You are currently browsing the category archive for the ‘math.NT’ category.

As in all previous posts in this series, we adopt the following asymptotic notation: ${x}$ is a parameter going off to infinity, and all quantities may depend on ${x}$ unless explicitly declared to be “fixed”. The asymptotic notation ${O(), o(), \ll}$ is then defined relative to this parameter. A quantity ${q}$ is said to be of polynomial size if one has ${q = O(x^{O(1)})}$, and bounded if ${q=O(1)}$. We also write ${X \lessapprox Y}$ for ${X \ll x^{o(1)} Y}$, and ${X \sim Y}$ for ${X \ll Y \ll X}$.

The purpose of this (rather technical) post is both to roll over the polymath8 research thread from this previous post, and also to record the details of the latest improvement to the Type I estimates (based on exploiting additional averaging and using Deligne’s proof of the Weil conjectures) which lead to a slight improvement in the numerology.

In order to obtain this new Type I estimate, we need to strengthen the previously used properties of “dense divisibility” or “double dense divisibility” as follows.

Definition 1 (Multiple dense divisibility) Let ${y \geq 1}$. For each natural number ${k \geq 0}$, we define a notion of ${k}$-tuply ${y}$-dense divisibility recursively as follows:

• Every natural number ${n}$ is ${0}$-tuply ${y}$-densely divisible.
• If ${k \geq 1}$ and ${n}$ is a natural number, we say that ${n}$ is ${k}$-tuply ${y}$-densely divisible if, whenever ${i,j \geq 0}$ are natural numbers with ${i+j=k-1}$, and ${1 \leq R \leq n}$, one can find a factorisation ${n = qr}$ with ${y^{-1} R \leq r \leq R}$ such that ${q}$ is ${i}$-tuply ${y}$-densely divisible and ${r}$ is ${j}$-tuply ${y}$-densely divisible.

We let ${{\mathcal D}^{(k)}_y}$ denote the set of ${k}$-tuply ${y}$-densely divisible numbers. We abbreviate “${1}$-tuply densely divisible” as “densely divisible”, “${2}$-tuply densely divisible” as “doubly densely divisible”, and so forth; we also abbreviate ${{\mathcal D}^{(1)}_y}$ as ${{\mathcal D}_y}$.

Given any finitely supported sequence ${\alpha: {\bf N} \rightarrow {\bf C}}$ and any primitive residue class ${a\ (q)}$, we define the discrepancy

$\displaystyle \Delta(\alpha; a \ (q)) := \sum_{n: n = a\ (q)} \alpha(n) - \frac{1}{\phi(q)} \sum_{n: (n,q)=1} \alpha(n).$

We now recall the key concept of a coefficient sequence, with some slight tweaks in the definitions that are technically convenient for this post.

Definition 2 A coefficient sequence is a finitely supported sequence ${\alpha: {\bf N} \rightarrow {\bf R}}$ that obeys the bounds

$\displaystyle |\alpha(n)| \ll \tau^{O(1)}(n) \log^{O(1)}(x) \ \ \ \ \ (1)$

for all ${n}$, where ${\tau}$ is the divisor function.

• (i) A coefficient sequence ${\alpha}$ is said to be located at scale ${N}$ for some ${N \geq 1}$ if it is supported on an interval of the form ${[cN, CN]}$ for some ${1 \ll c < C \ll 1}$.
• (ii) A coefficient sequence ${\alpha}$ located at scale ${N}$ for some ${N \geq 1}$ is said to obey the Siegel-Walfisz theorem if one has

$\displaystyle | \Delta(\alpha 1_{(\cdot,q)=1}; a\ (r)) | \ll \tau(qr)^{O(1)} N \log^{-A} x \ \ \ \ \ (2)$

for any ${q,r \geq 1}$, any fixed ${A}$, and any primitive residue class ${a\ (r)}$.

• (iii) A coefficient sequence ${\alpha}$ is said to be smooth at scale ${N}$ for some ${N > 0}$ is said to be smooth if it takes the form ${\alpha(n) = \psi(n/N)}$ for some smooth function ${\psi: {\bf R} \rightarrow {\bf C}}$ supported on an interval of size ${O(1)}$ and obeying the derivative bounds

$\displaystyle |\psi^{(j)}(t)| \lesssim \log^{O(1)} x \ \ \ \ \ (3)$

for all fixed ${j \geq 0}$ (note that the implied constant in the ${O()}$ notation may depend on ${j}$).

Note that we allow sequences to be smooth at scale ${N}$ without being located at scale ${N}$; for instance if one arbitrarily translates of a sequence that is both smooth and located at scale ${N}$, it will remain smooth at this scale but may not necessarily be located at this scale any more. Note also that we allow the smoothness scale ${N}$ of a coefficient sequence to be less than one. This is to allow for the following convenient rescaling property: if ${n \mapsto \psi(n)}$ is smooth at scale ${N}$, ${q \geq 1}$, and ${a}$ is an integer, then ${n \mapsto \psi(qn+a)}$ is smooth at scale ${N/q}$, even if ${N/q}$ is less than one.

Now we adapt the Type I estimate to the ${k}$-tuply densely divisible setting.

Definition 3 (Type I estimates) Let ${0 < \varpi < 1/4}$, ${0 < \delta < 1/4+\varpi}$, and ${0 < \sigma < 1/2}$ be fixed quantities, and let ${k \geq 1}$ be a fixed natural number. We let ${I}$ be an arbitrary bounded subset of ${{\bf R}}$, let ${P_I := \prod_{p \in I} p}$, and let ${a\ (P_I)}$ a primitive congruence class. We say that ${Type^{(k)}_I[\varpi,\delta,\sigma]}$ holds if, whenever ${M, N \gg 1}$ are quantities with

$\displaystyle M N \sim x \ \ \ \ \ (4)$

and

$\displaystyle x^{1/2-\sigma} \lessapprox N \lessapprox x^{1/2-2\varpi-c} \ \ \ \ \ (5)$

for some fixed ${c>0}$, and ${\alpha,\beta}$ are coefficient sequences located at scales ${M,N}$ respectively, with ${\beta}$ obeying a Siegel-Walfisz theorem, we have

$\displaystyle \sum_{q \in {\mathcal S}_I \cap {\mathcal D}_{x^\delta}^{(k)}: q \leq x^{1/2+2\varpi}} |\Delta(\alpha * \beta; a\ (q))| \ll x \log^{-A} x \ \ \ \ \ (6)$

for any fixed ${A>0}$. Here, as in previous posts, ${{\mathcal S}_I}$ denotes the square-free natural numbers whose prime factors lie in ${I}$.

The main theorem of this post is then

Theorem 4 (Improved Type I estimate) We have ${Type^{(4)}_I[\varpi,\delta,\sigma]}$ whenever

$\displaystyle \frac{160}{3} \varpi + 16 \delta + \frac{34}{9} \sigma < 1$

and

$\displaystyle 64\varpi + 18\delta + 2\sigma < 1.$

In practice, the first condition here is dominant. Except for weakening double dense divisibility to quadruple dense divisibility, this improves upon the previous Type I estimate that established ${Type^{(2)}_I[\varpi,\delta,\sigma]}$ under the stricter hypothesis

$\displaystyle 56 \varpi + 16 \delta + 4 \sigma < 1.$

As in previous posts, Type I estimates (when combined with existing Type II and Type III estimates) lead to distribution results of Motohashi-Pintz-Zhang type. For any fixed ${\varpi, \delta > 0}$ and ${k \geq 1}$, we let ${MPZ^{(k)}[\varpi,\delta]}$ denote the assertion that

$\displaystyle \sum_{q \in {\mathcal S}_I \cap {\mathcal D}_{x^\delta}^{(k)}: q \leq x^{1/2+2\varpi}} |\Delta(\Lambda 1_{[x,2x]}; a\ (q))| \ll x \log^{-A} x \ \ \ \ \ (7)$

for any fixed ${A > 0}$, any bounded ${I}$, and any primitive ${a\ (P_I)}$, where ${\Lambda}$ is the von Mangoldt function.

Corollary 5 We have ${MPZ^{(4)}[\varpi,\delta]}$ whenever

$\displaystyle \frac{600}{7} \varpi + \frac{180}{7} \delta < 1 \ \ \ \ \ (8)$

Proof: Setting ${\sigma}$ sufficiently close to ${1/10}$, we see from the above theorem that ${Type^{(4)}_{II}[\varpi,\delta]}$ holds whenever

$\displaystyle \frac{600}{7} \varpi + \frac{180}{7} \delta < 1$

and

$\displaystyle 80 \varpi + \frac{45}{2} \delta < 1.$

The second condition is implied by the first and can be deleted.

From this previous post we know that ${Type^{(4)}_{II}[\varpi,\delta]}$ (which we define analogously to ${Type'_{II}[\varpi,\delta], Type''_{II}[\varpi,\delta]}$ from previous sections) holds whenever

$\displaystyle 68 \varpi + 14 \delta < 1$

while ${Type^{(4)}_{III}[\varpi,\delta,\sigma]}$ holds with ${\sigma}$ sufficiently close to ${1/10}$ whenever

$\displaystyle 70 \varpi + 5 \delta < 1.$

Again, these conditions are implied by (8). The claim then follows from the Heath-Brown identity and dyadic decomposition as in this previous post. $\Box$

As before, we let ${DHL[k_0,2]}$ denote the claim that given any admissible ${k_0}$-tuple ${{\mathcal H}}$, there are infinitely many translates of ${{\mathcal H}}$ that contain at least two primes.

Corollary 6 We have ${DHL[k_0,2]}$ with ${k_0 = 632}$.

This follows from the Pintz sieve, as discussed below the fold. Combining this with the best known prime tuples, we obtain that there are infinitely many prime gaps of size at most ${4,680}$, improving slightly over the previous record of ${5,414}$.

[Note: the content of this post is standard number theoretic material that can be found in many textbooks (I am relying principally here on Iwaniec and Kowalski); I am not claiming any new progress on any version of the Riemann hypothesis here, but am simply arranging existing facts together.]

The Riemann hypothesis is arguably the most important and famous unsolved problem in number theory. It is usually phrased in terms of the Riemann zeta function ${\zeta}$, defined by

$\displaystyle \zeta(s) = \sum_{n=1}^\infty \frac{1}{n^s}$

for ${\hbox{Re}(s)>1}$ and extended meromorphically to other values of ${s}$, and asserts that the only zeroes of ${\zeta}$ in the critical strip ${\{ s: 0 \leq \hbox{Re}(s) \leq 1 \}}$ lie on the critical line ${\{ s: \hbox{Re}(s)=\frac{1}{2} \}}$.

One of the main reasons that the Riemann hypothesis is so important to number theory is that the zeroes of the zeta function in the critical strip control the distribution of the primes. To see the connection, let us perform the following formal manipulations (ignoring for now the important analytic issues of convergence of series, interchanging sums, branches of the logarithm, etc., in order to focus on the intuition). The starting point is the fundamental theorem of arithmetic, which asserts that every natural number ${n}$ has a unique factorisation ${n = p_1^{a_1} \ldots p_k^{a_k}}$ into primes. Taking logarithms, we obtain the identity

$\displaystyle \log n = \sum_{d|n} \Lambda(d) \ \ \ \ \ (1)$

for any natural number ${n}$, where ${\Lambda}$ is the von Mangoldt function, thus ${\Lambda(n) = \log p}$ when ${n}$ is a power of a prime ${p}$ and zero otherwise. If we then perform a “Dirichlet-Fourier transform” by viewing both sides of (1) as coefficients of a Dirichlet series, we conclude that

$\displaystyle \sum_{n=1}^\infty \frac{\log n}{n^s} = \sum_{n=1}^\infty \sum_{d|n} \frac{\Lambda(d)}{n^s},$

formally at least. Writing ${n=dm}$, the right-hand side factors as

$\displaystyle (\sum_{d=1}^\infty \frac{\Lambda(d)}{d^s}) (\sum_{m=1}^\infty \frac{1}{m^s}) = \zeta(s) \sum_{n=1}^\infty \frac{\Lambda(n)}{n^s}$

whereas the left-hand side is (formally, at least) equal to ${-\zeta'(s)}$. We conclude the identity

$\displaystyle \sum_{n=1}^\infty \frac{\Lambda(n)}{n^s} = -\frac{\zeta'(s)}{\zeta(s)},$

(formally, at least). If we integrate this, we are formally led to the identity

$\displaystyle \sum_{n=1}^\infty \frac{\Lambda(n)}{\log n} n^{-s} = \log \zeta(s)$

or equivalently to the exponential identity

$\displaystyle \zeta(s) = \exp( \sum_{n=1}^\infty \frac{\Lambda(n)}{\log n} n^{-s} ) \ \ \ \ \ (2)$

which allows one to reconstruct the Riemann zeta function from the von Mangoldt function. (It is instructive exercise in enumerative combinatorics to try to prove this identity directly, at the level of formal Dirichlet series, using the fundamental theorem of arithmetic of course.) Now, as ${\zeta}$ has a simple pole at ${s=1}$ and zeroes at various places ${s=\rho}$ on the critical strip, we expect a Weierstrass factorisation which formally (ignoring normalisation issues) takes the form

$\displaystyle \zeta(s) = \frac{1}{s-1} \times \prod_\rho (s-\rho) \times \ldots$

(where we will be intentionally vague about what is hiding in the ${\ldots}$ terms) and so we expect an expansion of the form

$\displaystyle \sum_{n=1}^\infty \frac{\Lambda(n)}{\log n} n^{-s} = - \log(s-1) + \sum_\rho \log(s-\rho) + \ldots. \ \ \ \ \ (3)$

Note that

$\displaystyle \frac{1}{s-\rho} = \int_1^\infty t^{\rho-s} \frac{dt}{t}$

and hence on integrating in ${s}$ we formally have

$\displaystyle \log(s-\rho) = -\int_1^\infty t^{\rho-s-1} \frac{dt}{\log t}$

and thus we have the heuristic approximation

$\displaystyle \log(s-\rho) \approx - \sum_{n=1}^\infty \frac{n^{\rho-s-1}}{\log n}.$

Comparing this with (3), we are led to a heuristic form of the explicit formula

$\displaystyle \Lambda(n) \approx 1 - \sum_\rho n^{\rho-1}. \ \ \ \ \ (4)$

When trying to make this heuristic rigorous, it turns out (due to the rough nature of both sides of (4)) that one has to interpret the explicit formula in some suitably weak sense, for instance by testing (4) against the indicator function ${1_{[0,x]}(n)}$ to obtain the formula

$\displaystyle \sum_{n \leq x} \Lambda(n) \approx x - \sum_\rho \frac{x^{\rho}}{\rho} \ \ \ \ \ (5)$

which can in fact be made into a rigorous statement after some truncation (the von Mangoldt explicit formula). From this formula we now see how helpful the Riemann hypothesis will be to control the distribution of the primes; indeed, if the Riemann hypothesis holds, so that ${\hbox{Re}(\rho) = 1/2}$ for all zeroes ${\rho}$, it is not difficult to use (a suitably rigorous version of) the explicit formula to conclude that

$\displaystyle \sum_{n \leq x} \Lambda(n) = x + O( x^{1/2} \log^2 x ) \ \ \ \ \ (6)$

as ${x \rightarrow \infty}$, giving a near-optimal “square root cancellation” for the sum ${\sum_{n \leq x} \Lambda(n)-1}$. Conversely, if one can somehow establish a bound of the form

$\displaystyle \sum_{n \leq x} \Lambda(n) = x + O( x^{1/2+\epsilon} )$

for any fixed ${\epsilon}$, then the explicit formula can be used to then deduce that all zeroes ${\rho}$ of ${\zeta}$ have real part at most ${1/2+\epsilon}$, which leads to the following remarkable amplification phenomenon (analogous, as we will see later, to the tensor power trick): any bound of the form

$\displaystyle \sum_{n \leq x} \Lambda(n) = x + O( x^{1/2+o(1)} )$

can be automatically amplified to the stronger bound

$\displaystyle \sum_{n \leq x} \Lambda(n) = x + O( x^{1/2} \log^2 x )$

with both bounds being equivalent to the Riemann hypothesis. Of course, the Riemann hypothesis for the Riemann zeta function remains open; but partial progress on this hypothesis (in the form of zero-free regions for the zeta function) leads to partial versions of the asymptotic (6). For instance, it is known that there are no zeroes of the zeta function on the line ${\hbox{Re}(s)=1}$, and this can be shown by some analysis (either complex analysis or Fourier analysis) to be equivalent to the prime number theorem

$\displaystyle \sum_{n \leq x} \Lambda(n) =x + o(x);$

see e.g. this previous blog post for more discussion.

