You are currently browsing the tag archive for the ‘additive combinatorics’ tag.

In graph theory, the recently developed theory of *graph limits* has proven to be a useful tool for analysing large dense graphs, being a convenient reformulation of the Szemerédi regularity lemma. Roughly speaking, the theory asserts that given any sequence of finite graphs, one can extract a subsequence which converges (in a specific sense) to a continuous object known as a “graphon” – a symmetric measurable function . What “converges” means in this context is that subgraph densities converge to the associated integrals of the graphon . For instance, the edge density

converge to the integral

the triangle density

converges to the integral

the four-cycle density

converges to the integral

and so forth. One can use graph limits to prove many results in graph theory that were traditionally proven using the regularity lemma, such as the triangle removal lemma, and can also reduce many asymptotic graph theory problems to continuous problems involving multilinear integrals (although the latter problems are not necessarily easy to solve!). See this text of Lovasz for a detailed study of graph limits and their applications.

One can also express graph limits (and more generally hypergraph limits) in the language of nonstandard analysis (or of ultraproducts); see for instance this paper of Elek and Szegedy, Section 6 of this previous blog post, or this paper of Towsner. (In this post we assume some familiarity with nonstandard analysis, as reviewed for instance in the previous blog post.) Here, one starts as before with a sequence of finite graphs, and then takes an ultraproduct (with respect to some arbitrarily chosen non-principal ultrafilter ) to obtain a nonstandard graph , where is the ultraproduct of the , and similarly for the . The set can then be viewed as a symmetric subset of which is measurable with respect to the Loeb -algebra of the product (see this previous blog post for the construction of Loeb measure). A crucial point is that this -algebra is larger than the product of the Loeb -algebra of the individual vertex set . This leads to a decomposition

where the “graphon” is the orthogonal projection of onto , and the “regular error” is orthogonal to all product sets for . The graphon then captures the statistics of the nonstandard graph , in exact analogy with the more traditional graph limits: for instance, the edge density

(or equivalently, the limit of the along the ultrafilter ) is equal to the integral

where denotes Loeb measure on a nonstandard finite set ; the triangle density

(or equivalently, the limit along of the triangle densities of ) is equal to the integral

and so forth. Note that with this construction, the graphon is living on the Cartesian square of an abstract probability space , which is likely to be inseparable; but it is possible to cut down the Loeb -algebra on to minimal countable -algebra for which remains measurable (up to null sets), and then one can identify with , bringing this construction of a graphon in line with the traditional notion of a graphon. (See Remark 5 of this previous blog post for more discussion of this point.)

Additive combinatorics, which studies things like the additive structure of finite subsets of an abelian group , has many analogies and connections with asymptotic graph theory; in particular, there is the arithmetic regularity lemma of Green which is analogous to the graph regularity lemma of Szemerédi. (There is also a higher order arithmetic regularity lemma analogous to hypergraph regularity lemmas, but this is not the focus of the discussion here.) Given this, it is natural to suspect that there is a theory of “additive limits” for large additive sets of bounded doubling, analogous to the theory of graph limits for large dense graphs. The purpose of this post is to record a candidate for such an additive limit. This limit can be used as a substitute for the arithmetic regularity lemma in certain results in additive combinatorics, at least if one is willing to settle for qualitative results rather than quantitative ones; I give a few examples of this below the fold.

It seems that to allow for the most flexible and powerful manifestation of this theory, it is convenient to use the nonstandard formulation (among other things, it allows for full use of the transfer principle, whereas a more traditional limit formulation would only allow for a transfer of those quantities continuous with respect to the notion of convergence). Here, the analogue of a nonstandard graph is an *ultra approximate group* in a nonstandard group , defined as the ultraproduct of finite -approximate groups for some standard . (A -approximate group is a symmetric set containing the origin such that can be covered by or fewer translates of .) We then let be the external subgroup of generated by ; equivalently, is the union of over all standard . This space has a Loeb measure , defined by setting

whenever is an internal subset of for any standard , and extended to a countably additive measure; the arguments in Section 6 of this previous blog post can be easily modified to give a construction of this measure.

The Loeb measure is a translation invariant measure on , normalised so that has Loeb measure one. As such, one should think of as being analogous to a locally compact abelian group equipped with a Haar measure. It should be noted though that is not *actually* a locally compact group with Haar measure, for two reasons:

- There is not an obvious topology on that makes it simultaneously locally compact, Hausdorff, and -compact. (One can get one or two out of three without difficulty, though.)
- The addition operation is not measurable from the product Loeb algebra to . Instead, it is measurable from the coarser Loeb algebra to (compare with the analogous situation for nonstandard graphs).

Nevertheless, the analogy is a useful guide for the arguments that follow.

