

where is the positive semi-definite bounded self-adjoint operator

so is the operator norm of . Another interpretation of is that the probability that a rook moving randomly in the unit cube stays in simplex for moves is asymptotically .

We now have a fairly good asymptotic understanding of , with the bounds

holding for sufficiently large . There is however still room to tighten the bounds on for small ; I’ll summarise some of the ideas discussed so far below the fold.

For Ingredient 4, the basic tool is this:

Thus, for instance, it is known that and , and this together with the Bombieri-Vinogradov inequality gives . This result is proven in Maynard’s paper and an alternate proof is also given in the previous blog post.

We have a number of ways to relax the hypotheses of this result, which we also summarise below the fold.

For each natural number , let denote the quantity

where denotes the prime. In other words, is the least quantity such that there are infinitely many intervals of length that contain or more primes. Thus, for instance, the twin prime conjecture is equivalent to the assertion that , and the prime tuples conjecture would imply that is equal to the diameter of the narrowest admissible tuple of cardinality (thus we conjecturally have , , , , , and so forth; see this web page for further continuation of this sequence).

In 2004, Goldston, Pintz, and Yildirim established the bound conditional on the Elliott-Halberstam conjecture, which remains unproven. However, no unconditional finiteness of was obtained (although they famously obtained the non-trivial bound ), and even on the Elliot-Halberstam conjecture no finiteness result on the higher was obtained either (although they were able to show on this conjecture). In the recent breakthrough of Zhang, the unconditional bound was obtained, by establishing a weak partial version of the Elliott-Halberstam conjecture; by refining these methods, the Polymath8 project (which I suppose we could retroactively call the Polymath8a project) then lowered this bound to .

With the very recent preprint of James Maynard, we have the following further substantial improvements:

Theorem 1 (Maynard’s theorem)Unconditionally, we have the following bounds:

- .
- for an absolute constant and any .
If one assumes the Elliott-Halberstam conjecture, we have the following improved bounds:

- .
- .
- for an absolute constant and any .

The final conclusion on Elliott-Halberstam is not explicitly stated in Maynard’s paper, but follows easily from his methods, as I will describe below the fold. (At around the same time as Maynard’s work, I had also begun a similar set of calculations concerning , but was only able to obtain the slightly weaker bound unconditionally.) In the converse direction, the prime tuples conjecture implies that should be comparable to . Granville has also obtained the slightly weaker explicit bound for any by a slight modification of Maynard’s argument.

The arguments of Maynard avoid using the difficult partial results on (weakened forms of) the Elliott-Halberstam conjecture that were established by Zhang and then refined by Polymath8; instead, the main input is the classical Bombieri-Vinogradov theorem, combined with a sieve that is closer in spirit to an older sieve of Goldston and Yildirim, than to the sieve used later by Goldston, Pintz, and Yildirim on which almost all subsequent work is based.

The aim of the Polymath8b project is to obtain improved bounds on , and higher values of , either conditional on the Elliott-Halberstam conjecture or unconditional. The likeliest routes for doing this are by optimising Maynard’s arguments and/or combining them with some of the results from the Polymath8a project. This post is intended to be the first research thread for that purpose. To start the ball rolling, I am going to give below a presentation of Maynard’s results, with some minor technical differences (most significantly, I am using the Goldston-Pintz-Yildirim variant of the Selberg sieve, rather than the traditional “elementary Selberg sieve” that is used by Maynard (and also in the Polymath8 project), although it seems that the numerology obtained by both sieves is essentially the same). An alternate exposition of Maynard’s work has just been completed also by Andrew Granville.

I’ve just uploaded to the arXiv my article “Algebraic combinatorial geometry: the polynomial method in arithmetic combinatorics, incidence combinatorics, and number theory“, submitted to the new journal “EMS surveys in the mathematical sciences“. This is the first draft of a survey article on the polynomial method – a technique in combinatorics and number theory for controlling a relevant set of points by comparing it with the zero set of a suitably chosen polynomial, and then using tools from algebraic geometry (e.g. Bezout’s theorem) on that zero set. As such, the method combines algebraic geometry with combinatorial geometry, and could be viewed as the philosophy of a combined field which I dub “algebraic combinatorial geometry”. There is also an important extension of this method when one is working overthe reals, in which methods from algebraic topology (e.g. the ham sandwich theorem and its generalisation to polynomials), and not just algebraic geometry, come into play also.

The polynomial method has been used independently many times in mathematics; for instance, it plays a key role in the proof of Baker’s theorem in transcendence theory, or Stepanov’s method in giving an elementary proof of the Riemann hypothesis for finite fields over curves; in combinatorics, the nullstellenatz of Alon is also another relatively early use of the polynomial method. More recently, it underlies Dvir’s proof of the Kakeya conjecture over finite fields and Guth and Katz’s near-complete solution to the Erdos distance problem in the plane, and can be used to give a short proof of the Szemeredi-Trotter theorem. One of the aims of this survey is to try to present all of these disparate applications of the polynomial method in a somewhat unified context; my hope is that there will eventually be a systematic foundation for algebraic combinatorial geometry which naturally contains all of these different instances the polynomial method (and also suggests new instances to explore); but the field is unfortunately not at that stage of maturity yet.

This is something of a first draft, so comments and suggestions are even more welcome than usual. (For instance, I have already had my attention drawn to some additional uses of the polynomial method in the literature that I was not previously aware of.)

## Recent Comments