The main engine powering the above observations was the fundamental theorem of arithmetic, and so one can expect to establish similar assertions in other contexts where some version of the fundamental theorem of arithmetic is available. One of the simplest such variants is to continue working on the natural numbers, but “twist” them by a Dirichlet character ${\chi: {\bf Z} \rightarrow {\bf R}}$. The analogue of the Riemann zeta function is then the (1), which encoded the fundamental theorem of arithmetic, can be twisted by ${\chi}$ to obtain

$\displaystyle \chi(n) \log n = \sum_{d|n} \chi(d) \Lambda(d) \chi(\frac{n}{d}) \ \ \ \ \ (7)$

and essentially the same manipulations as before eventually lead to the exponential identity

$\displaystyle L(s,\chi) = \exp( \sum_{n=1}^\infty \frac{\chi(n) \Lambda(n)}{\log n} n^{-s} ). \ \ \ \ \ (8)$

which is a twisted version of (2), as well as twisted explicit formula, which heuristically takes the form

$\displaystyle \chi(n) \Lambda(n) \approx - \sum_\rho n^{\rho-1} \ \ \ \ \ (9)$

for non-principal ${\chi}$, where ${\rho}$ now ranges over the zeroes of ${L(s,\chi)}$ in the critical strip, rather than the zeroes of ${\zeta(s)}$; a more accurate formulation, following (5), would be

$\displaystyle \sum_{n \leq x} \chi(n) \Lambda(n) \approx - \sum_\rho \frac{x^{\rho}}{\rho}. \ \ \ \ \ (10)$

(See e.g. Davenport’s book for a more rigorous discussion which emphasises the analogy between the Riemann zeta function and the Dirichlet ${L}$-function.) If we assume the generalised Riemann hypothesis, which asserts that all zeroes of ${L(s,\chi)}$ in the critical strip also lie on the critical line, then we obtain the bound

$\displaystyle \sum_{n \leq x} \chi(n) \Lambda(n) = O( x^{1/2} \log(x) \log(xq) )$

for any non-principal Dirichlet character ${\chi}$, again demonstrating a near-optimal square root cancellation for this sum. Again, we have the amplification property that the above bound is implied by the apparently weaker bound

$\displaystyle \sum_{n \leq x} \chi(n) \Lambda(n) = O( x^{1/2+o(1)} )$

(where ${o(1)}$ denotes a quantity that goes to zero as ${x \rightarrow \infty}$ for any fixed ${q}$). Next, one can consider other number systems than the natural numbers ${{\bf N}}$ and integers ${{\bf Z}}$. For instance, one can replace the integers ${{\bf Z}}$ with rings ${{\mathcal O}_K}$ of integers in other number fields ${K}$ (i.e. finite extensions of ${{\bf Q}}$), such as the quadratic extensions ${K = {\bf Q}[\sqrt{D}]}$ of the rationals for various square-free integers ${D}$, in which case the ring of integers would be the ring of quadratic integers ${{\mathcal O}_K = {\bf Z}[\omega]}$ for a suitable generator ${\omega}$ (it turns out that one can take ${\omega = \sqrt{D}}$ if ${D=2,3\hbox{ mod } 4}$, and ${\omega = \frac{1+\sqrt{D}}{2}}$ if ${D=1 \hbox{ mod } 4}$). Here, it is not immediately obvious what the analogue of the natural numbers ${{\bf N}}$ is in this setting, since rings such as ${{\bf Z}[\omega]}$ do not come with a natural ordering. However, we can adopt an algebraic viewpoint to see the correct generalisation, observing that every natural number ${n}$ generates a principal ideal ${(n) = \{ an: a \in {\bf Z} \}}$ in the integers, and conversely every non-trivial ideal ${{\mathfrak n}}$ in the integers is associated to precisely one natural number ${n}$ in this fashion, namely the norm ${N({\mathfrak n}) := |{\bf Z} / {\mathfrak n}|}$ of that ideal. So one can identify the natural numbers with the ideals of ${{\bf Z}}$. Furthermore, with this identification, the prime numbers correspond to the prime ideals, since if ${p}$ is prime, and ${a,b}$ are integers, then ${ab \in (p)}$ if and only if one of ${a \in (p)}$ or ${b \in (p)}$ is true. Finally, even in number systems (such as ${{\bf Z}[\sqrt{-5}]}$) in which the classical version of the fundamental theorem of arithmetic fail (e.g. ${6 = 2 \times 3 = (1-\sqrt{-5})(1+\sqrt{-5})}$), we have the fundamental theorem of arithmetic for ideals: every ideal ${\mathfrak{n}}$ in a Dedekind domain (which includes the ring ${{\mathcal O}_K}$ of integers in a number field as a key example) is uniquely representable (up to permutation) as the product of a finite number of prime ideals ${\mathfrak{p}}$ (although these ideals might not necessarily be principal). For instance, in ${{\bf Z}[\sqrt{-5}]}$, the principal ideal ${(6)}$ factors as the product of four prime (but non-principal) ideals ${(2, 1+\sqrt{-5})}$, ${(2, 1-\sqrt{-5})}$, ${(3, 1+\sqrt{-5})}$, ${(3, 1-\sqrt{-5})}$. (Note that the first two ideals ${(2,1+\sqrt{5}), (2,1-\sqrt{5})}$ are actually equal to each other.) Because we still have the fundamental theorem of arithmetic, we can develop analogues of the previous observations relating the Riemann hypothesis to the distribution of primes. The analogue of the Riemann hypothesis is now the Dedekind zeta function

$\displaystyle \zeta_K(s) := \sum_{{\mathfrak n}} \frac{1}{N({\mathfrak n})^s}$

where the summation is over all non-trivial ideals in ${{\mathcal O}_K}$. One can also define a von Mangoldt function ${\Lambda_K({\mathfrak n})}$, defined as ${\log N( {\mathfrak p})}$ when ${{\mathfrak n}}$ is a power of a prime ideal ${{\mathfrak p}}$, and zero otherwise; then the fundamental theorem of arithmetic for ideals can be encoded in an analogue of (1) (or (7)),

$\displaystyle \log N({\mathfrak n}) = \sum_{{\mathfrak d}|{\mathfrak n}} \Lambda_K({\mathfrak d}) \ \ \ \ \ (11)$

which leads as before to an exponential identity

$\displaystyle \zeta_K(s) = \exp( \sum_{{\mathfrak n}} \frac{\Lambda_K({\mathfrak n})}{\log N({\mathfrak n})} N({\mathfrak n})^{-s} ) \ \ \ \ \ (12)$

and an explicit formula of the heuristic form

$\displaystyle \Lambda({\mathfrak n}) \approx 1 - \sum_\rho N({\mathfrak n})^{\rho-1}$

or, a little more accurately,

$\displaystyle \sum_{N({\mathfrak n}) \leq x} \Lambda({\mathfrak n}) \approx x - \sum_\rho \frac{x^{\rho}}{\rho} \ \ \ \ \ (13)$

in analogy with (5) or (10). Again, a suitable Riemann hypothesis for the Dedekind zeta function leads to good asymptotics for the distribution of prime ideals, giving a bound of the form

$\displaystyle \sum_{N({\mathfrak n}) \leq x} \Lambda({\mathfrak n}) = x + O( \sqrt{x} \log(x) (d+\log(Dx)) )$

where ${D}$ is the conductor of ${K}$ (which, in the case of number fields, is the absolute value of the discriminant of ${K}$) and ${d = \hbox{dim}_{\bf Q}(K)}$ is the degree of the extension of ${K}$ over ${{\bf Q}}$. As before, we have the amplification phenomenon that the above near-optimal square root cancellation bound is implied by the weaker bound

$\displaystyle \sum_{N({\mathfrak n}) \leq x} \Lambda({\mathfrak n}) = x + O( x^{1/2+o(1)} )$

where ${o(1)}$ denotes a quantity that goes to zero as ${x \rightarrow \infty}$ (holding ${K}$ fixed). See e.g. Chapter 5 of Iwaniec-Kowalski for details.

As was the case with the Dirichlet ${L}$-functions, one can twist the Dedekind zeta function example by characters, in this case the Hecke characters; we will not do this here, but see e.g. Section 3 of Iwaniec-Kowalski for details.

Very analogous considerations hold if we move from number fields to function fields. The simplest case is the function field associated to the affine line ${{\mathbb A}^1}$ and a finite field ${{\mathbb F} = {\mathbb F}_q}$ of some order ${q}$. The polynomial functions on the affine line ${{\mathbb A}^1/{\mathbb F}}$ are just the usual polynomial ring ${{\mathbb F}[t]}$, which then play the role of the integers ${{\bf Z}}$ (or ${{\mathcal O}_K}$) in previous examples. This ring happens to be a unique factorisation domain, so the situation is closely analogous to the classical setting of the Riemann zeta function. The analogue of the natural numbers are the monic polynomials (since every non-trivial principal ideal is generated by precisely one monic polynomial), and the analogue of the prime numbers are the irreducible monic polynomials. The norm ${N(f)}$ of a polynomial is the order of ${{\mathbb F}[t] / (f)}$, which can be computed explicitly as

$\displaystyle N(f) = q^{\hbox{deg}(f)}.$

Because of this, we will normalise things slightly differently here and use ${\hbox{deg}(f)}$ in place of ${\log N(f)}$ in what follows. The (local) zeta function ${\zeta_{{\mathbb A}^1/{\mathbb F}}(s)}$ is then defined as

$\displaystyle \zeta_{{\mathbb A}^1/{\mathbb F}}(s) = \sum_f \frac{1}{N(f)^s}$

where ${f}$ ranges over monic polynomials, and the von Mangoldt function ${\Lambda_{{\mathbb A}^1/{\mathbb F}}(f)}$ is defined to equal ${\hbox{deg}(g)}$ when ${f}$ is a power of a monic irreducible polynomial ${g}$, and zero otherwise. Note that because ${N(f)}$ is always a power of ${q}$, the zeta function here is in fact periodic with period ${2\pi i / \log q}$. Because of this, it is customary to make a change of variables ${T := q^{-s}}$, so that

$\displaystyle \zeta_{{\mathbb A}^1/{\mathbb F}}(s) = Z( {\mathbb A}^1/{\mathbb F}, T )$

and ${Z}$ is the renormalised zeta function

$\displaystyle Z( {\mathbb A}^1/{\mathbb F}, T ) = \sum_f T^{\hbox{deg}(f)}. \ \ \ \ \ (14)$

We have the analogue of (1) (or (7) or (11)):

$\displaystyle \hbox{deg}(f) = \sum_{g|f} \Lambda_{{\mathbb A}^1/{\mathbb F}}(g), \ \ \ \ \ (15)$

which leads as before to an exponential identity

$\displaystyle Z( {\mathbb A}^1/{\mathbb F}, T ) = \exp( \sum_f \frac{\Lambda_{{\mathbb A}^1/{\mathbb F}}(f)}{\hbox{deg}(f)} T^{\hbox{deg}(f)} ) \ \ \ \ \ (16)$

analogous to (2), (8), or (12). It also leads to the explicit formula

$\displaystyle \Lambda_{{\mathbb A}^1/{\mathbb F}}(f) \approx 1 - \sum_\rho N(f)^{\rho-1}$

where ${\rho}$ are the zeroes of the original zeta function ${\zeta_{{\mathbb A}^1/{\mathbb F}}(s)}$ (counting each residue class of the period ${2\pi i/\log q}$ just once), or equivalently

$\displaystyle \Lambda_{{\mathbb A}^1/{\mathbb F}}(f) \approx 1 - q^{-\hbox{deg}(f)} \sum_\alpha \alpha^{\hbox{deg}(f)},$

where ${\alpha}$ are the reciprocals of the roots of the normalised zeta function ${Z( {\mathbb A}^1/{\mathbb F}, T )}$ (or to put it another way, ${1-\alpha T}$ are the factors of this zeta function). Again, to make proper sense of this heuristic we need to sum, obtaining

$\displaystyle \sum_{\hbox{deg}(f) = n} \Lambda_{{\mathbb A}^1/{\mathbb F}}(f) \approx q^n - \sum_\alpha \alpha^n.$

As it turns out, in the function field setting, the zeta functions are always rational (this is part of the Weil conjectures), and the above heuristic formula is basically exact up to a constant factor, thus

$\displaystyle \sum_{\hbox{deg}(f) = n} \Lambda_{{\mathbb A}^1/{\mathbb F}}(f) = q^n - \sum_\alpha \alpha^n + c \ \ \ \ \ (17)$

for an explicit integer ${c}$ (independent of ${n}$) arising from any potential pole of ${Z}$ at ${T=1}$. In the case of the affine line ${{\mathbb A}^1}$, the situation is particularly simple, because the zeta function ${Z( {\mathbb A}^1/{\mathbb F}, T)}$ is easy to compute. Indeed, since there are exactly ${q^n}$ monic polynomials of a given degree ${n}$, we see from (14) that

$\displaystyle Z( {\mathbb A}^1/{\mathbb F}, T ) = \sum_{n=0}^\infty q^n T^n = \frac{1}{1-qT}$

so in fact there are no zeroes whatsoever, and no pole at ${T=1}$ either, so we have an exact prime number theorem for this function field:

$\displaystyle \sum_{\hbox{deg}(f) = n} \Lambda_{{\mathbb A}^1/{\mathbb F}}(f) = q^n \ \ \ \ \ (18)$

Among other things, this tells us that the number of irreducible monic polynomials of degree ${n}$ is ${q^n/n + O(q^{n/2})}$.