Let denote the space of bounded Loeb measurable functions (modulo almost everywhere equivalence) that are supported on for some standard ; this is a complex algebra with respect to pointwise multiplication. There is also a convolution operation , defined by setting

whenever , are bounded nonstandard functions (extended by zero to all of ), and then extending to arbitrary elements of by density. Equivalently, is the pushforward of the -measurable function under the map .

The basic structural theorem is then as follows.

Theorem 1 (Kronecker factor)Let be an ultra approximate group. Then there exists a (standard) locally compact abelian group of the formfor some standard and some compact abelian group , equipped with a Haar measure and a measurable homomorphism (using the Loeb -algebra on and the Borel -algebra on ), with the following properties:

- (i) is surjective, and is the pushforward of Loeb measure by .
- (ii) There exists sets with open and compact, such that
- (iii) Whenever with compact and open, there exists a nonstandard finite set such that
- (iv) If , then we have the convolution formula
where are the pushforwards of to , the convolution on the right-hand side is convolution using , and is the pullback map from to . In particular, if , then for all .

One can view the locally compact abelian group as a “model “or “Kronecker factor” for the ultra approximate group (in close analogy with the Kronecker factor from ergodic theory). In the case that is a genuine nonstandard finite group rather than an ultra approximate group, the non-compact components of the Kronecker group are trivial, and this theorem was implicitly established by Szegedy. The compact group is quite large, and in particular is likely to be inseparable; but as with the case of graphons, when one is only studying at most countably many functions , one can cut down the size of this group to be separable (or equivalently, second countable or metrisable) if desired, so one often works with a “reduced Kronecker factor” which is a quotient of the full Kronecker factor .

Given any sequence of uniformly bounded functions for some fixed , we can view the function defined by

as an “additive limit” of the , in much the same way that graphons are limits of the indicator functions . The additive limits capture some of the statistics of the , for instance the normalised means

converge (along the ultrafilter ) to the mean

and for three sequences of functions, the normalised correlation

converges along to the correlation

the normalised Gowers norm

converges along to the Gowers norm

and so forth. We caution however that some correlations that involve evaluating more than one function at the same point will not necessarily be preserved in the additive limit; for instance the normalised norm

does not necessarily converge to the norm

but can converge instead to a larger quantity, due to the presence of the orthogonal projection in the definition (4) of .

An important special case of an additive limit occurs when the functions involved are indicator functions of some subsets of . The additive limit does not necessarily remain an indicator function, but instead takes values in (much as a graphon takes values in even though the original indicators take values in ). The convolution is then the ultralimit of the normalised convolutions ; in particular, the measure of the support of provides a lower bound on the limiting normalised cardinality of a sumset. In many situations this lower bound is an equality, but this is not necessarily the case, because the sumset could contain a large number of elements which have very few () representations as the sum of two elements of , and in the limit these portions of the sumset fall outside of the support of . (One can think of the support of as describing the “essential” sumset of , discarding those elements that have only very few representations.) Similarly for higher convolutions of . Thus one can use additive limits to partially control the growth of iterated sumsets of subsets of approximate groups , in the regime where stays bounded and goes to infinity.

Theorem 1 can be proven by Fourier-analytic means (combined with Freiman’s theorem from additive combinatorics), and we will do so below the fold. For now, we give some illustrative examples of additive limits.

Example 1 (Bohr sets)We take to be the intervals , where is a sequence going to infinity; these are -approximate groups for all . Let be an irrational real number, let be an interval in , and for each natural number let be the Bohr setIn this case, the (reduced) Kronecker factor can be taken to be the infinite cylinder with the usual Lebesgue measure . The additive limits of and end up being and , where is the finite cylinder

and is the rectangle

Geometrically, one should think of and as being wrapped around the cylinder via the homomorphism , and then one sees that is converging in some normalised weak sense to , and similarly for and . In particular, the additive limit predicts the growth rate of the iterated sumsets to be quadratic in until becomes comparable to , at which point the growth transitions to linear growth, in the regime where is bounded and is large.

If were rational instead of irrational, then one would need to replace by the finite subgroup here.

Example 2 (Structured subsets of progressions)We take be the rank two progressionwhere is a sequence going to infinity; these are -approximate groups for all . Let be the subset

Then the (reduced) Kronecker factor can be taken to be with Lebesgue measure , and the additive limits of the and are then and , where is the square

and is the circle

Geometrically, the picture is similar to the Bohr set one, except now one uses a Freiman homomorphism for to embed the original sets into the plane . In particular, one now expects the growth rate of the iterated sumsets and to be quadratic in , in the regime where is bounded and is large.