We can transition from an algebraic perspective to a geometric one, by viewing a given monic polynomial ${f \in {\mathbb F}[t]}$ through its roots, which are a finite set of points in the algebraic closure ${\overline{{\mathbb F}}}$ of the finite field ${{\mathbb F}}$ (or more suggestively, as points on the affine line ${{\mathbb A}^1( \overline{{\mathbb F}} )}$). The number of such points (counting multiplicity) is the degree of ${f}$, and from the factor theorem, the set of points determines the monic polynomial ${f}$ (or, if one removes the monic hypothesis, it determines the polynomial ${f}$ projectively). These points have an action of the Galois group ${\hbox{Gal}( \overline{{\mathbb F}} / {\mathbb F} )}$. It is a classical fact that this Galois group is in fact a cyclic group generated by a single element, the (geometric) Frobenius map ${\hbox{Frob}: x \mapsto x^q}$, which fixes the elements of the original finite field ${{\mathbb F}}$ but permutes the other elements of ${\overline{{\mathbb F}}}$. Thus the roots of a given polynomial ${f}$ split into orbits of the Frobenius map. One can check that the roots consist of a single such orbit (counting multiplicity) if and only if ${f}$ is irreducible; thus the fundamental theorem of arithmetic can be viewed geometrically as as the orbit decomposition of any Frobenius-invariant finite set of points in the affine line.

Now consider the degree ${n}$ finite field extension ${{\mathbb F}_n}$ of ${{\mathbb F}}$ (it is a classical fact that there is exactly one such extension up to isomorphism for each ${n}$); this is a subfield of ${\overline{{\mathbb F}}}$ of order ${q^n}$. (Here we are performing a standard abuse of notation by overloading the subscripts in the ${{\mathbb F}}$ notation; thus ${{\mathbb F}_q}$ denotes the field of order ${q}$, while ${{\mathbb F}_n}$ denotes the extension of ${{\mathbb F} = {\mathbb F}_q}$ of order ${n}$, so that we in fact have ${{\mathbb F}_n = {\mathbb F}_{q^n}}$ if we use one subscript convention on the left-hand side and the other subscript convention on the right-hand side. We hope this overloading will not cause confusion.) Each point ${x}$ in this extension (or, more suggestively, the affine line ${{\mathbb A}^1({\mathbb F}_n)}$ over this extension) has a minimal polynomial – an irreducible monic polynomial whose roots consist the Frobenius orbit of ${x}$. Since the Frobenius action is periodic of period ${n}$ on ${{\mathbb F}_n}$, the degree of this minimal polynomial must divide ${n}$. Conversely, every monic irreducible polynomial of degree ${d}$ dividing ${n}$ produces ${d}$ distinct zeroes that lie in ${{\mathbb F}_d}$ (here we use the classical fact that finite fields are perfect) and hence in ${{\mathbb F}_n}$. We have thus partitioned ${{\mathbb A}^1({\mathbb F}_n)}$ into Frobenius orbits (also known as closed points), with each monic irreducible polynomial ${f}$ of degree ${d}$ dividing ${n}$ contributing an orbit of size ${d = \hbox{deg}(f) = \Lambda(f^{n/d})}$. From this we conclude a geometric interpretation of the left-hand side of (18):

$\displaystyle \sum_{\hbox{deg}(f) = n} \Lambda_{{\mathbb A}^1/{\mathbb F}}(f) = \sum_{x \in {\mathbb A}^1({\mathbb F}_n)} 1. \ \ \ \ \ (19)$

The identity (18) thus is equivalent to the thoroughly boring fact that the number of ${{\mathbb F}_n}$-points on the affine line ${{\mathbb A}^1}$ is equal to ${q^n}$. However, things become much more interesting if one then replaces the affine line ${{\mathbb A}^1}$ by a more general (geometrically) irreducible curve ${C}$ defined over ${{\mathbb F}}$; for instance one could take ${C}$ to be an ellpitic curve

$\displaystyle E = \{ (x,y): y^2 = x^3 + ax + b \} \ \ \ \ \ (20)$

for some suitable ${a,b \in {\mathbb F}}$, although the discussion here applies to more general curves as well (though to avoid some minor technicalities, we will assume that the curve is projective with a finite number of ${{\mathbb F}}$-rational points removed). The analogue of ${{\mathbb F}[t]}$ is then the coordinate ring of ${C}$ (for instance, in the case of the elliptic curve (20) it would be ${{\mathbb F}[x,y] / (y^2-x^3-ax-b)}$), with polynomials in this ring producing a set of roots in the curve ${C( \overline{\mathbb F})}$ that is again invariant with respect to the Frobenius action (acting on the ${x}$ and ${y}$ coordinates separately). In general, we do not expect unique factorisation in this coordinate ring (this is basically because Bezout’s theorem suggests that the zero set of a polynomial on ${C}$ will almost never consist of a single (closed) point). Of course, we can use the algebraic formalism of ideals to get around this, setting up a zeta function

$\displaystyle \zeta_{C/{\mathbb F}}(s) = \sum_{{\mathfrak f}} \frac{1}{N({\mathfrak f})^s}$

and a von Mangoldt function ${\Lambda_{C/{\mathbb F}}({\mathfrak f})}$ as before, where ${{\mathfrak f}}$ would now run over the non-trivial ideals of the coordinate ring. However, it is more instructive to use the geometric viewpoint, using the ideal-variety dictionary from algebraic geometry to convert algebraic objects involving ideals into geometric objects involving varieties. In this dictionary, a non-trivial ideal would correspond to a proper subvariety (or more precisely, a subscheme, but let us ignore the distinction between varieties and schemes here) of the curve ${C}$; as the curve is irreducible and one-dimensional, this subvariety must be zero-dimensional and is thus a (multi-)set of points ${\{x_1,\ldots,x_k\}}$ in ${C}$, or equivalently an effective divisor ${[x_1] + \ldots + [x_k]}$ of ${C}$; this generalises the concept of the set of roots of a polynomial (which corresponds to the case of a principal ideal). Furthermore, this divisor has to be rational in the sense that it is Frobenius-invariant. The prime ideals correspond to those divisors (or sets of points) which are irreducible, that is to say the individual Frobenius orbits, also known as closed points of ${C}$. With this dictionary, the zeta function becomes

$\displaystyle \zeta_{C/{\mathbb F}}(s) = \sum_{D \geq 0} \frac{1}{q^{\hbox{deg}(D)}}$

where the sum is over effective rational divisors ${D}$ of ${C}$ (with ${k}$ being the degree of an effective divisor ${[x_1] + \ldots + [x_k]}$), or equivalently

$\displaystyle Z( C/{\mathbb F}, T ) = \sum_{D \geq 0} T^{\hbox{deg}(D)}.$

The analogue of (19), which gives a geometric interpretation to sums of the von Mangoldt function, becomes

$\displaystyle \sum_{N({\mathfrak f}) = q^n} \Lambda_{C/{\mathbb F}}({\mathfrak f}) = \sum_{x \in C({\mathbb F}_n)} 1$

$\displaystyle = |C({\mathbb F}_n)|,$

thus this sum is simply counting the number of ${{\mathbb F}_n}$-points of ${C}$. The analogue of the exponential identity (16) (or (2), (8), or (12)) is then

$\displaystyle Z( C/{\mathbb F}, T ) = \exp( \sum_{n \geq 1} \frac{|C({\mathbb F}_n)|}{n} T^n ) \ \ \ \ \ (21)$

and the analogue of the explicit formula (17) (or (5), (10) or (13)) is

$\displaystyle |C({\mathbb F}_n)| = q^n - \sum_\alpha \alpha^n + c \ \ \ \ \ (22)$

where ${\alpha}$ runs over the (reciprocal) zeroes of ${Z( C/{\mathbb F}, T )}$ (counting multiplicity), and ${c}$ is an integer independent of ${n}$. (As it turns out, ${c}$ equals ${1}$ when ${C}$ is a projective curve, and more generally equals ${1-k}$ when ${C}$ is a projective curve with ${k}$ rational points deleted.)

To evaluate ${Z(C/{\mathbb F},T)}$, one needs to count the number of effective divisors of a given degree on the curve ${C}$. Fortunately, there is a tool that is particularly well-designed for this task, namely the Riemann-Roch theorem. By using this theorem, one can show (when ${C}$ is projective) that ${Z(C/{\mathbb F},T)}$ is in fact a rational function, with a finite number of zeroes, and a simple pole at both ${1}$ and ${1/q}$, with similar results when one deletes some rational points from ${C}$; see e.g. Chapter 11 of Iwaniec-Kowalski for details. Thus the sum in (22) is finite. For instance, for the affine elliptic curve (20) (which is a projective curve with one point removed), it turns out that we have

$\displaystyle |E({\mathbb F}_n)| = q^n - \alpha^n - \beta^n$

for two complex numbers ${\alpha,\beta}$ depending on ${E}$ and ${q}$.

The Riemann hypothesis for (untwisted) curves – which is the deepest and most difficult aspect of the Weil conjectures for these curves – asserts that the zeroes of ${\zeta_{C/{\mathbb F}}}$ lie on the critical line, or equivalently that all the roots ${\alpha}$ in (22) have modulus ${\sqrt{q}}$, so that (22) then gives the asymptotic

$\displaystyle |C({\mathbb F}_n)| = q^n + O( q^{n/2} ) \ \ \ \ \ (23)$

where the implied constant depends only on the genus of ${C}$ (and on the number of points removed from ${C}$). For instance, for elliptic curves we have the Hasse bound

$\displaystyle |E({\mathbb F}_n) - q^n| \leq 2 \sqrt{q}.$

As before, we have an important amplification phenomenon: if we can establish a weaker estimate, e.g.

$\displaystyle |C({\mathbb F}_n)| = q^n + O( q^{n/2 + O(1)} ), \ \ \ \ \ (24)$

then we can automatically deduce the stronger bound (23). This amplification is not a mere curiosity; most of the proofs of the Riemann hypothesis for curves proceed via this fact. For instance, by using the elementary method of Stepanov to bound points in curves (discussed for instance in this previous post), one can establish the preliminary bound (24) for large ${n}$, which then amplifies to the optimal bound (23) for all ${n}$ (and in particular for ${n=1}$). Again, see Chapter 11 of Iwaniec-Kowalski for details. The ability to convert a bound with ${q}$-dependent losses over the optimal bound (such as (24)) into an essentially optimal bound with no ${q}$-dependent losses (such as (23)) is important in analytic number theory, since in many applications (e.g. in those arising from sieve theory) one wishes to sum over large ranges of ${q}$.

Much as the Riemann zeta function can be twisted by a Dirichlet character to form a Dirichlet ${L}$-function, one can twist the zeta function on curves by various additive and multiplicative characters. For instance, suppose one has an affine plane curve ${C \subset {\mathbb A}^2}$ and an additive character ${\psi: {\mathbb F}^2 \rightarrow {\bf C}^\times}$, thus ${\psi(x+y) = \psi(x) \psi(y)}$ for all ${x,y \in {\mathbb F}^2}$. Given a rational effective divisor ${D = [x_1] + \ldots + [x_k]}$, the sum ${x_1+\ldots+x_k}$ is Frobenius-invariant and thus lies in ${{\mathbb F}^2}$. By abuse of notation, we may thus define ${\psi}$ on such divisors by

$\displaystyle \psi( [x_1] + \ldots + [x_k] ) := \psi( x_1 + \ldots + x_k )$

and observe that ${\psi}$ is multiplicative in the sense that ${\psi(D_1 + D_2) = \psi(D_1) \psi(D_2)}$ for rational effective divisors ${D_1,D_2}$. One can then define ${\psi({\mathfrak f})}$ for any non-trivial ideal ${{\mathfrak f}}$ by replacing that ideal with the associated rational effective divisor; for instance, if ${f}$ is a polynomial in the coefficient ring of ${C}$, with zeroes at ${x_1,\ldots,x_k \in C}$, then ${\psi((f))}$ is ${\psi( x_1+\ldots+x_k )}$. Again, we have the multiplicativity property ${\psi({\mathfrak f} {\mathfrak g}) = \psi({\mathfrak f}) \psi({\mathfrak g})}$. If we then form the twisted normalised zeta function

$\displaystyle Z( C/{\mathbb F}, \psi, T ) = \sum_{D \geq 0} \psi(D) T^{\hbox{deg}(D)}$

then by twisting the previous analysis, we eventually arrive at the exponential identity

$\displaystyle Z( C/{\mathbb F}, \psi, T ) = \exp( \sum_{n \geq 1} \frac{S_n(C/{\mathbb F}, \psi)}{n} T^n ) \ \ \ \ \ (25)$

in analogy with (21) (or (2), (8), (12), or (16)), where the companion sums ${S_n(C/{\mathbb F}, \psi)}$ are defined by

$\displaystyle S_n(C/{\mathbb F},\psi) = \sum_{x \in C({\mathbb F}^n)} \psi( \hbox{Tr}_{{\mathbb F}_n/{\mathbb F}}(x) )$

where the trace ${\hbox{Tr}_{{\mathbb F}_n/{\mathbb F}}(x)}$ of an element ${x}$ in the plane ${{\mathbb A}^2( {\mathbb F}_n )}$ is defined by the formula

$\displaystyle \hbox{Tr}_{{\mathbb F}_n/{\mathbb F}}(x) = x + \hbox{Frob}(x) + \ldots + \hbox{Frob}^{n-1}(x).$

In particular, ${S_1}$ is the exponential sum

$\displaystyle S_1(C/{\mathbb F},\psi) = \sum_{x \in C({\mathbb F})} \psi(x)$

which is an important type of sum in analytic number theory, containing for instance the Kloosterman sum

$\displaystyle K(a,b;p) := \sum_{x \in {\mathbb F}_p^\times} e_p( ax + \frac{b}{x})$

as a special case, where ${a,b \in {\mathbb F}_p^\times}$. (NOTE: the sign conventions for the companion sum ${S_n}$ are not consistent across the literature, sometimes it is ${-S_n}$ which is referred to as the companion sum.)

If ${\psi}$ is non-principal (and ${C}$ is non-linear), one can show (by a suitably twisted version of the Riemann-Roch theorem) that ${Z}$ is a rational function of ${T}$, with no pole at ${T=q^{-1}}$, and one then gets an explicit formula of the form

$\displaystyle S_n(C/{\mathbb F},\psi) = -\sum_\alpha \alpha^n + c \ \ \ \ \ (26)$

for the companion sums, where ${\alpha}$ are the reciprocals of the zeroes of ${S}$, in analogy to (22) (or (5), (10), (13), or (17)). For instance, in the case of Kloosterman sums, there is an identity of the form

$\displaystyle \sum_{x \in {\mathbb F}_{p^n}^\times} e_p( a \hbox{Tr}(x) + \frac{b}{\hbox{Tr}(x)}) = -\alpha^n - \beta^n \ \ \ \ \ (27)$

for all ${n}$ and some complex numbers ${\alpha,\beta}$ depending on ${a,b,p}$, where we have abbreviated ${\hbox{Tr}_{{\mathbb F}_{p^n}/{\mathbb F}_p}}$ as ${\hbox{Tr}}$. As before, the Riemann hypothesis for ${Z}$ then gives a square root cancellation bound of the form

$\displaystyle S_n(C/{\mathbb F},\psi) = O( q^{n/2} ) \ \ \ \ \ (28)$

for the companion sums (and in particular gives the very explicit Weil bound ${|K(a,b;p)| \leq 2\sqrt{p}}$ for the Kloosterman sum), but again there is the amplification phenomenon that this sort of bound can be deduced from the apparently weaker bound

$\displaystyle S_n(C/{\mathbb F},\psi) = O( q^{n/2 + O(1)} ).$

As before, most of the known proofs of the Riemann hypothesis for these twisted zeta functions proceed by first establishing this weaker bound (e.g. one could again use Stepanov’s method here for this goal) and then amplifying to the full bound (28); see Chapter 11 of Iwaniec-Kowalski for further details.

One can also twist the zeta function on a curve by a multiplicative character ${\chi: {\mathbb F}^\times \rightarrow {\bf C}^\times}$ by similar arguments, except that instead of forming the sum ${x_1+\ldots+x_k}$ of all the components of an effective divisor ${[x_1]+\ldots+[x_k]}$, one takes the product ${x_1 \ldots x_k}$ instead, and similarly one replaces the trace

$\displaystyle \hbox{Tr}_{{\mathbb F}_n/{\mathbb F}}(x) = x + \hbox{Frob}(x) + \ldots + \hbox{Frob}^{n-1}(x)$

by the norm

$\displaystyle \hbox{Norm}_{{\mathbb F}_n/{\mathbb F}}(x) = x \cdot \hbox{Frob}(x) \cdot \ldots \cdot \hbox{Frob}^{n-1}(x).$

Again, see Chapter 11 of Iwaniec-Kowalski for details.

Deligne famously extended the above theory to higher-dimensional varieties than curves, and also to the closely related context of ${\ell}$-adic sheaves on curves, giving rise to two separate proofs of the Weil conjectures in full generality. (Very roughly speaking, the former context can be obtained from the latter context by a sort of Fubini theorem type argument that expresses sums on higher-dimensional varieties as iterated sums on curves of various expressions related to ${\ell}$-adic sheaves.) In this higher-dimensional setting, the zeta function formalism is still present, but is much more difficult to use, in large part due to the much less tractable nature of divisors in higher dimensions (they are now combinations of codimension one subvarieties or subschemes, rather than combinations of points). To get around this difficulty, one has to change perspective yet again, from an algebraic or geometric perspective to an ${\ell}$-adic cohomological perspective. (I could imagine that once one is sufficiently expert in the subject, all these perspectives merge back together into a unified viewpoint, but I am certainly not yet at that stage of understanding.) In particular, the zeta function, while still present, plays a significantly less prominent role in the analysis (at least if one is willing to take Deligne’s theorems as a black box); the explicit formula is now obtained via a different route, namely the Grothendieck-Lefschetz fixed point formula. I have written some notes on this material below the fold (based in part on some lectures of Philippe Michel, as well as the text of Iwaniec-Kowalski and also this book of Katz), but I should caution that my understanding here is still rather sketchy and possibly inaccurate in places.

As in previous posts, we use the following asymptotic notation: ${x}$ is a parameter going off to infinity, and all quantities may depend on ${x}$ unless explicitly declared to be “fixed”. The asymptotic notation ${O(), o(), \ll}$ is then defined relative to this parameter. A quantity ${q}$ is said to be of polynomial size if one has ${q = O(x^{O(1)})}$, and bounded if ${q=O(1)}$. We also write ${X \lessapprox Y}$ for ${X \ll x^{o(1)} Y}$, and ${X \sim Y}$ for ${X \ll Y \ll X}$.

The purpose of this post is to collect together all the various refinements to the second half of Zhang’s paper that have been obtained as part of the polymath8 project and present them as a coherent argument. In order to state the main result, we need to recall some definitions. If ${I}$ is a bounded subset of ${{\bf R}}$, let ${{\mathcal S}_I}$ denote the square-free numbers whose prime factors lie in ${I}$, and let ${P_I := \prod_{p \in I} p}$ denote the product of the primes ${p}$ in ${I}$. Note by the Chinese remainder theorem that the set ${({\bf Z}/P_I{\bf Z})^\times}$ of primitive congruence classes ${a\ (P_I)}$ modulo ${P_I}$ can be identified with the tuples ${(a_q\ (q))_{q \in {\mathcal S}_I}}$ of primitive congruence classes ${a_q\ (q)}$ of congruence classes modulo ${q}$ for each ${q \in {\mathcal S}_I}$ which obey the Chinese remainder theorem

$\displaystyle (a_{qr}\ (qr)) = (a_q\ (q)) \cap (a_r\ (r))$

for all coprime ${q,r \in {\mathcal S}_I}$, since one can identify ${a\ (P_I)}$ with the tuple ${(a\ (q))_{q \in {\mathcal S}_I}}$ for each ${a \in ({\bf Z}/P_I{\bf Z})^\times}$.

If ${y > 1}$ and ${n}$ is a natural number, we say that ${n}$ is ${y}$-densely divisible if, for every ${1 \leq R \leq n}$, one can find a factor of ${n}$ in the interval ${[y^{-1} R, R]}$. We say that ${n}$ is doubly ${y}$-densely divisible if, for every ${1 \leq R \leq n}$, one can find a factor ${m}$ of ${n}$ in the interval ${[y^{-1} R, R]}$ such that ${m}$ is itself ${y}$-densely divisible. We let ${{\mathcal D}_y^2}$ denote the set of doubly ${y}$-densely divisible natural numbers, and ${{\mathcal D}_y}$ the set of ${y}$-densely divisible numbers.

Given any finitely supported sequence ${\alpha: {\bf N} \rightarrow {\bf C}}$ and any primitive residue class ${a\ (q)}$, we define the discrepancy

$\displaystyle \Delta(\alpha; a \ (q)) := \sum_{n: n = a\ (q)} \alpha(n) - \frac{1}{\phi(q)} \sum_{n: (n,q)=1} \alpha(n).$

For any fixed ${\varpi, \delta > 0}$, we let ${MPZ''[\varpi,\delta]}$ denote the assertion that

$\displaystyle \sum_{q \in {\mathcal S}_I \cap {\mathcal D}_{x^\delta}^2: q \leq x^{1/2+2\varpi}} |\Delta(\Lambda 1_{[x,2x]}; a\ (q))| \ll x \log^{-A} x \ \ \ \ \ (1)$

for any fixed ${A > 0}$, any bounded ${I}$, and any primitive ${a\ (P_I)}$, where ${\Lambda}$ is the von Mangoldt function. Importantly, we do not require ${I}$ or ${a}$ to be fixed, in particular ${I}$ could grow polynomially in ${x}$, and ${a}$ could grow exponentially in ${x}$, but the implied constant in (1) would still need to be fixed (so it has to be uniform in ${I}$ and ${a}$). (In previous formulations of these estimates, the system of congruence ${a\ (q)}$ was also required to obey a controlled multiplicity hypothesis, but we no longer need this hypothesis in our arguments.) In this post we will record the proof of the following result, which is currently the best distribution result produced by the ongoing polymath8 project to optimise Zhang’s theorem on bounded gaps between primes:

Theorem 1 We have ${MPZ''[\varpi,\delta]}$ whenever ${\frac{280}{3} \varpi + \frac{80}{3} \delta < 1}$.

This improves upon the previous constraint of ${148 \varpi + 33 \delta < 1}$ (see this previous post), although that latter statement was stronger in that it only required single dense divisibility rather than double dense divisibility. However, thanks to the efficiency of the sieving step of our argument, the upgrade of the single dense divisibility hypothesis to double dense divisibility costs almost nothing with respect to the ${k_0}$ parameter (which, using this constraint, gives a value of ${k_0=720}$ as verified in these comments, which then implies a value of ${H = 5,414}$).

This estimate is deduced from three sub-estimates, which require a bit more notation to state. We need a fixed quantity ${A_0>0}$.

Definition 2 A coefficient sequence is a finitely supported sequence ${\alpha: {\bf N} \rightarrow {\bf R}}$ that obeys the bounds

$\displaystyle |\alpha(n)| \ll \tau^{O(1)}(n) \log^{O(1)}(x) \ \ \ \ \ (2)$

for all ${n}$, where ${\tau}$ is the divisor function.

• (i) A coefficient sequence ${\alpha}$ is said to be at scale ${N}$ for some ${N \geq 1}$ if it is supported on an interval of the form ${[(1-O(\log^{-A_0} x)) N, (1+O(\log^{-A_0} x)) N]}$.
• (ii) A coefficient sequence ${\alpha}$ at scale ${N}$ is said to obey the Siegel-Walfisz theorem if one has

$\displaystyle | \Delta(\alpha 1_{(\cdot,q)=1}; a\ (r)) | \ll \tau(qr)^{O(1)} N \log^{-A} x \ \ \ \ \ (3)$

for any ${q,r \geq 1}$, any fixed ${A}$, and any primitive residue class ${a\ (r)}$.

• (iii) A coefficient sequence ${\alpha}$ at scale ${N}$ (relative to this choice of ${A_0}$) is said to be smooth if it takes the form ${\alpha(n) = \psi(n/N)}$ for some smooth function ${\psi: {\bf R} \rightarrow {\bf C}}$ supported on ${[1-O(\log^{-A_0} x), 1+O(\log^{-A_0} x)]}$ obeying the derivative bounds

$\displaystyle \psi^{(j)}(t) = O( \log^{j A_0} x ) \ \ \ \ \ (4)$

for all fixed ${j \geq 0}$ (note that the implied constant in the ${O()}$ notation may depend on ${j}$).

Definition 3 (Type I, Type II, Type III estimates) Let ${0 < \varpi < 1/4}$, ${0 < \delta < 1/4+\varpi}$, and ${0 < \sigma < 1/2}$ be fixed quantities. We let ${I}$ be an arbitrary bounded subset of ${{\bf R}}$, and ${a\ (P_I)}$ a primitive congruence class.

Theorem 1 is then a consequence of the following four statements.

Theorem 4 (Type I estimate) ${Type''_I[\varpi,\delta,\sigma]}$ holds whenever ${\varpi,\delta,\sigma > 0}$ are fixed quantities such that

$\displaystyle 56 \varpi + 16 \delta + 4\sigma < 1.$

Theorem 5 (Type II estimate) ${Type''_{II}[\varpi,\delta]}$ holds whenever ${\varpi,\delta > 0}$ are fixed quantities such that

$\displaystyle 68 \varpi + 14 \delta < 1.$

Theorem 6 (Type III estimate) ${Type''_{III}[\varpi,\delta,\sigma]}$ holds whenever ${0 < \varpi < 1/4}$, ${0 < \delta < 1/4+\varpi}$, and ${\sigma > 0}$ are fixed quantities such that

$\displaystyle \sigma > \frac{1}{18} + \frac{28}{9} \varpi + \frac{2}{9} \delta \ \ \ \ \ (12)$

and

$\displaystyle \varpi< \frac{1}{12}. \ \ \ \ \ (13)$

In particular, if

$\displaystyle 70 \varpi + 5 \delta < 1.$

then all values of ${\sigma}$ that are sufficiently close to ${1/10}$ are admissible.

Lemma 7 (Combinatorial lemma) Let ${0 < \varpi < 1/4}$, ${0 < \delta < 1/4+\varpi}$, and ${1/10 < \sigma < 1/2}$ be such that ${Type''_I[\varpi,\delta,\sigma]}$, ${Type''_{II}[\varpi,\delta]}$, and ${Type''_{III}[\varpi,\delta,\sigma]}$ simultaneously hold. Then ${MPZ''[\varpi,\delta]}$ holds.

Indeed, if ${\frac{280}{3} \varpi + \frac{80}{3} \delta < 1}$, one checks that the hypotheses for Theorems 4, 5, 6 are obeyed for ${\sigma}$ sufficiently close to ${1/10}$, at which point the claim follows from Lemma 7.

The proofs of Theorems 4, 5, 6 will be given below the fold, while the proof of Lemma 7 follows from the arguments in this previous post. We remark that in our current arguments, the double dense divisibility is only fully used in the Type I estimates; the Type II and Type III estimates are also valid just with single dense divisibility.

Remark 1 Theorem 6 is vacuously true for ${\sigma > 1/6}$, as the condition (10) cannot be satisfied in this case. If we use this trivial case of Theorem 6, while keeping the full strength of Theorems 4 and 5, we obtain Theorem 1 in the regime

$\displaystyle 168 \varpi + 48 \delta < 1.$

For any ${H \geq 2}$, let ${B[H]}$ denote the assertion that there are infinitely many pairs of consecutive primes ${p_n, p_{n+1}}$ whose difference ${p_{n+1}-p_n}$ is at most ${H}$, or equivalently that

$\displaystyle \lim\inf_{n \rightarrow \infty} p_{n+1} - p_n \leq H;$

thus for instance ${B[2]}$ is the notorious twin prime conjecture. While this conjecture remains unsolved, we have the following recent breakthrough result of Zhang, building upon earlier work of Goldston-Pintz-Yildirim, Bombieri, Fouvry, Friedlander, and Iwaniec, and others:

Theorem 1 (Zhang’s theorem) ${B[H]}$ is true for some finite ${H}$.

In fact, Zhang’s paper shows that ${B[H]}$ is true with ${H = 70,000,000}$.

About a month ago, the Polymath8 project was launched with the objective of reading through Zhang’s paper, clarifying the arguments, and then making them more efficient, in order to improve the value of ${H}$. This project is still ongoing, but we have made significant progress; currently, we have confirmed that ${B[H]}$ holds for ${H}$ as low as ${12,006}$, and provisionally for ${H}$ as low as ${6,966}$ subject to certain lengthy arguments being checked. For several reasons, our methods (which are largely based on Zhang’s original argument structure, though with numerous refinements and improvements) will not be able to attain the twin prime conjecture ${B[2]}$, but there is still scope to lower the value of ${H}$ a bit further than what we have currently.

The precise arguments here are quite technical, and are discussed at length on other posts on this blog. In this post, I would like to give a “high level” summary of how Zhang’s argument works, and give some impressions of the improvements we have made so far; these would already be familiar to the active participants of the Polymath8 project, but perhaps may be of value to people who are following this project on a more casual basis.