Example 3 (Dissociated sets)Let be a fixed natural number, and takewhere are randomly chosen elements of a large cyclic group , where is a sequence of primes going to infinity. These are -approximate groups. The (reduced) Kronecker factor can (almost surely) then be taken to be with counting measure, and the additive limit of is , where and is the standard basis of . In particular, the growth rates of should grow approximately like for bounded and large.

Example 4 (Random subsets of groups)Let be a sequence of finite additive groups whose order is going to infinity. Let be a random subset of of some fixed density . Then (almost surely) the Kronecker factor here can be reduced all the way to the trivial group , and the additive limit of the is the constant function . The convolutions then converge in the ultralimit (modulo almost everywhere equivalence) to the pullback of ; this reflects the fact that of the elements of can be represented as the sum of two elements of in ways. In particular, occupies a proportion of .

Example 5 (Trigonometric series)Take for a sequence of primes going to infinity, and for each let be an infinite sequence of frequencies chosen uniformly and independently from . Let denote the random trigonometric seriesThen (almost surely) we can take the reduced Kronecker factor to be the infinite torus (with the Haar probability measure ), and the additive limit of the then becomes the function defined by the formula

In fact, the pullback is the ultralimit of the . As such, for any standard exponent , the normalised norm

can be seen to converge to the limit

The reader is invited to consider combinations of the above examples, e.g. random subsets of Bohr sets, to get a sense of the general case of Theorem 1.

It is likely that this theorem can be extended to the noncommutative setting, using the noncommutative Freiman theorem of Emmanuel Breuillard, Ben Green, and myself, but I have not attempted to do so here (see though this recent preprint of Anush Tserunyan for some related explorations); in a separate direction, there should be extensions that can control higher Gowers norms, in the spirit of the work of Szegedy.

Note: the arguments below will presume some familiarity with additive combinatorics and with nonstandard analysis, and will be a little sketchy in places.

Roth’s theorem on arithmetic progressions asserts that every subset of the integers of positive upper density contains infinitely many arithmetic progressions of length three. There are many versions and variants of this theorem. Here is one of them:

Theorem 1 (Roth’s theorem)Let be a compact abelian group, with Haar probability measure , which is -divisible (i.e. the map is surjective) and let be a measurable subset of with for some . Then we havewhere denotes the bound for some depending only on .

This theorem is usually formulated in the case that is a finite abelian group of odd order (in which case the result is essentially due to Meshulam) or more specifically a cyclic group of odd order (in which case it is essentially due to Varnavides), but is also valid for the more general setting of -divisible compact abelian groups, as we shall shortly see. One can be more precise about the dependence of the implied constant on , but to keep the exposition simple we will work at the qualitative level here, without trying at all to get good quantitative bounds. The theorem is also true without the -divisibility hypothesis, but the proof we will discuss runs into some technical issues due to the degeneracy of the shift in that case.

We can deduce Theorem 1 from the following more general Khintchine-type statement. Let denote the Pontryagin dual of a compact abelian group , that is to say the set of all continuous homomorphisms from to the (additive) unit circle . Thus is a discrete abelian group, and functions have a Fourier transform defined by

If is -divisible, then is -torsion-free in the sense that the map is injective. For any finite set and any radius , define the *Bohr set*

where denotes the distance of to the nearest integer. We refer to the cardinality of as the *rank* of the Bohr set. We record a simple volume bound on Bohr sets:

Lemma 2 (Volume packing bound)Let be a compact abelian group with Haar probability measure . For any Bohr set , we have

*Proof:* We can cover the torus by translates of the cube . Then the sets form an cover of . But all of these sets lie in a translate of , and the claim then follows from the translation invariance of .

Given any Bohr set , we define a normalised “Lipschitz” cutoff function by the formula

where is the constant such that

thus

The function should be viewed as an -normalised “tent function” cutoff to . Note from Lemma 2 that

We then have the following sharper version of Theorem 1:

Theorem 3 (Roth-Khintchine theorem)Let be a -divisible compact abelian group, with Haar probability measure , and let . Then for any measurable function , there exists a Bohr set with and such thatwhere denotes the convolution operation

A variant of this result (expressed in the language of ergodic theory) appears in this paper of Bergelson, Host, and Kra; a combinatorial version of the Bergelson-Host-Kra result that is closer to Theorem 3 subsequently appeared in this paper of Ben Green and myself, but this theorem arguably appears implicitly in a much older paper of Bourgain. To see why Theorem 3 implies Theorem 1, we apply the theorem with and equal to a small multiple of to conclude that there is a Bohr set with and such that

But from (2) we have the pointwise bound , and Theorem 1 follows.