While Zhang’s arguments (and our refinements of it) are quite lengthy, they are fortunately also very modular, that is to say they can be broken up into several independent components that can be understood and optimised more or less separately from each other (although we have on occasion needed to modify the formulation of one component in order to better suit the needs of another). At the top level, Zhang’s argument looks like this:

1. Statements of the form ${B[H]}$ are deduced from weakened versions of the Hardy-Littlewood prime tuples conjecture, which we have denoted ${DHL[k_0,2]}$ (the ${DHL}$ stands for “Dickson-Hardy-Littlewood”), by locating suitable narrow admissible tuples (see below). Zhang’s paper establishes for the first time an unconditional proof of ${DHL[k_0,2]}$ for some finite ${k_0}$; in his initial paper, ${k_0}$ was ${3,500,000}$, but we have lowered this value to ${1,466}$ (and provisionally to ${902}$). Any reduction in the value of ${k_0}$ leads directly to reductions in the value of ${H}$; a web site to collect the best known values of ${H}$ in terms of ${k_0}$ has recently been set up here (and is accepting submissions for anyone who finds narrower admissible tuples than are currently known).
2. Next, by adapting sieve-theoretic arguments of Goldston, Pintz, and Yildirim, the Dickson-Hardy-Littlewood type assertions ${DHL[k_0,2]}$ are deduced in turn from weakened versions of the Elliott-Halberstam conjecture that we have denoted ${MPZ[\varpi,\delta]}$ (the ${MPZ}$ stands for “Motohashi-Pintz-Zhang”). More recently, we have replaced the conjecture ${MPZ[\varpi,\delta]}$ by a slightly stronger conjecture ${MPZ'[\varpi,\delta]}$ to significantly improve the efficiency of this step (using some recent ideas of Pintz). Roughly speaking, these statements assert that the primes are more or less evenly distributed along many arithmetic progressions, including those that have relatively large spacing. A crucial technical fact here is that in contrast to the older Elliott-Halberstam conjecture, the Motohashi-Pintz-Zhang estimates only require one to control progressions whose spacings ${q}$ have a lot of small prime factors (the original ${MPZ[\varpi,\delta]}$ conjecture requires the spacing ${q}$ to be smooth, but the newer variant ${MPZ'[\varpi,\delta]}$ has relaxed this to “densely divisible” as this turns out to be more efficient). The ${\varpi}$ parameter is more important than the technical parameter ${\delta}$; we would like ${\varpi}$ to be as large as possible, as any increase in this parameter should lead to a reduced value of ${k_0}$. In Zhang’s original paper, ${\varpi}$ was taken to be ${1/1168}$; we have now increased this to be almost as large as ${1/148}$ (and provisionally ${1/108}$).
3. By a certain amount of combinatorial manipulation (combined with a useful decomposition of the von Mangoldt function due Heath-Brown), estimates such as ${MPZ[\varpi,\delta]}$ can be deduced from three subestimates, the “Type I” estimate ${Type_I[\varpi,\delta,\sigma]}$, the “Type II” estimate ${Type_{II}[\varpi,\delta]}$, and the “Type III” estimate ${Type_{III}[\varpi,\delta,\sigma]}$, which all involve the distribution of certain Dirichlet convolutions in arithmetic progressions. Here ${1/10 < \sigma < 1/2}$ is an adjustable parameter that demarcates the border between the Type I and Type III estimates; raising ${\sigma}$ makes it easier to prove Type III estimates but harder to prove Type I estimates, and lowering ${\sigma}$ of course has the opposite effect. There is a combinatorial lemma that asserts that as long as one can find some ${\sigma}$ between ${1/10}$ and ${1/2}$ for which all three estimates ${Type_I[\varpi,\delta,\sigma]}$, ${Type_{II}[\varpi,\delta]}$, ${Type_{III}[\varpi,\delta,\sigma]}$ hold, one can prove ${MPZ[\varpi,\delta]}$. (The condition ${\sigma > 1/10}$ arises from the combinatorics, and appears to be rather essential; in fact, it is currently a major obstacle to further improvement of ${\varpi}$ and hence ${k_0}$ and ${H}$.)
4. The Type I estimates ${Type_I[\varpi,\delta,\sigma]}$ are asserting good distribution properties of convolutions of the form ${\alpha * \beta}$, where ${\alpha,\beta}$ are moderately long sequences which have controlled magnitude and length but are otherwise arbitrary. Estimates that are roughly of this type first appeared in a series of papers by Bombieri, Fouvry, Friedlander, Iwaniec, and other authors, and Zhang’s arguments here broadly follow those of previous authors, but with several new twists that take advantage of the many factors of the spacing ${q}$. In particular, the dispersion method of Linnik is used (which one can think of as a clever application of the Cauchy-Schwarz inequality) to ultimately reduce matters (after more Cauchy-Schwarz, as well as treatment of several error terms) to estimation of incomplete Kloosterman-type sums such as

$\displaystyle \sum_{n \leq N} e_d( \frac{c}{n} ).$

Zhang’s argument uses classical estimates on this Kloosterman sum (dating back to the work of Weil), but we have improved this using the “${q}$-van der Corput ${A}$-process” introduced by Heath-Brown and Ringrose.

5. The Type II estimates ${Type_{II}[\varpi,\delta]}$ are similar to the Type I estimates, but cover a small hole in the coverage of the Type I estimates which comes up when the two sequences ${\alpha,\beta}$ are almost equal in length. It turns out that one can modify the Type I argument to cover this case also. In practice, these estimates give less stringent conditions on ${\varpi,\delta}$ than the other two estimates, and so as a first approximation one can ignore the need to treat these estimates, although recently our Type I and Type III estimates have become so strong that it has become necessary to tighten the Type II estimates as well.
6. The Type III estimates ${Type_{III}[\varpi,\delta,\sigma]}$ are an averaged variant of the classical problem of understanding the distribution of the ternary divisor function ${\tau_3(n) := \sum_{abc=n} 1}$ in arithmetic progressions. There are various ways to attack this problem, but most of them ultimately boil down (after the use of standard devices such as Cauchy-Schwarz and completion of sums) to the task of controlling certain higher-dimensional Kloosterman-type sums such as

$\displaystyle \sum_{t,t' \in ({\bf Z}/d{\bf Z})^\times} \sum_{l \in {\bf Z}/d{\bf Z}: (l,d)=(l+k,d)=1} e_d( \frac{t}{l} - \frac{t'}{l+k} + \frac{m}{t} - \frac{m'}{t'} ).$

In principle, any such sum can be controlled by invoking Deligne’s proof of the Weil conjectures in arbitrary dimension (which, roughly speaking, establishes the analogue of the Riemann hypothesis for arbitrary varieties over finite fields), although in the higher dimensional setting some algebraic geometry is needed to ensure that one gets the full “square root cancellation” for these exponential sums. (For the particular sum above, the necessary details were worked out by Birch and Bombieri.) As such, this part of the argument is by far the least elementary component of the whole. Zhang’s original argument cleverly exploited some additional cancellation in the above exponential sums that goes beyond the naive square root cancellation heuristic; more recently, an alternate argument of Fouvry, Kowalski, Michel, and Nelson uses bounds on a slightly different higher-dimensional Kloosterman-type sum to obtain results that give better values of ${\varpi,\delta,\sigma}$. We have also been able to improve upon these estimates by exploiting some additional averaging that was left unused by the previous arguments.

As of this time of writing, our understanding of the first three stages of Zhang’s argument (getting from ${DHL[k_0,2]}$ to ${B[H]}$, getting from ${MPZ[\varpi,\delta]}$ or ${MPZ'[\varpi,\delta]}$ to ${DHL[k_0,2]}$, and getting to ${MPZ[\varpi,\delta]}$ or ${MPZ'[\varpi,\delta]}$ from Type I, Type II, and Type III estimates) are quite satisfactory, with the implications here being about as efficient as one could hope for with current methods, although one could still hope to get some small improvements in parameters by wringing out some of the last few inefficiencies. The remaining major sources of improvements to the parameters are then coming from gains in the Type I, II, and III estimates; we are currently in the process of making such improvements, but it will still take some time before they are fully optimised.

Below the fold I will discuss (mostly at an informal, non-rigorous level) the six steps above in a little more detail (full details can of course be found in the other polymath8 posts on this blog). This post will also serve as a new research thread, as the previous threads were getting quite lengthy.

As in previous posts, we use the following asymptotic notation: ${x}$ is a parameter going off to infinity, and all quantities may depend on ${x}$ unless explicitly declared to be “fixed”. The asymptotic notation ${O(), o(), \ll}$ is then defined relative to this parameter. A quantity ${q}$ is said to be of polynomial size if one has ${q = O(x^{O(1)})}$, and bounded if ${q=O(1)}$. We also write ${X \lessapprox Y}$ for ${X \ll x^{o(1)} Y}$, and ${X \sim Y}$ for ${X \ll Y \ll X}$.

The purpose of this post is to collect together all the various refinements to the second half of Zhang’s paper that have been obtained as part of the polymath8 project and present them as a coherent argument (though not fully self-contained, as we will need some lemmas from previous posts).

In order to state the main result, we need to recall some definitions.

Definition 1 (Singleton congruence class system) Let ${I \subset {\bf R}}$, and let ${{\mathcal S}_I}$ denote the square-free numbers whose prime factors lie in ${I}$. A singleton congruence class system on ${I}$ is a collection ${{\mathcal C} = (\{a_q\})_{q \in {\mathcal S}_I}}$ of primitive residue classes ${a_q \in ({\bf Z}/q{\bf Z})^\times}$ for each ${q \in {\mathcal S}_I}$, obeying the Chinese remainder theorem property

$\displaystyle a_{qr}\ (qr) = (a_q\ (q)) \cap (a_r\ (r)) \ \ \ \ \ (1)$

whenever ${q,r \in {\mathcal S}_I}$ are coprime. We say that such a system ${{\mathcal C}}$ has controlled multiplicity if the

$\displaystyle \tau_{\mathcal C}(n) := |\{ q \in {\mathcal S}_I: n = a_q\ (q) \}|$

obeys the estimate

$\displaystyle \sum_{C^{-1} x \leq n \leq Cx: n = a\ (r)} \tau_{\mathcal C}(n)^2 \ll \frac{x}{r} \tau(r)^{O(1)} \log^{O(1)} x + x^{o(1)}. \ \ \ \ \ (2)$

for any fixed ${C>1}$ and any congruence class ${a\ (r)}$ with ${r \in {\mathcal S}_I}$. Here ${\tau}$ is the divisor function.

Next we need a relaxation of the concept of ${y}$-smoothness.

Definition 2 (Dense divisibility) Let ${y \geq 1}$. A positive integer ${q}$ is said to be ${y}$-densely divisible if, for every ${1 \leq R \leq q}$, there exists a factor of ${q}$ in the interval ${[y^{-1} R, R]}$. We let ${{\mathcal D}_y}$ denote the set of ${y}$-densely divisible positive integers.

Now we present a strengthened version ${MPZ'[\varpi,\delta]}$ of the Motohashi-Pintz-Zhang conjecture ${MPZ[\varpi,\delta]}$, which depends on parameters ${0 < \varpi < 1/4}$ and ${0 < \delta < 1/4}$.

Conjecture 3 (${MPZ'[\varpi,\delta]}$) Let ${I \subset {\bf R}}$, and let ${(\{a_q\})_{q \in {\mathcal S}_I}}$ be a congruence class system with controlled multiplicity. Then

$\displaystyle \sum_{q \in {\mathcal S}_I \cap {\mathcal D}_{x^\delta}: q< x^{1/2+2\varpi}} |\Delta(\Lambda 1_{[x,2x]}; a_q)| \ll x \log^{-A} x \ \ \ \ \ (3)$

for any fixed ${A>0}$, where ${\Lambda}$ is the von Mangoldt function.

The difference between this conjecture and the weaker conjecture ${MPZ[\varpi,\delta]}$ is that the modulus ${q}$ is constrained to be ${x^\delta}$-densely divisible rather than ${x^\delta}$-smooth (note that ${I}$ is no longer constrained to lie in ${[1,x^\delta]}$). This relaxation of the smoothness condition improves the Goldston-Pintz-Yildirim type sieving needed to deduce ${DHL[k_0,2]}$ from ${MPZ'[\varpi,\delta]}$; see this previous post.

The main result we will establish is

Theorem 4 ${MPZ'[\varpi,\delta]}$ holds for any ${\varpi,\delta>0}$ with

$\displaystyle 148\varpi+33\delta < 1. \ \ \ \ \ (4)$

This improves upon previous constraints of ${87\varpi + 17 \delta < \frac{1}{4}}$ (see this blog comment) and ${207 \varpi + 43 \delta < \frac{1}{4}}$ (see Theorem 13 of this previous post), which were also only established for ${MPZ[\varpi,\delta]}$ instead of ${MPZ'[\varpi,\delta]}$. Inserting Theorem 4 into the Pintz sieve from this previous post gives ${DHL[k_0,2]}$ for ${k_0 = 1467}$ (see this blog comment), which when inserted in turn into newly set up tables of narrow prime tuples gives infinitely many prime gaps of separation at most ${H = 12,012}$.

As in previous posts, we use the following asymptotic notation: ${x}$ is a parameter going off to infinity, and all quantities may depend on ${x}$ unless explicitly declared to be “fixed”. The asymptotic notation ${O(), o(), \ll}$ is then defined relative to this parameter. A quantity ${q}$ is said to be of polynomial size if one has ${q = O(x^{O(1)})}$, and said to be bounded if ${q=O(1)}$. Another convenient notation: we write ${X \lessapprox Y}$ for ${X \ll x^{o(1)} Y}$. Thus for instance the divisor bound asserts that if ${q}$ has polynomial size, then the number of divisors of ${q}$ is ${\lessapprox 1}$.

This post is intended to highlight a phenomenon unearthed in the ongoing polymath8 project (and is in fact a key component of Zhang’s proof that there are bounded gaps between primes infinitely often), namely that one can get quite good bounds on relatively short exponential sums when the modulus ${q}$ is smooth, through the basic technique of Weyl differencing (ultimately based on the Cauchy-Schwarz inequality, and also related to the van der Corput lemma in equidistribution theory). Improvements in the case of smooth moduli have appeared before in the literature (e.g. in this paper of Heath-Brown, paper of Graham and Ringrose, this later paper of Heath-Brown, this paper of Chang, or this paper of Goldmakher); the arguments here are particularly close to that of the first paper of Heath-Brown. It now also appears that further optimisation of this Weyl differencing trick could lead to noticeable improvements in the numerology for the polymath8 project, so I am devoting this post to explaining this trick further.

To illustrate the method, let us begin with the classical problem in analytic number theory of estimating an incomplete character sum

$\displaystyle \sum_{M+1 \leq n \leq M+N} \chi(n)$

where ${\chi}$ is a primitive Dirichlet character of some conductor ${q}$, ${M}$ is an integer, and ${N}$ is some quantity between ${1}$ and ${q}$. Clearly we have the trivial bound

$\displaystyle |\sum_{M+1 \leq n \leq M+N} \chi(n)| \leq N; \ \ \ \ \ (1)$

we also have the classical Pólya-Vinogradov inequality

$\displaystyle |\sum_{M+1 \leq n \leq M+N} \chi(n)| \ll q^{1/2} \log q. \ \ \ \ \ (2)$

This latter inequality gives improvements over the trivial bound when ${N}$ is much larger than ${q^{1/2}}$, but not for ${N}$ much smaller than ${q^{1/2}}$. The Pólya-Vinogradov inequality can be deduced via a little Fourier analysis from the completed exponential sum bound

$\displaystyle | \sum_{n \in {\bf Z}/q{\bf Z}} \chi(n) e_q( an )| \ll q^{1/2}$

for any ${a \in {\bf Z}/q{\bf Z}}$, where ${e_q(n) :=e^{2\pi i n/q}}$. (In fact, from the classical theory of Gauss sums, this exponential sum is equal to ${\tau(\chi) \overline{\chi(a)}}$ for some complex number ${\tau(\chi)}$ of norm ${\sqrt{q}}$.)

In the case when ${q}$ is a prime, improving upon the above two inequalities is an important but difficult problem, with only partially satisfactory results so far. To give just one indication of the difficulty, the seemingly modest improvement

$\displaystyle |\sum_{M+1 \leq n \leq M+N} \chi(n)| \ll p^{1/2} \log \log p$

to the Pólya-Vinogradov inequality when ${q=p}$ was a prime required a 14-page paper in Inventiones by Montgomery and Vaughan to prove, and even then it was only conditional on the generalised Riemann hypothesis! See also this more recent paper of Granville and Soundararajan for an unconditional variant of this result in the case that ${\chi}$ has odd order.

Another important improvement is the Burgess bound, which in our notation asserts that

$\displaystyle |\sum_{M+1 \leq n \leq M+N} \chi(n)| \lessapprox N^{1-1/r} q^{\frac{r+1}{4r^2}} \ \ \ \ \ (3)$

for any fixed integer ${r \geq 2}$, assuming that ${q}$ is square-free (for simplicity) and of polynomial size; see this previous post for a discussion of the Burgess argument. This is non-trivial for ${N}$ as small as ${q^{1/4+o(1)}}$.

In the case when ${q}$ is prime, there has been very little improvement to the Burgess bound (or its Fourier dual, which can give bounds for ${N}$ as large as ${q^{3/4-o(1)}}$) in the last fifty years; an improvement to the exponents in (3) in this case (particularly anything that gave a power saving for ${N}$ below ${q^{1/4}}$) would in fact be rather significant news in analytic number theory.

However, in the opposite case when ${q}$ is smooth – that is to say, all of its factors are much smaller than ${q}$ – then one can do better than the Burgess bound in some regimes. This fact has been observed in several places in the literature (in particular, in the papers of Heath-Brown, Graham-Ringrose, Chang, and Goldmakher mentioned previously), but also turns out to (implicitly) be a key insight in Zhang’s paper on bounded prime gaps. In the case of character sums, one such improved estimate (closely related to Theorem 2 of the Heath-Brown paper) is as follows:

Proposition 1 Let ${q}$ be square-free with a factorisation ${q = q_1 q_2}$ and of polynomial size, and let ${M,N}$ be integers with ${1 \leq N \leq q}$. Then for any primitive character ${\chi}$ with conductor ${q}$, one has

$\displaystyle | \sum_{M+1 \leq n \leq M+N} \chi(n) | \lessapprox N^{1/2} q_1^{1/2} + N^{1/2} q_2^{1/4}.$

This proposition is particularly powerful when ${q}$ is smooth, as this gives many factorisations ${q = q_1 q_2}$ with the ability to specify ${q_1,q_2}$ with a fair amount of accuracy. For instance, if ${q}$ is ${y}$-smooth (i.e. all prime factors are at most ${y}$), then by the greedy algorithm one can find a divisor ${q_1}$ of ${q}$ with ${y^{-2/3} q^{1/3} \leq q_1 \leq y^{1/3} q^{1/3}}$; if we set ${q_2 := q/q_1}$, then ${y^{-1/3} q^{2/3} \leq q_2 \leq y^{2/3} q^{2/3}}$, and the above proposition then gives

$\displaystyle | \sum_{M+1 \leq n \leq M+N} \chi(n) | \lessapprox y^{1/6} N^{1/2} q^{1/6}$

which can improve upon the Burgess bound when ${y}$ is small. For instance, if ${N = q^{1/2}}$, then this bound becomes ${\lessapprox y^{1/6} q^{5/12}}$; in contrast the Burgess bound only gives ${\lessapprox q^{7/16}}$ for this value of ${N}$ (using the optimal choice ${r=2}$ for ${r}$), which is inferior for ${y < q^{1/8}}$.

The hypothesis that ${q}$ be squarefree may be relaxed, but for applications to the Polymath8 project, it is only the squarefree moduli that are relevant.

Proof: If ${N \ll q_1}$ then the claim follows from the trivial bound (1), while for ${N \gg q_2}$ the claim follows from (2). Hence we may assume that

$\displaystyle q_1 < N < q_2.$

We use the method of Weyl differencing, the key point being to difference in multiples of ${q_1}$.

Let ${K := \lfloor N/q_1 \rfloor}$, thus ${K \geq 1}$. For any ${1 \leq k \leq K}$, we have

$\displaystyle \sum_{M+1 \leq n \leq M+N} \chi(n) = \sum_n 1_{[M+1,M+N]}(n+kq_1) \chi(n+kq_1)$

and thus on averaging

$\displaystyle \sum_{M+1 \leq n \leq M+N} \chi(n) = \frac{1}{K} \sum_n \sum_{k=1}^K 1_{[M+1,M+N]}(n+kq_1) \chi(n+kq_1). \ \ \ \ \ (4)$

By the Chinese remainder theorem, we may factor

$\displaystyle \chi(n) = \chi_1(n) \chi_2(n)$

where ${\chi_1,\chi_2}$ are primitive characters of conductor ${q_1,q_2}$ respectively. As ${\chi_1}$ is periodic of period ${q_1}$, we thus have

$\displaystyle \chi(n+kq_1) = \chi_1(n) \chi_2(n+kq_2)$

and so we can take ${\chi_1}$ out of the inner summation of the right-hand side of (4) to obtain

$\displaystyle \sum_{M+1 \leq n \leq M+N} \chi(n) = \frac{1}{K} \sum_n \chi_1(n) \sum_{k=1}^K 1_{[M+1,M+N]}(n+kq_1) \chi_2(n+kq_1)$

and hence by the triangle inequality

$\displaystyle |\sum_{M+1 \leq n \leq M+N} \chi(n)| \leq \frac{1}{K} \sum_n |\sum_{k=1}^K 1_{[M+1,M+N]}(n+kq_1) \chi_2(n+kq_1)|.$

Note how the characters on the right-hand side only have period ${q_2}$ rather than ${q=q_1 q_2}$. This reduction in the period is ultimately the source of the saving over the Pólya-Vinogradov inequality.

Note that the inner sum vanishes unless ${n \in [M+1-Kq_1,M+N]}$, which is an interval of length ${O(N)}$ by choice of ${K}$. Thus by Cauchy-Schwarz one has

$\displaystyle | \sum_{M+1 \leq n \leq M+N} \chi(n) | \ll$

$\displaystyle \frac{N^{1/2}}{K} (\sum_n |\sum_{k=1}^K 1_{[M+1,M+N]}(n+kq_1) \chi_2(n+kq_1)|^2)^{1/2}.$

We expand the right-hand side as

$\displaystyle \frac{N^{1/2}}{K} |\sum_{1 \leq k,k' \leq K} \sum_n$

$\displaystyle 1_{[M+1,M+N]}(n+kq_1) 1_{[M+1,M+N]}(n+k'q_1) \chi_2(n+kq_1) \overline{\chi_2(n+k'q_1)}|^{1/2}.$

We first consider the diagonal contribution ${k=k'}$. In this case we use the trivial bound ${O(N)}$ for the inner summation, and we soon see that the total contribution here is ${O( K^{-1/2} N ) = O( N^{1/2}q_1^{1/2} )}$.

Now we consider the off-diagonal case; by symmetry we can take ${k < k'}$. Then the indicator functions ${1_{[M+1,M+N]}(n+kq_1) 1_{[M+1,M+N]}(n+k'q_1)}$ restrict ${n}$ to the interval ${[M+1-kq_1, M+N-k'q_1]}$. On the other hand, as a consequence of the Weil conjectures for curves one can show that

$\displaystyle |\sum_{n \in {\bf Z}/q_2{\bf Z}} \chi_2(n+kq_1) \overline{\chi_2(n+k'q_1)} e_{q_2}(an)| \lessapprox q_2^{1/2} (k-k',q_2)^{1/2}$

for any ${a \in {\bf Z}/q_2{\bf Z}}$; indeed one can use the Chinese remainder theorem and the square-free nature of ${q_2}$ to reduce to the case when ${q_2}$ is prime, in which case one can apply (for instance) the original paper of Weil to establish this bound, noting also that ${q_1}$ and ${q_2}$ are coprime since ${q}$ is squarefree. Applying the method of completion of sums (or the Parseval formula), this shows that

$\displaystyle |\sum_n 1_{[M+1,M+N]}(n+kq_1) 1_{[M+1,M+N]}(n+k'q_1) \chi_2(n+kq_1) \overline{\chi_2(n+k'q_1)}|$

$\displaystyle \lessapprox q_2^{1/2} (k-k',q_2)^{1/2}.$

Summing in ${k,k'}$ (using Lemma 5 from this previous post) we see that the total contribution to the off-diagonal case is

$\displaystyle \lessapprox \frac{N^{1/2}}{K} ( K^2 q_2^{1/2} )^{1/2}$

which simplifies to ${\lessapprox N^{1/2} q_2^{1/4}}$. The claim follows. $\Box$

A modification of the above argument (using more complicated versions of the Weil conjectures) allows one to replace the summand ${\chi(n)}$ by more complicated summands such as ${\chi(f(n)) e_q(g(n))}$ for some polynomials or rational functions ${f,g}$ of bounded degree and obeying a suitable non-degeneracy condition (after restricting of course to those ${n}$ for which the arguments ${f(n),g(n)}$ are well-defined). We will not detail this here, but instead turn to the question of estimating slightly longer exponential sums, such as

$\displaystyle \sum_{1 \leq n \leq N} e_{d_1}( \frac{c_1}{n} ) e_{d_2}( \frac{c_2}{n+l} )$

where ${N}$ should be thought of as a little bit larger than ${(d_1d_2)^{1/2}}$.

This post is a continuation of the previous post on sieve theory, which is an ongoing part of the Polymath8 project. As the previous post was getting somewhat full, we are rolling the thread over to the current post.

In this post we will record a new truncation of the elementary Selberg sieve discussed in this previous post (and also analysed in the context of bounded prime gaps by Graham-Goldston-Pintz-Yildirim and Motohashi-Pintz) that was recently worked out by Janos Pintz, who has kindly given permission to share this new idea with the Polymath8 project. This new sieve decouples the ${\delta}$ parameter that was present in our previous analysis of Zhang’s argument into two parameters, a quantity ${\delta}$ that used to measure smoothness in the modulus, but now measures a weaker notion of “dense divisibility” which is what is really needed in the Elliott-Halberstam type estimates, and a second quantity ${\delta'}$ which still measures smoothness but is allowed to be substantially larger than ${\delta}$. Through this decoupling, it appears that the ${\kappa}$ type losses in the sieve theoretic part of the argument can be almost completely eliminated (they basically decay exponential in ${\delta'}$ and have only mild dependence on ${\delta}$, whereas the Elliott-Halberstam analysis is sensitive only to ${\delta}$, allowing one to set ${\delta}$ far smaller than previously by keeping ${\delta'}$ large). This should lead to noticeable gains in the ${k_0}$ quantity in our analysis.

To describe this new truncation we need to review some notation. As in all previous posts (in particular, the first post in this series), we have an asymptotic parameter ${x}$ going off to infinity, and all quantities here are implicitly understood to be allowed to depend on ${x}$ (or to range in a set that depends on ${x}$) unless they are explicitly declared to be fixed. We use the usual asymptotic notation ${O(), o(), \ll}$ relative to this parameter ${x}$. To be able to ignore local factors (such as the singular series ${{\mathfrak G}}$), we also use the “${W}$-trick” (as discussed in the first post in this series): we introduce a parameter ${w}$ that grows very slowly with ${x}$, and set ${W := \prod_{p.

For any fixed natural number ${k_0}$, define an admissible ${k_0}$-tuple to be a fixed tuple ${{\mathcal H}}$ of ${k_0}$ distinct integers which avoids at least one residue class modulo ${p}$ for each prime ${p}$. Our objective is to obtain the following conjecture ${DHL[k_0,2]}$ for as small a value of the parameter ${k_0}$ as possible:

Conjecture 1 (${DHL[k_0,2]}$) Let ${{\mathcal H}}$ be a fixed admissible ${k_0}$-tuple. Then there exist infinitely many translates ${n+{\mathcal H}}$ of ${{\mathcal H}}$ that contain at least two primes.

The twin prime conjecture asserts that ${DHL[k_0,2]}$ holds for ${k_0}$ as small as ${2}$, but currently we are only able to establish this result for ${k_0 \geq 6329}$ (see this comment). However, with the new truncated sieve of Pintz described in this post, we expect to be able to lower this threshold ${k_0 \geq 6329}$ somewhat.

In previous posts, we deduced ${DHL[k_0,2]}$ from a technical variant ${MPZ[\varpi,\delta]}$ of the Elliot-Halberstam conjecture for certain choices of parameters ${0 < \varpi < 1/4}$, ${0 < \delta < 1/4+\varpi}$. We will use the following formulation of ${MPZ[\varpi,\delta]}$:

Conjecture 2 (${MPZ[\varpi,\delta]}$) Let ${{\mathcal H}}$ be a fixed ${k_0}$-tuple (not necessarily admissible) for some fixed ${k_0 \geq 2}$, and let ${b\ (W)}$ be a primitive residue class. Then

$\displaystyle \sum_{q \in {\mathcal S}_I: q< x^{1/2+2\varpi}} \sum_{a \in C(q)} |\Delta_{b,W}(\Lambda; q,a)| = O( x \log^{-A} x) \ \ \ \ \ (1)$

for any fixed ${A>0}$, where ${I = (w,x^{\delta})}$, ${{\mathcal S}_I}$ are the square-free integers whose prime factors lie in ${I}$, and ${\Delta_{b,W}(\Lambda;q,a)}$ is the quantity

$\displaystyle \Delta_{b,W}(\Lambda;q,a) := | \sum_{x \leq n \leq 2x: n=b\ (W); n = a\ (q)} \Lambda(n) \ \ \ \ \ (2)$

$\displaystyle - \frac{1}{\phi(q)} \sum_{x \leq n \leq 2x: n = b\ (W)} \Lambda(n)|.$

and ${C(q)}$ is the set of congruence classes

$\displaystyle C(q) := \{ a \in ({\bf Z}/q{\bf Z})^\times: P(a) = 0 \}$

and ${P}$ is the polynomial

$\displaystyle P(a) := \prod_{h \in {\mathcal H}} (a+h).$

The conjecture ${MPZ[\varpi,\delta]}$ is currently known to hold whenever ${87 \varpi + 17 \delta < \frac{1}{4}}$ (see this comment and this confirmation). Actually, we can prove a stronger result than ${MPZ[\varpi,\delta]}$ in this regime in a couple ways. Firstly, the congruence classes ${C(q)}$ can be replaced by a more general system of congruence classes obeying a certain controlled multiplicity axiom; see this post. Secondly, and more importantly for this post, the requirement that the modulus ${q}$ lies in ${{\mathcal S}_I}$ can be relaxed; see below.

To connect the two conjectures, the previously best known implication was the folowing (see Theorem 2 from this post):

Theorem 3 Let ${0 < \varpi < 1/4}$, ${0 < \delta < 1/4 + \varpi}$ and ${k_0 \geq 2}$ be such that we have the inequality

$\displaystyle (1 +4 \varpi) (1-\kappa') > \frac{j^2_{k_0-2}}{k_0(k_0-1)} (1+\kappa) \ \ \ \ \ (3)$

where ${j_{k_0-2} = j_{k_0-2,1}}$ is the first positive zero of the Bessel function ${J_{k_0-2}}$, and ${\kappa,\kappa'>0}$ are the quantities

$\displaystyle \kappa := \sum_{1 \leq n < \frac{1+4\varpi}{4\delta}} \frac{3^n+1}{2} \frac{k_0^n}{n!} (\int_{4\delta/(1+4\varpi)}^1 (1-t)^{k_0/2}\ \frac{dt}{t})^n$

and

$\displaystyle \kappa' := \sum_{2 \leq n < \frac{1+4\varpi}{4\delta}} \frac{3^n-1}{2} \frac{(k_0-1)^n}{n!}$

$\displaystyle (\int_{4\delta/(1+4\varpi)}^1 (1-t)^{(k_0-1)/2}\ \frac{dt}{t})^n.$

Then ${MPZ[\varpi,\delta]}$ implies ${DHL[k_0,2]}$.