Below the fold, we give a short proof of Theorem 3, using an “energy pigeonholing” argument that essentially dates back to the 1986 paper of Bourgain mentioned previously (not to be confused with a later 1999 paper of Bourgain on Roth’s theorem that was highly influential, for instance in emphasising the importance of Bohr sets). The idea is to use the pigeonhole principle to choose the Bohr set to capture all the “large Fourier coefficients” of , but such that a certain “dilate” of does not capture much more Fourier energy of than itself. The bound (3) may then be obtained through elementary Fourier analysis, without much need to explicitly compute things like the Fourier transform of an indicator function of a Bohr set. (However, the bound obtained by this argument is going to be quite poor – of tower-exponential type.) To do this we perform a structural decomposition of into “structured”, “small”, and “highly pseudorandom” components, as is common in the subject (e.g. in this previous blog post), but even though we crucially need to retain non-negativity of one of the components in this decomposition, we can avoid recourse to conditional expectation with respect to a partition (or “factor”) of the space, using instead convolution with one of the considered above to achieve a similar effect.

A core foundation of the subject now known as arithmetic combinatorics (and particularly the subfield of *additive combinatorics*) are the elementary sum set estimates (sometimes known as “Ruzsa calculus”) that relate the cardinality of various sum sets

and difference sets

as well as iterated sumsets such as , , and so forth. Here, are finite non-empty subsets of some additive group (classically one took or , but nowadays one usually considers more general additive groups). Some basic estimates in this vein are the following:

Lemma 1 (Ruzsa covering lemma)Let be finite non-empty subsets of . Then may be covered by at most translates of .

*Proof:* Consider a maximal set of disjoint translates of by elements . These translates have cardinality , are disjoint, and lie in , so there are at most of them. By maximality, for any , must intersect at least one of the selected , thus , and the claim follows.

Lemma 2 (Ruzsa triangle inequality)Let be finite non-empty subsets of . Then .

*Proof:* Consider the addition map from to . Every element of has a preimage of this map of cardinality at least , thanks to the obvious identity for each . Since has cardinality , the claim follows.

Such estimates (which are covered, incidentally, in Section 2 of my book with Van Vu) are particularly useful for controlling finite sets of small doubling, in the sense that for some bounded . (There are deeper theorems, most notably Freiman’s theorem, which give more control than what elementary Ruzsa calculus does, however the known bounds in the latter theorem are worse than polynomial in (although it is conjectured otherwise), whereas the elementary estimates are almost all polynomial in .)

However, there are some settings in which the standard sum set estimates are not quite applicable. One such setting is the continuous setting, where one is dealing with bounded open sets in an additive Lie group (e.g. or a torus ) rather than a finite setting. Here, one can largely replicate the discrete sum set estimates by working with a Haar measure in place of cardinality; this is the approach taken for instance in this paper of mine. However, there is another setting, which one might dub the “discretised” setting (as opposed to the “discrete” setting or “continuous” setting), in which the sets remain finite (or at least discretisable to be finite), but for which there is a certain amount of “roundoff error” coming from the discretisation. As a typical example (working now in a non-commutative multiplicative setting rather than an additive one), consider the orthogonal group of orthogonal matrices, and let be the matrices obtained by starting with all of the orthogonal matrice in and rounding each coefficient of each matrix in this set to the nearest multiple of , for some small . This forms a finite set (whose cardinality grows as like a certain negative power of ). In the limit , the set is not a set of small doubling in the discrete sense. However, is still close to in a metric sense, being contained in the -neighbourhood of . Another key example comes from graphs of maps from a subset of one additive group to another . If is “approximately additive” in the sense that for all , is close to in some metric, then might not have small doubling in the discrete sense (because could take a large number of values), but could be considered a set of small doubling in a discretised sense.

One would like to have a sum set (or product set) theory that can handle these cases, particularly in “high-dimensional” settings in which the standard methods of passing back and forth between continuous, discrete, or discretised settings behave poorly from a quantitative point of view due to the exponentially large doubling constant of balls. One way to do this is to impose a translation invariant metric on the underlying group (reverting back to additive notation), and replace the notion of cardinality by that of metric entropy. There are a number of almost equivalent ways to define this concept:

Definition 3Let be a metric space, let be a subset of , and let be a radius.

- The
packing numberis the largest number of points one can pack inside such that the balls are disjoint.- The
internal covering numberis the fewest number of points such that the balls cover .- The
external covering numberis the fewest number of points such that the balls cover .- The
metric entropyis the largest number of points one can find in that are -separated, thus for all .

It is an easy exercise to verify the inequalities

for any , and that is non-increasing in and non-decreasing in for the three choices (but monotonicity in can fail for !). It turns out that the external covering number is slightly more convenient than the other notions of metric entropy, so we will abbreviate . The cardinality can be viewed as the limit of the entropies as .

If we have the bounded doubling property that is covered by translates of for each , and one has a Haar measure on which assigns a positive finite mass to each ball, then any of the above entropies is comparable to , as can be seen by simple volume packing arguments. Thus in the bounded doubling setting one can usually use the measure-theoretic sum set theory to derive entropy-theoretic sumset bounds (see e.g. this paper of mine for an example of this). However, it turns out that even in the absence of bounded doubling, one still has an entropy analogue of most of the elementary sum set theory, except that one has to accept some degradation in the radius parameter by some absolute constant. Such losses can be acceptable in applications in which the underlying sets are largely “transverse” to the balls , so that the -entropy of is largely independent of ; this is a situation which arises in particular in the case of graphs discussed above, if one works with “vertical” metrics whose balls extend primarily in the vertical direction. (I hope to present a specific application of this type here in the near future.)

Henceforth we work in an additive group equipped with a translation-invariant metric . (One can also generalise things slightly by allowing the metric to attain the values or , without changing much of the analysis below.) By the Heine-Borel theorem, any precompact set will have finite entropy for any . We now have analogues of the two basic Ruzsa lemmas above:

Lemma 4 (Ruzsa covering lemma)Let be precompact non-empty subsets of , and let . Then may be covered by at most translates of .

*Proof:* Let be a maximal set of points such that the sets are all disjoint. Then the sets are disjoint in and have entropy , and furthermore any ball of radius can intersect at most one of the . We conclude that , so . If , then must intersect one of the , so , and the claim follows.

Lemma 5 (Ruzsa triangle inequality)Let be precompact non-empty subsets of , and let . Then .

*Proof:* Consider the addition map from to . The domain may be covered by product balls . Every element of has a preimage of this map which projects to a translate of , and thus must meet at least of these product balls. However, if two elements of are separated by a distance of at least , then no product ball can intersect both preimages. We thus see that , and the claim follows.

Below the fold we will record some further metric entropy analogues of sum set estimates (basically redoing much of Chapter 2 of my book with Van Vu). Unfortunately there does not seem to be a direct way to abstractly deduce metric entropy results from their sum set analogues (basically due to the failure of a certain strong version of Freiman’s theorem, as discussed in this previous post); nevertheless, the proofs of the discrete arguments are elementary enough that they can be modified with a small amount of effort to handle the entropy case. (In fact, there should be a very general model-theoretic framework in which both the discrete and entropy arguments can be processed in a unified manner; see this paper of Hrushovski for one such framework.)

It is also likely that many of the arguments here extend to the non-commutative setting, but for simplicity we will not pursue such generalisations here.

Emmanuel Breuillard, Ben Green, and I have just uploaded to the arXiv our survey “Small doubling in groups“, for the proceedings of the upcoming Erdos Centennial. This is a short survey of the known results on classifying finite subsets of an (abelian) additive group or a (not necessarily abelian) multiplicative group that have small doubling in the sense that the sum set or product set is small. Such sets behave approximately like finite subgroups of (and there is a closely related notion of an *approximate group* in which the analogy is even tighter) , and so this subject can be viewed as a sort of approximate version of finite group theory. (Unfortunately, thus far the theory does not have much new to say about the classification of actual finite groups; progress has been largely made instead on classifying the (highly restricted) number of ways in which approximate groups can *differ* from a genuine group.)

In the classical case when is the integers , these sets were classified (in a qualitative sense, at least) by a celebrated theorem of Freiman, which roughly speaking says that such sets are necessarily “commensurate” in some sense with a (generalised) arithmetic progression of bounded rank. There are a number of essentially equivalent ways to define what “commensurate” means here; for instance, in the original formulation of the theorem, one asks that be a dense subset of , but in modern formulations it is often more convenient to require instead that be of comparable size to and be covered by a bounded number of translates of , or that and have an intersection that is of comparable size to both and (cf. the notion of commensurability in group theory).

Freiman’s original theorem was extended to more general abelian groups in a sequence of papers culminating in the paper of Green and Ruzsa that handled arbitrary abelian groups. As such groups now contain non-trivial finite subgroups, the conclusion of the theorem must be modified by allowing for “coset progressions” , which can be viewed as “extensions” of generalized arithmetic progressions by genuine finite groups .

The proof methods in these abelian results were Fourier-analytic in nature (except in the cases of sets of very small doubling, in which more combinatorial approaches can be applied, and there were also some geometric or combinatorial methods that gave some weaker structural results). As such, it was a challenge to extend these results to nonabelian groups, although for various important special types of ambient group (such as an linear group over a finite or infinite field) it turns out that one can use tools exploiting the special structure of those groups (e.g. for linear groups one would use tools from Lie theory and algebraic geometry) to obtain quite satisfactory results; see e.g. this survey of Pyber and Szabo for the linear case. When the ambient group is completely arbitrary, it turns out the problem is closely related to the classical Hilbert’s fifth problem of determining the minimal requirements of a topological group in order for such groups to have Lie structure; this connection was first observed and exploited by Hrushovski, and then used by Breuillard, Green, and myself to obtain the analogue of Freiman’s theorem for an arbitrary nonabelian group.