Actually there have been some slight improvements to the quantities ${\kappa,\kappa'}$; see the comments to this previous post. However, the main error ${\kappa}$ remains roughly of the order ${\delta^{-1} \exp( - 2 k_0\delta )}$, which limits one from taking ${\delta}$ too small.

To improve beyond this, the first basic observation is that the smoothness condition ${q \in {\mathcal S}_I}$, which implies that all prime divisors of ${q}$ are less than ${x^\delta}$, can be relaxed in the proof of ${MPZ[\varpi,\delta]}$. Indeed, if one inspects the proof of this proposition (described in these three previous posts), one sees that the key property of ${q}$ needed is not so much the smoothness, but a weaker condition which we will call (for lack of a better term) dense divisibility:

Definition 4 Let ${y > 1}$. A positive integer ${q}$ is said to be ${y}$-densely divisible if for every ${1 \leq R \leq q}$, one can find a factor of ${q}$ in the interval ${[y^{-1} R, R]}$. We let ${{\mathcal D}_y}$ denote the set of positive integers that are ${y}$-densely divisible.

Certainly every integer which is ${y}$-smooth (i.e. has all prime factors at most ${y}$ is also ${y}$-densely divisible, as can be seen from the greedy algorithm; but the property of being ${y}$-densely divisible is strictly weaker than ${y}$-smoothness, which is a fact we shall exploit shortly.

We now define ${MPZ'[\varpi,\delta]}$ to be the same statement as ${MPZ[\varpi,\delta]}$, but with the condition ${q \in {\mathcal S}_I}$ replaced by the weaker condition ${q \in {\mathcal S}_{[w,+\infty)} \cap {\mathcal D}_{x^\delta}}$. The arguments in previous posts then also establish ${MPZ'[\varpi,\delta]}$ whenever ${87 \varpi + 17 \delta < \frac{1}{4}}$.

The main result of this post is then the following implication, essentially due to Pintz:

Theorem 5 Let ${0 < \varpi < 1/4}$, ${0 < \delta \leq \delta' < 1/4 + \varpi}$, ${A \geq 0}$, and ${k_0 \geq 2}$ be such that

$\displaystyle (1 +4 \varpi) (1-2\kappa_1 - 2\kappa_2 - 2\kappa_3) > \frac{j^2_{k_0-2}}{k_0(k_0-1)}$

where

$\displaystyle \kappa_1 := \int_{\theta}^1 (1-t)^{(k_0-1)/2}\ \frac{dt}{t}$

$\displaystyle \kappa_2 := (k_0-1) \int_{\theta}^1 (1-t)^{k_0-1}\ \frac{dt}{t}$

$\displaystyle \kappa_3 := e^A \frac{G_{k_0-1,\tilde \theta}(0,0)}{G_{k_0-1}(0,0)} \sum_{0 \leq J \leq 1/\tilde \delta} \frac{(k_0-1)^J}{J!} (\int_{\tilde \delta}^\theta e^{-At} \frac{dt}{t})^J$

and

$\displaystyle \theta := \frac{\delta'}{1/4+\varpi}$

$\displaystyle \tilde \theta := \frac{(\delta' - \delta)/2 + \varpi}{1/4 + \varpi}$

$\displaystyle \tilde \delta := \frac{\delta}{1/4+\varpi}$

$\displaystyle G_{k_0-1}(0,0) := \int_0^1 f(t)^2 \frac{t^{k_0-2}}{(k_0-2)!}\ dt$

$\displaystyle G_{k_0-1,\tilde \theta}(0,0) := \int_0^{\tilde \theta} f(t)^2 \frac{t^{k_0-2}}{(k_0-2)!}\ dt$

and

$\displaystyle f(t) := t^{1-k_0/2} J_{k_0-2}( \sqrt{t} j_{k_0-2} ).$

Then ${MPZ'[\varpi,\delta]}$ implies ${DHL[k_0,2]}$.

This theorem has rather messy constants, but we can isolate some special cases which are a bit easier to compute with. Setting ${\delta' = \delta}$, we see that ${\kappa_3}$ vanishes (and the argument below will show that we only need ${MPZ[\varpi,\delta]}$ rather than ${MPZ'[\varpi,\delta]}$), and we obtain the following slight improvement of Theorem 3:

Theorem 6 Let ${0 < \varpi < 1/4}$, ${0 < \delta < 1/4 + \varpi}$ and ${k_0 \geq 2}$ be such that we have the inequality

$\displaystyle (1 +4 \varpi) (1-2\kappa_1-2\kappa_2) > \frac{j^2_{k_0-2}}{k_0(k_0-1)} \ \ \ \ \ (4)$

where

$\displaystyle \kappa_1 := \int_{4\delta/(1+4\varpi)}^1 (1-t)^{(k_0-1)/2}\ \frac{dt}{t}$

$\displaystyle \kappa_2 := (k_0-1) \int_{4\delta/(1+4\varpi)}^1 (1-t)^{k_0-1}\ \frac{dt}{t}.$

Then ${MPZ[\varpi,\delta]}$ implies ${DHL[k_0,2]}$.

This is a little better than Theorem 3, because the error ${2\kappa_1+2\kappa_2}$ has size about ${\frac{1}{2 k_0 \delta} \exp( - 2 k_0 \delta) + \frac{1}{2 \delta} \exp(-4 k_0 \delta)}$, which compares favorably with the error in Theorem 3 which is about ${\frac{1}{\delta} \exp(-2 k_0 \delta)}$. This should already give a “cheap” improvement to our current threshold ${k_0 \geq 6329}$, though it will fall short of what one would get if one fully optimised over all parameters in the above theorem.

Returning to the full strength of Theorem 5, let us obtain a crude upper bound for ${\kappa_3}$ that is a little simpler to understand. Extending the ${J}$ summation to infinity and using the Taylor series for the exponential, we have

$\displaystyle \kappa_3 \leq \frac{G_{k_0-1,\tilde \theta}(0,0)}{G_{k_0-1}(0,0)} \exp( A + (k_0-1) \int_{\tilde \delta}^\theta e^{-At} \frac{dt}{t} ).$

We can crudely bound

$\displaystyle \int_{\tilde \delta}^\theta e^{-At} \frac{dt}{t} \leq \frac{1}{A \tilde \delta}$

and then optimise in ${A}$ to obtain

$\displaystyle \kappa_3 \leq \frac{G_{k_0-1,\tilde \theta}(0,0)}{G_{k_0-1}(0,0)} \exp( 2 (k_0-1)^{1/2} \tilde \delta^{-1/2} ).$

Because of the ${t^{k_0-2}}$ factor in the integrand for ${G_{k_0-1}}$ and ${G_{k_0-1,\tilde \theta}}$, we expect the ratio ${\frac{G_{k_0-1,\tilde \theta}(0,0)}{G_{k_0-1}(0,0)}}$ to be of the order of ${\tilde \theta^{k_0-1}}$, although one will need some theoretical or numerical estimates on Bessel functions to make this heuristic more precise. Setting ${\tilde \theta}$ to be something like ${1/2}$, we get a good bound here as long as ${\tilde \delta \gg 1/k_0}$, which at current values of ${\delta, k_0}$ is a mild condition.

Pintz’s argument uses the elementary Selberg sieve, discussed in this previous post, but with a more efficient estimation of the quantity ${\beta}$, in particular avoiding the truncation to moduli ${d}$ between ${x^{-\delta} R}$ and ${R}$ which was the main source of inefficiency in that previous post. The basic idea is to “linearise” the effect of the truncation of the sieve, so that this contribution can be dealt with by the union bound (basically, bounding the contribution of each large prime one at a time). This mostly avoids the more complicated combinatorial analysis that arose in the analytic Selberg sieve, as seen in this previous post.

This is the final continuation of the online reading seminar of Zhang’s paper for the polymath8 project. (There are two other continuations; this previous post, which deals with the combinatorial aspects of the second part of Zhang’s paper, and this previous post, that covers the Type I and Type II sums.) The main purpose of this post is to present (and hopefully, to improve upon) the treatment of the final and most innovative of the key estimates in Zhang’s paper, namely the Type III estimate.

The main estimate was already stated as Theorem 17 in the previous post, but we quickly recall the relevant definitions here. As in other posts, we always take ${x}$ to be a parameter going off to infinity, with the usual asymptotic notation ${O(), o(), \ll}$ associated to this parameter.

Definition 1 (Coefficient sequences) A coefficient sequence is a finitely supported sequence ${\alpha: {\bf N} \rightarrow {\bf R}}$ that obeys the bounds

$\displaystyle |\alpha(n)| \ll \tau^{O(1)}(n) \log^{O(1)}(x) \ \ \ \ \ (1)$

for all ${n}$, where ${\tau}$ is the divisor function.

• (i) If ${\alpha}$ is a coefficient sequence and ${a\ (q) = a \hbox{ mod } q}$ is a primitive residue class, the (signed) discrepancy ${\Delta(\alpha; a\ (q))}$ of ${\alpha}$ in the sequence is defined to be the quantity

$\displaystyle \Delta(\alpha; a \ (q)) := \sum_{n: n = a\ (q)} \alpha(n) - \frac{1}{\phi(q)} \sum_{n: (n,q)=1} \alpha(n). \ \ \ \ \ (2)$

• (ii) A coefficient sequence ${\alpha}$ is said to be at scale ${N}$ for some ${N \geq 1}$ if it is supported on an interval of the form ${[(1-O(\log^{-A_0} x)) N, (1+O(\log^{-A_0} x)) N]}$.
• (iii) A coefficient sequence ${\alpha}$ at scale ${N}$ is said to be smooth if it takes the form ${\alpha(n) = \psi(n/N)}$ for some smooth function ${\psi: {\bf R} \rightarrow {\bf C}}$ supported on ${[1-O(\log^{-A_0} x), 1+O(\log^{-A_0} x)]}$ obeying the derivative bounds

$\displaystyle \psi^{(j)}(t) = O( \log^{j A_0} x ) \ \ \ \ \ (3)$

for all fixed ${j \geq 0}$ (note that the implied constant in the ${O()}$ notation may depend on ${j}$).

For any ${I \subset {\bf R}}$, let ${{\mathcal S}_I}$ denote the square-free numbers whose prime factors lie in ${I}$. The main result of this post is then the following result of Zhang:

Theorem 2 (Type III estimate) Let ${\varpi, \delta > 0}$ be fixed quantities, and let ${M, N_1, N_2, N_3 \gg 1}$ be quantities such that

$\displaystyle x \ll M N_1 N_2 N_3 \ll x$

and

$\displaystyle N_1 \gg N_2, N_3$

and

$\displaystyle N_1^4 N_2^4 N_3^5 \gg x^{4+16\varpi+\delta+c}$

for some fixed ${c>0}$. Let ${\alpha, \psi_1, \psi_2, \psi_3}$ be coefficient sequences at scale ${M,N_1,N_2,N_3}$ respectively with ${\psi_1,\psi_2,\psi_3}$ smooth. Then for any ${I \subset [1,x^\delta]}$ we have

$\displaystyle \sum_{q \in {\mathcal S}_I: q< x^{1/2+2\varpi}} \sup_{a \in ({\bf Z}/q{\bf Z})^\times} |\Delta(\alpha \ast \beta; a)| \ll x \log^{-A} x.$

In fact we have the stronger “pointwise” estimate

$\displaystyle |\Delta(\alpha \ast \psi_1 \ast \psi_2 \ast \psi_3; a)| \ll x^{-\epsilon} \frac{x}{q} \ \ \ \ \ (4)$

for all ${q \in {\mathcal S}_I}$ with ${q < x^{1/2+2\varpi}}$ and all ${a \in ({\bf Z}/q{\bf Z})^\times}$, and some fixed ${\epsilon>0}$.

(This is very slightly stronger than previously claimed, in that the condition ${N_2 \gg N_3}$ has been dropped.)

It turns out that Zhang does not exploit any averaging of the ${\alpha}$ factor, and matters reduce to the following:

Theorem 3 (Type III estimate without ${\alpha}$) Let ${\delta > 0}$ be fixed, and let ${1 \ll N_1, N_2, N_3, d \ll x^{O(1)}}$ be quantities such that

$\displaystyle N_1 \gg N_2, N_3$

and

$\displaystyle d \in {\mathcal S}_{[1,x^\delta]}$

and

$\displaystyle N_1^4 N_2^4 N_3^5 \gg d^8 x^{\delta+c}$

for some fixed ${c>0}$. Let ${\psi_1,\psi_2,\psi_3}$ be smooth coefficient sequences at scales ${N_1,N_2,N_3}$ respectively. Then we have

$\displaystyle |\Delta(\psi_1 \ast \psi_2 \ast \psi_3; a)| \ll x^{-\epsilon} \frac{N_1 N_2 N_3}{d}$

for all ${a \in ({\bf Z}/d{\bf Z})^\times}$ and some fixed ${\epsilon>0}$.

Let us quickly see how Theorem 3 implies Theorem 2. To show (4), it suffices to establish the bound

$\displaystyle \sum_{n = a\ (q)} \alpha \ast \psi_1 \ast \psi_2 \ast \psi_3(n) = X + O( x^{-\epsilon} \frac{x}{q} )$

for all ${a \in ({\bf Z}/q{\bf Z})^\times}$, where ${X}$ denotes a quantity that is independent of ${a}$ (but can depend on other quantities such as ${\alpha,\psi_1,\psi_2,\psi_3,q}$). The left-hand side can be rewritten as

$\displaystyle \sum_{b \in ({\bf Z}/q{\bf Z})^\times} \sum_{m = b\ (q)} \alpha(m) \sum_{n = a/b\ (q)} \psi_1 \ast \psi_2 \ast \psi_3(n).$

From Theorem 3 we have

$\displaystyle \sum_{n = a/b\ (q)} \psi_1 \ast \psi_2 \ast \psi_3(n) = Y + O( x^{-\epsilon} \frac{N_1 N_2 N_3}{q} )$

where the quantity ${Y}$ does not depend on ${a}$ or ${b}$. Inserting this asymptotic and using crude bounds on ${\alpha}$ (see Lemma 8 of this previous post) we conclude (4) as required (after modifying ${\epsilon}$ slightly).

It remains to establish Theorem 3. This is done by a set of tools similar to that used to control the Type I and Type II sums:

• (i) completion of sums;
• (ii) the Weil conjectures and bounds on Ramanujan sums;
• (iii) factorisation of smooth moduli ${q \in {\mathcal S}_I}$;
• (iv) the Cauchy-Schwarz and triangle inequalities (Weyl differencing).

The specifics are slightly different though. For the Type I and Type II sums, it was the classical Weil bound on Kloosterman sums that were the key source of power saving; Ramanujan sums only played a minor role, controlling a secondary error term. For the Type III sums, one needs a significantly deeper consequence of the Weil conjectures, namely the estimate of Bombieri and Birch on a three-dimensional variant of a Kloosterman sum. Furthermore, the Ramanujan sums – which are a rare example of sums that actually exhibit better than square root cancellation, thus going beyond even what the Weil conjectures can offer – make a crucial appearance, when combined with the factorisation of the smooth modulus ${q}$ (this new argument is arguably the most original and interesting contribution of Zhang).