This survey is too short to discuss in much detail the proof techniques used in these results (although the abelian case is discussed in this book of mine with Vu, and the nonabelian case discussed in this more recent book of mine), but instead focuses on the statements of the various known results, as well as some remaining open questions in the subject (in particular, there is substantial work left to be done in making the estimates more quantitative, particularly in the nonabelian setting).

Let be an element of the unit circle, let , and let . We define the (rank one) *Bohr set* to be the set

where is the distance to the origin in the unit circle (or equivalently, the distance to the nearest integer, after lifting up to ). These sets play an important role in additive combinatorics and in additive number theory. For instance, they arise naturally when applying the circle method, because Bohr sets describe the oscillation of exponential phases such as .

Observe that Bohr sets enjoy the doubling property

thus doubling the Bohr set doubles both the length parameter and the radius parameter . As such, these Bohr sets resemble two-dimensional balls (or boxes). Indeed, one can view as the preimage of the two-dimensional box under the homomorphism .

Another class of finite set with two-dimensional behaviour is the class of (rank two) *generalised arithmetic progressions*

with and Indeed, we have

and so we see, as with the Bohr set, that doubling the generalised arithmetic progressions doubles the two defining parameters of that progression.

More generally, there is an analogy between rank Bohr sets

and the rank generalised arithmetic progressions

One of the aims of additive combinatorics is to formalise analogies such as the one given above. By using some arguments from the geometry of numbers, for instance, one can show that for any rank Bohr set , there is a rank generalised arithmetic progression for which one has the containments

for some explicit depending only on (in fact one can take ); this is (a slight modification of) Lemma 4.22 of my book with Van Vu.

In the special case when , one can make a significantly more detailed description of the link between rank one Bohr sets and rank two generalised arithmetic progressions, by using the classical theory of continued fractions, which among other things gives a fairly precise formula for the generators and lengths of the generalised arithmetic progression associated to a rank one Bohr set . While this connection is already implicit in the continued fraction literature (for instance, in the classic text of Hardy and Wright), I thought it would be a good exercise to work it out explicitly and write it up, which I will do below the fold.

It is unfortunate that the theory of continued fractions is restricted to the rank one setting (it relies very heavily on the total ordering of one-dimensional sets such as or ). A higher rank version of the theory could potentially help with questions such as the Littlewood conjecture, which remains open despite a substantial amount of effort and partial progress on the problem. At the end of this post I discuss how one can use the rank one theory to rephrase the Littlewood conjecture as a conjecture about a doubly indexed family of rank four progressions, which can be used to heuristically justify why this conjecture should be true, but does not otherwise seem to shed much light on the problem.

In 1964, Kemperman established the following result:

Theorem 1Let be a compact connected group, with a Haar probability measure . Let be compact subsets of . Then

Remark 1The estimate is sharp, as can be seen by considering the case when is a unit circle, and are arcs; similarly if is any compact connected group that projects onto the circle. The connectedness hypothesis is essential, as can be seen by considering what happens if and are a non-trivial open subgroup of . For locally compact connected groups which are unimodular but not compact, there is an analogous statement, but with now a Haar measure instead of a Haar probability measure, and the right-hand side replaced simply by . The case when is a torus is due to Macbeath, and the case when is a circle is due to Raikov. The theorem is closely related to the Cauchy-Davenport inequality; indeed, it is not difficult to use that inequality to establish the circle case, and the circle case can be used to deduce the torus case by considering increasingly dense circle subgroups of the torus (alternatively, one can also use Kneser’s theorem).By inner regularity, the hypothesis that are compact can be replaced with Borel measurability, so long as one then adds the additional hypothesis that is also Borel measurable.

A short proof of Kemperman’s theorem was given by Ruzsa. In this post I wanted to record how this argument can be used to establish the following more “robust” version of Kemperman’s theorem, which not only lower bounds , but gives many elements of some multiplicity:

Theorem 2Let be a compact connected group, with a Haar probability measure . Let be compact subsets of . Then for any , one has

Indeed, Theorem 1 can be deduced from Theorem 2 by dividing (1) by and then taking limits as . The bound in (1) is sharp, as can again be seen by considering the case when are arcs in a circle. The analogous claim for cyclic groups for prime order was established by Pollard, and for general abelian groups by Green and Ruzsa.

Let us now prove Theorem 2. It uses a submodularity argument related to one discussed in this previous post. We fix and with , and define the quantity

for any compact set . Our task is to establish that whenever .

We first verify the extreme cases. If , then , and so in this case (since ). At the other extreme, if , then from the inclusion-exclusion principle we see that , and so again in this case.

To handle the intermediate regime when lies between and , we rely on the *submodularity inequality*

for arbitrary compact . This inequality comes from the obvious pointwise identity

whence

and thus (noting that the quantities on the left are closer to each other than the quantities on the right)

at which point (2) follows by integrating over and then using the inclusion-exclusion principle.

Now introduce the function

for . From the preceding discussion vanishes at the endpoints ; our task is to show that is non-negative in the interior region . Suppose for contradiction that this was not the case. It is easy to see that is continuous (indeed, it is even Lipschitz continuous), so there must be at which is a local minimum and not locally constant. In particular, . But for any with , we have the translation-invariance

for any , and hence by (2)

Note that depends continuously on , equals when is the identity, and has an average value of . As is connected, we thus see from the intermediate value theorem that for any , we can find such that , and thus by inclusion-exclusion . By definition of , we thus have

Taking infima in (and noting that the hypotheses on are independent of ) we conclude that

for all . As is a local minimum and is arbitrarily small, this implies that is locally constant, a contradiction. This establishes Theorem 2.

We observe the following corollary:

Corollary 3Let be a compact connected group, with a Haar probability measure . Let be compact subsets of , and let . Then one has the pointwise estimateif , and

if .

Once again, the bounds are completely sharp, as can be seen by computing when are arcs of a circle. For quasirandom , one can do much better than these bounds, as discussed in this recent blog post; thus, the abelian case is morally the worst case here, although it seems difficult to convert this intuition into a rigorous reduction.

*Proof:* By cyclic permutation we may take . For any

we can bound

where we used Theorem 2 to obtain the third line. Optimising in , we obtain the claim.

A few days ago, I received the sad news that Yahya Ould Hamidoune had recently died. Hamidoune worked in additive combinatorics, and had recently solved a question on noncommutative Freiman-Kneser theorems posed by myself on this blog last year. Namely, Hamidoune showed

Theorem 1 (Noncommutative Freiman-Kneser theorem for small doubling)Let , and let be a finite non-empty subset of a multiplicative group such that for some finite set of cardinality at least , where is the product set of and . Then there exists a finite subgroup of with cardinality , such that is covered by at most right-cosets of , where depend only on .

One can of course specialise here to the case , and view this theorem as a classification of those sets of doubling constant at most .

In fact Hamidoune’s argument, which is completely elementary, gives the very nice explicit constants and , which are essentially optimal except for factors of (as can be seen by considering an arithmetic progression in an additive group). This result was also independently established (in the case) by Tom Sanders (unpublished) by a more Fourier-analytic method, in particular drawing on Sanders’ deep results on the Wiener algebra on arbitrary non-commutative groups .

This type of result had previously been known when was less than the golden ratio , as first observed by Freiman; see my previous blog post for more discussion.

Theorem 1 is not, strictly speaking, contained in Hamidoune’s paper, but can be extracted from his arguments, which share some similarity with the recent simple proof of the Ruzsa-Plünnecke inequality by Petridis (as discussed by Tim Gowers here), and this is what I would like to do below the fold. I also include (with permission) Sanders’ unpublished argument, which proceeds instead by Fourier-analytic methods. Read the rest of this entry »

In Notes 3, we saw that the number of additive patterns in a given set was (in principle, at least) controlled by *the Gowers uniformity norms* of functions associated to that set.

Such norms can be defined on any finite additive group (and also on some other types of domains, though we will not discuss this point here). In particular, they can be defined on the finite-dimensional vector spaces over a finite field .

In this case, the Gowers norms are closely tied to the space of polynomials of degree at most . Indeed, as noted in Exercise 20 of Notes 4, a function of norm has norm equal to if and only if for some ; thus polynomials solve the “ inverse problem” for the trivial inequality . They are also a crucial component of the solution to the “ inverse problem” and “ inverse problem”. For the former, we will soon show:

Proposition 1 ( inverse theorem for )Let be such that and for some . Then there exists such that , where is a constant depending only on .

Thus, for the Gowers norm to be almost completely saturated, one must be very close to a polynomial. The converse assertion is easily established:

Exercise 1 (Converse to inverse theorem for )If and for some , then , where is a constant depending only on .

In the world, one no longer expects to be close to a polynomial. Instead, one expects to *correlate* with a polynomial. Indeed, one has

Lemma 2 (Converse to the inverse theorem for )If and are such that , where , then .

*Proof:* From the definition of the norm (equation (18) from Notes 3), the monotonicity of the Gowers norms (Exercise 19 of Notes 3), and the polynomial phase modulation invariance of the Gowers norms (Exercise 21 of Notes 3), one has

and the claim follows.