Tamar Ziegler and I have just uploaded to the arXiv our joint paper “A multi-dimensional Szemerédi theorem for the primes via a correspondence principle“. This paper is related to an earlier result of Ben Green and mine in which we established that the primes contain arbitrarily long arithmetic progressions. Actually, in that paper we proved a more general result:

Theorem 1 (Szemerédi’s theorem in the primes) Let ${A}$ be a subset of the primes ${{\mathcal P}}$ of positive relative density, thus ${\limsup_{N \rightarrow \infty} \frac{|A \cap [N]|}{|{\mathcal P} \cap [N]|} > 0}$. Then ${A}$ contains arbitrarily long arithmetic progressions.

This result was based in part on an earlier paper of Green that handled the case of progressions of length three. With the primes replaced by the integers, this is of course the famous theorem of Szemerédi.

Szemerédi’s theorem has now been generalised in many different directions. One of these is the multidimensional Szemerédi theorem of Furstenberg and Katznelson, who used ergodic-theoretic techniques to show that any dense subset of ${{\bf Z}^d}$ necessarily contained infinitely many constellations of any prescribed shape. Our main result is to relativise that theorem to the primes as well:

Theorem 2 (Multidimensional Szemerédi theorem in the primes) Let ${d \geq 1}$, and let ${A}$ be a subset of the ${d^{th}}$ Cartesian power ${{\mathcal P}^d}$ of the primes of positive relative density, thus

$\displaystyle \limsup_{N \rightarrow \infty} \frac{|A \cap [N]^d|}{|{\mathcal P}^d \cap [N]^d|} > 0.$

Then for any ${v_1,\ldots,v_k \in {\bf Z}^d}$, ${A}$ contains infinitely many “constellations” of the form ${a+r v_1, \ldots, a + rv_k}$ with ${a \in {\bf Z}^k}$ and ${r}$ a positive integer.

In the case when ${A}$ is itself a Cartesian product of one-dimensional sets (in particular, if ${A}$ is all of ${{\mathcal P}^d}$), this result already follows from Theorem 1, but there does not seem to be a similarly easy argument to deduce the general case of Theorem 2 from previous results. Simultaneously with this paper, an independent proof of Theorem 2 using a somewhat different method has been established by Cook, Maygar, and Titichetrakun.

The result is reminiscent of an earlier result of mine on finding constellations in the Gaussian primes (or dense subsets thereof). That paper followed closely the arguments of my original paper with Ben Green, namely it first enclosed (a W-tricked version of) the primes or Gaussian primes (in a sieve theoretic-sense) by a slightly larger set (or more precisely, a weight function ${\nu}$) of almost primes or almost Gaussian primes, which one could then verify (using methods closely related to the sieve-theoretic methods in the ongoing Polymath8 project) to obey certain pseudorandomness conditions, known as the linear forms condition and the correlation condition. Very roughly speaking, these conditions assert statements of the following form: if ${n}$ is a randomly selected integer, then the events of ${n+h_1,\ldots,n+h_k}$ simultaneously being an almost prime (or almost Gaussian prime) are approximately independent for most choices of ${h_1,\ldots,h_k}$. Once these conditions are satisfied, one can then run a transference argument (initially based on ergodic-theory methods, but nowadays there are simpler transference results based on the Hahn-Banach theorem, due to Gowers and Reingold-Trevisan-Tulsiani-Vadhan) to obtain relative Szemerédi-type theorems from their absolute counterparts.

However, when one tries to adapt these arguments to sets such as ${{\mathcal P}^2}$, a new difficulty occurs: the natural analogue of the almost primes would be the Cartesian square ${{\mathcal A}^2}$ of the almost primes – pairs ${(n,m)}$ whose entries are both almost primes. (Actually, for technical reasons, one does not work directly with a set of almost primes, but would instead work with a weight function such as ${\nu(n) \nu(m)}$ that is concentrated on a set such as ${{\mathcal A}^2}$, but let me ignore this distinction for now.) However, this set ${{\mathcal A}^2}$ does not enjoy as many pseudorandomness conditions as one would need for a direct application of the transference strategy to work. More specifically, given any fixed ${h, k}$, and random ${(n,m)}$, the four events

$\displaystyle (n,m) \in {\mathcal A}^2$

$\displaystyle (n+h,m) \in {\mathcal A}^2$

$\displaystyle (n,m+k) \in {\mathcal A}^2$

$\displaystyle (n+h,m+k) \in {\mathcal A}^2$

do not behave independently (as they would if ${{\mathcal A}^2}$ were replaced for instance by the Gaussian almost primes), because any three of these events imply the fourth. This blocks the transference strategy for constellations which contain some right-angles to them (e.g. constellations of the form ${(n,m), (n+r,m), (n,m+r)}$) as such constellations soon turn into rectangles such as the one above after applying Cauchy-Schwarz a few times. (But a few years ago, Cook and Magyar showed that if one restricted attention to constellations which were in general position in the sense that any coordinate hyperplane contained at most one element in the constellation, then this obstruction does not occur and one can establish Theorem 2 in this case through the transference argument.) It’s worth noting that very recently, Conlon, Fox, and Zhao have succeeded in removing of the pseudorandomness conditions (namely the correlation condition) from the transference principle, leaving only the linear forms condition as the remaining pseudorandomness condition to be verified, but unfortunately this does not completely solve the above problem because the linear forms condition also fails for ${{\mathcal A}^2}$ (or for weights concentrated on ${{\mathcal A}^2}$) when applied to rectangular patterns.

There are now two ways known to get around this problem and establish Theorem 2 in full generality. The approach of Cook, Magyar, and Titichetrakun proceeds by starting with one of the known proofs of the multidimensional Szemerédi theorem – namely, the proof that proceeds through hypergraph regularity and hypergraph removal – and attach pseudorandom weights directly within the proof itself, rather than trying to add the weights to the result of that proof through a transference argument. (A key technical issue is that weights have to be added to all the levels of the hypergraph – not just the vertices and top-order edges – in order to circumvent the failure of naive pseudorandomness.) As one has to modify the entire proof of the multidimensional Szemerédi theorem, rather than use that theorem as a black box, the Cook-Magyar-Titichetrakun argument is lengthier than ours; on the other hand, it is more general and does not rely on some difficult theorems about primes that are used in our paper.

In our approach, we continue to use the multidimensional Szemerédi theorem (or more precisely, the equivalent theorem of Furstenberg and Katznelson concerning multiple recurrence for commuting shifts) as a black box. The difference is that instead of using a transference principle to connect the relative multidimensional Szemerédi theorem we need to the multiple recurrence theorem, we instead proceed by a version of the Furstenberg correspondence principle, similar to the one that connects the absolute multidimensional Szemerédi theorem to the multiple recurrence theorem. I had discovered this approach many years ago in an unpublished note, but had abandoned it because it required an infinite number of linear forms conditions (in contrast to the transference technique, which only needed a finite number of linear forms conditions and (until the recent work of Conlon-Fox-Zhao) a correlation condition). The reason for this infinite number of conditions is that the correspondence principle has to build a probability measure on an entire ${\sigma}$-algebra; for this, it is not enough to specify the measure ${\mu(A)}$ of a single set such as ${A}$, but one also has to specify the measure ${\mu( T^{n_1} A \cap \ldots \cap T^{n_m} A)}$ of “cylinder sets” such as ${T^{n_1} A \cap \ldots \cap T^{n_m} A}$ where ${m}$ could be arbitrarily large. The larger ${m}$ gets, the more linear forms conditions one needs to keep the correspondence under control.

With the sieve weights ${\nu}$ we were using at the time, standard sieve theory methods could indeed provide a finite number of linear forms conditions, but not an infinite number, so my idea was abandoned. However, with my later work with Green and Ziegler on linear equations in primes (and related work on the Mobius-nilsequences conjecture and the inverse conjecture on the Gowers norm), Tamar and I realised that the primes themselves obey an infinite number of linear forms conditions, so one can basically use the primes (or a proxy for the primes, such as the von Mangoldt function ${\Lambda}$) as the enveloping sieve weight, rather than a classical sieve. Thus my old idea of using the Furstenberg correspondence principle to transfer Szemerédi-type theorems to the primes could actually be realised. In the one-dimensional case, this simply produces a much more complicated proof of Theorem 1 than the existing one; but it turns out that the argument works as well in higher dimensions and yields Theorem 2 relatively painlessly, except for the fact that it needs the results on linear equations in primes, the known proofs of which are extremely lengthy (and also require some of the transference machinery mentioned earlier). The problem of correlations in rectangles is avoided in the correspondence principle approach because one can compensate for such correlations by performing a suitable weighted limit to compute the measure ${\mu( T^{n_1} A \cap \ldots \cap T^{n_m} A)}$ of cylinder sets, with each ${m}$ requiring a different weighted correction. (This may be related to the Cook-Magyar-Titichetrakun strategy of weighting all of the facets of the hypergraph in order to recover pseudorandomness, although our contexts are rather different.)

This is one of the continuations of the online reading seminar of Zhang’s paper for the polymath8 project. (There are two other continuations; this previous post, which deals with the combinatorial aspects of the second part of Zhang’s paper, and a post to come that covers the Type III sums.) The main purpose of this post is to present (and hopefully, to improve upon) the treatment of two of the three key estimates in Zhang’s paper, namely the Type I and Type II estimates.

The main estimate was already stated as Theorem 16 in the previous post, but we quickly recall the relevant definitions here. As in other posts, we always take ${x}$ to be a parameter going off to infinity, with the usual asymptotic notation ${O(), o(), \ll}$ associated to this parameter.

Definition 1 (Coefficient sequences) A coefficient sequence is a finitely supported sequence ${\alpha: {\bf N} \rightarrow {\bf R}}$ that obeys the bounds

$\displaystyle |\alpha(n)| \ll \tau^{O(1)}(n) \log^{O(1)}(x) \ \ \ \ \ (1)$

for all ${n}$, where ${\tau}$ is the divisor function.

• (i) If ${\alpha}$ is a coefficient sequence and ${a\ (q) = a \hbox{ mod } q}$ is a primitive residue class, the (signed) discrepancy ${\Delta(\alpha; a\ (q))}$ of ${\alpha}$ in the sequence is defined to be the quantity

$\displaystyle \Delta(\alpha; a \ (q)) := \sum_{n: n = a\ (q)} \alpha(n) - \frac{1}{\phi(q)} \sum_{n: (n,q)=1} \alpha(n). \ \ \ \ \ (2)$

• (ii) A coefficient sequence ${\alpha}$ is said to be at scale ${N}$ for some ${N \geq 1}$ if it is supported on an interval of the form ${[(1-O(\log^{-A_0} x)) N, (1+O(\log^{-A_0} x)) N]}$.
• (iii) A coefficient sequence ${\alpha}$ at scale ${N}$ is said to obey the Siegel-Walfisz theorem if one has

$\displaystyle | \Delta(\alpha 1_{(\cdot,q)=1}; a\ (r)) | \ll \tau(qr)^{O(1)} N \log^{-A} x \ \ \ \ \ (3)$

for any ${q,r \geq 1}$, any fixed ${A}$, and any primitive residue class ${a\ (r)}$.

• (iv) A coefficient sequence ${\alpha}$ at scale ${N}$ is said to be smooth if it takes the form ${\alpha(n) = \psi(n/N)}$ for some smooth function ${\psi: {\bf R} \rightarrow {\bf C}}$ supported on ${[1-O(\log^{-A_0} x), 1+O(\log^{-A_0} x)]}$ obeying the derivative bounds

$\displaystyle \psi^{(j)}(t) = O( \log^{j A_0} x ) \ \ \ \ \ (4)$

for all fixed ${j \geq 0}$ (note that the implied constant in the ${O()}$ notation may depend on ${j}$).

In Lemma 8 of this previous post we established a collection of “crude estimates” which assert, roughly speaking, that for the purposes of averaged estimates one may ignore the ${\tau^{O(1)}(n)}$ factor in (1) and pretend that ${\alpha(n)}$ was in fact ${O( \log^{O(1)} n)}$. We shall rely frequently on these “crude estimates” without further citation to that precise lemma.

For any ${I \subset {\bf R}}$, let ${{\mathcal S}_I}$ denote the square-free numbers whose prime factors lie in ${I}$.

Definition 2 (Singleton congruence class system) Let ${I \subset {\bf R}}$. A singleton congruence class system on ${I}$ is a collection ${{\mathcal C} = (\{a_q\})_{q \in {\mathcal S}_I}}$ of primitive residue classes ${a_q \in ({\bf Z}/q{\bf Z})^\times}$ for each ${q \in {\mathcal S}_I}$, obeying the Chinese remainder theorem property

$\displaystyle a_{qr}\ (qr) = (a_q\ (q)) \cap (a_r\ (r)) \ \ \ \ \ (5)$

whenever ${q,r \in {\mathcal S}_I}$ are coprime. We say that such a system ${{\mathcal C}}$ has controlled multiplicity if the

$\displaystyle \tau_{\mathcal C}(n) := |\{ q \in {\mathcal S}_I: n = a_q\ (q) \}|$

obeys the estimate

$\displaystyle \sum_{C^{-1} x \leq n \leq Cx: n = a\ (r)} \tau_{\mathcal C}(n)^2 \ll \frac{x}{r} \tau(r)^{O(1)} \log^{O(1)} x + x^{o(1)}. \ \ \ \ \ (6)$

for any fixed ${C>1}$ and any congruence class ${a\ (r)}$ with ${r \in {\mathcal S}_I}$.

The main result of this post is then the following:

Theorem 3 (Type I/II estimate) Let ${\varpi, \delta, \sigma > 0}$ be fixed quantities such that

$\displaystyle 11 \varpi + 3\delta + 2 \sigma < \frac{1}{4} \ \ \ \ \ (7)$

and

$\displaystyle 29\varpi + 5 \delta < \frac{1}{4} \ \ \ \ \ (8)$

and let ${\alpha,\beta}$ be coefficient sequences at scales ${M,N}$ respectively with

$\displaystyle x \ll MN \ll x \ \ \ \ \ (9)$

and

$\displaystyle x^{\frac{1}{2}-\sigma} \ll N \ll M \ll x^{\frac{1}{2}+\sigma} \ \ \ \ \ (10)$

with ${\beta}$ obeying a Siegel-Walfisz theorem. Then for any ${I \subset [1,x^\delta]}$ and any singleton congruence class system ${(\{a_q\})_{q \in {\mathcal S}_I}}$ with controlled multiplicity we have

$\displaystyle \sum_{q \in {\mathcal S}_I: q< x^{1/2+2\varpi}} |\Delta(\alpha \ast \beta; a_q)| \ll x \log^{-A} x.$

The proof of this theorem relies on five basic tools:

• (iv) factorisation of smooth moduli ${q \in {\mathcal S}_I}$; and
For the purposes of numerics, it is the interplay between (ii), (iii), and (v) that drives the final conditions (7), (8). The Weil conjectures are the primary source of power savings (${x^{-c}}$ for some fixed ${c>0}$) in the argument, but they need to overcome power losses coming from completion of sums, and also each use of Cauchy-Schwarz tends to halve any power savings present in one’s estimates. Naively, one could thus expect to get better estimates by relying more on the Weil conjectures, and less on completion of sums and on Cauchy-Schwarz.