In the high characteristic case at least, this can be reversed:

Theorem 3 ( inverse theorem for )Suppose that . If is such that and , then there exists such that .

This result is sometimes referred to as the *inverse conjecture for the Gowers norm* (in high, but bounded, characteristic). For small , the claim is easy:

Exercise 2Verify the cases of this theorem. (Hint:to verify the case, use the Fourier-analytic identities and , where is the space of all homomorphisms from to , and are the Fourier coefficients of .)

This conjecture for larger values of are more difficult to establish. The case of the theorem was established by Ben Green and myself in the high characteristic case ; the low characteristic case was independently and simultaneously established by Samorodnitsky. The cases in the high characteristic case was established in two stages, firstly using a modification of the Furstenberg correspondence principle, due to Ziegler and myself. to convert the problem to an ergodic theory counterpart, and then using a modification of the methods of Host-Kra and Ziegler to solve that counterpart, as done in this paper of Bergelson, Ziegler, and myself.

The situation with the low characteristic case in general is still unclear. In the high characteristic case, we saw from Notes 4 that one could replace the space of non-classical polynomials in the above conjecture with the essentially equivalent space of classical polynomials . However, as we shall see below, this turns out not to be the case in certain low characteristic cases (a fact first observed by Lovett, Meshulam, and Samorodnitsky, and independently by Ben Green and myself), for instance if and ; this is ultimately due to the existence in those cases of non-classical polynomials which exhibit no significant correlation with classical polynomials of equal or lesser degree. This distinction between classical and non-classical polynomials appears to be a rather non-trivial obstruction to understanding the low characteristic setting; it may be necessary to obtain a more complete theory of non-classical polynomials in order to fully settle this issue.

The inverse conjecture has a number of consequences. For instance, it can be used to establish the analogue of Szemerédi’s theorem in this setting:

Theorem 4 (Szemerédi’s theorem for finite fields)Let be a finite field, let , and let be such that . If is sufficiently large depending on , then contains an (affine) line for some with .

Exercise 3Use Theorem 4 to establish the following generalisation: with the notation as above, if and is sufficiently large depending on , then contains an affine -dimensional subspace.

We will prove this theorem in two different ways, one using a density increment method, and the other using an energy increment method. We discuss some other applications below the fold.

A handy inequality in additive combinatorics is the Plünnecke-Ruzsa inequality:

Theorem 1 (Plünnecke-Ruzsa inequality)Let be finite non-empty subsets of an additive group , such that for all and some scalars . Then there exists a subset of such that .

The proof uses graph-theoretic techniques. Setting , we obtain a useful corollary: if has small doubling in the sense that , then we have for all , where is the sum of copies of .

In a recent paper, I adapted a number of sum set estimates to the entropy setting, in which finite sets such as in are replaced with discrete random variables taking values in , and (the logarithm of) cardinality of a set is replaced by Shannon entropy of a random variable . (Throughout this note I assume all entropies to be finite.) However, at the time, I was unable to find an entropy analogue of the Plünnecke-Ruzsa inequality, because I did not know how to adapt the graph theory argument to the entropy setting.

I recently discovered, however, that buried in a classic paper of Kaimonovich and Vershik (implicitly in Proposition 1.3, to be precise) there was the following analogue of Theorem 1:

Theorem 2 (Entropy Plünnecke-Ruzsa inequality)Let be independent random variables of finite entropy taking values in an additive group , such that for all and some scalars . Then .

In fact Theorem 2 is a bit “better” than Theorem 1 in the sense that Theorem 1 needed to refine the original set to a subset , but no such refinement is needed in Theorem 2. One corollary of Theorem 2 is that if , then for all , where are independent copies of ; this improves slightly over the analogous combinatorial inequality. Indeed, the function is concave (this can be seen by using the version of Theorem 2 (or (2) below) to show that the quantity is decreasing in ).

Theorem 2 is actually a quick consequence of the *submodularity inequality*

in information theory, which is valid whenever are discrete random variables such that and each determine (i.e. is a function of , and also a function of ), and and jointly determine (i.e is a function of and ). To apply this, let be independent discrete random variables taking values in . Observe that the pairs and each determine , and jointly determine . Applying (1) we conclude that

which after using the independence of simplifies to the *sumset submodularity inequality*

(this inequality was also recently observed by Madiman; it is the case of Theorem 2). As a corollary of this inequality, we see that if , then

and Theorem 2 follows by telescoping series.

The proof of Theorem 2 seems to be genuinely different from the graph-theoretic proof of Theorem 1. It would be interesting to see if the above argument can be somehow adapted to give a stronger version of Theorem 1. Note also that both Theorem 1 and Theorem 2 have extensions to more general combinations of than ; see this paper and this paper respectively.

## Recent Comments