You are currently browsing the tag archive for the ‘Dynkin diagram’ tag.

In this previous post I recorded some (very standard) material on the structural theory of finite-dimensional complex Lie algebras (or Lie algebras for short), with a particular focus on those Lie algebras which were semisimple or simple. Among other things, these notes discussed the Weyl complete reducibility theorem (asserting that semisimple Lie algebras are the direct sum of simple Lie algebras) and the classification of simple Lie algebras (with all such Lie algebras being (up to isomorphism) of the form ${A_n}$, ${B_n}$, ${C_n}$, ${D_n}$, ${E_6}$, ${E_7}$, ${E_8}$, ${F_4}$, or ${G_2}$).

Among other things, the structural theory of Lie algebras can then be used to build analogous structures in nearby areas of mathematics, such as Lie groups and Lie algebras over more general fields than the complex field ${{\bf C}}$ (leading in particular to the notion of a Chevalley group), as well as finite simple groups of Lie type, which form the bulk of the classification of finite simple groups (with the exception of the alternating groups and a finite number of sporadic groups).

In the case of complex Lie groups, it turns out that every simple Lie algebra ${\mathfrak{g}}$ is associated with a finite number of connected complex Lie groups, ranging from a “minimal” Lie group ${G_{ad}}$ (the adjoint form of the Lie group) to a “maximal” Lie group ${\tilde G}$ (the simply connected form of the Lie group) that finitely covers ${G_{ad}}$, and occasionally also a number of intermediate forms which finitely cover ${G_{ad}}$, but are in turn finitely covered by ${\tilde G}$. For instance, ${\mathfrak{sl}_n({\bf C})}$ is associated with the projective special linear group ${\hbox{PSL}_n({\bf C}) = \hbox{PGL}_n({\bf C})}$ as its adjoint form and the special linear group ${\hbox{SL}_n({\bf C})}$ as its simply connected form, and intermediate groups can be created by quotienting out ${\hbox{SL}_n({\bf C})}$ by some subgroup of its centre (which is isomorphic to the ${n^{th}}$ roots of unity). The minimal form ${G_{ad}}$ is simple in the group-theoretic sense of having no normal subgroups, but the other forms of the Lie group are merely quasisimple, although traditionally all of the forms of a Lie group associated to a simple Lie algebra are known as simple Lie groups.

Thanks to the work of Chevalley, a very similar story holds for algebraic groups over arbitrary fields ${k}$; given any Dynkin diagram, one can define a simple Lie algebra with that diagram over that field, and also one can find a finite number of connected algebraic groups over ${k}$ (known as Chevalley groups) with that Lie algebra, ranging from an adjoint form ${G_{ad}}$ to a universal form ${G_u}$, with every form having an isogeny (the analogue of a finite cover for algebraic groups) to the adjoint form, and in turn receiving an isogeny from the universal form. Thus, for instance, one could construct the universal form ${E_7(q)_u}$ of the ${E_7}$ algebraic group over a finite field ${{\bf F}_q}$ of finite order.

When one restricts the Chevalley group construction to adjoint forms over a finite field (e.g. ${\hbox{PSL}_n({\bf F}_q)}$), one usually obtains a finite simple group (with a finite number of exceptions when the rank and the field are very small, and in some cases one also has to pass to a bounded index subgroup, such as the derived group, first). One could also use other forms than the adjoint form, but one then recovers the same finite simple group as before if one quotients out by the centre. This construction was then extended by Steinberg, Suzuki, and Ree by taking a Chevalley group over a finite field and then restricting to the fixed points of a certain automorphism of that group; after some additional minor modifications such as passing to a bounded index subgroup or quotienting out a bounded centre, this gives some additional finite simple groups of Lie type, including classical examples such as the projective special unitary groups ${\hbox{PSU}_n({\bf F}_{q^2})}$, as well as some more exotic examples such as the Suzuki groups or the Ree groups.

While I learned most of the classical structural theory of Lie algebras back when I was an undergraduate, and have interacted with Lie groups in many ways in the past (most recently in connection with Hilbert’s fifth problem, as discussed in this previous series of lectures), I have only recently had the need to understand more precisely the concepts of a Chevalley group and of a finite simple group of Lie type, as well as better understand the structural theory of simple complex Lie groups. As such, I am recording some notes here regarding these concepts, mainly for my own benefit, but perhaps they will also be of use to some other readers. The material here is standard, and was drawn from a number of sources, but primarily from Carter, Gorenstein-Lyons-Solomon, and Fulton-Harris, as well as the lecture notes on Chevalley groups by my colleague Robert Steinberg. The arrangement of material also reflects my own personal preferences; in particular, I tend to favour complex-variable or Riemannian geometry methods over algebraic ones, and this influenced a number of choices I had to make regarding how to prove certain key facts. The notes below are far from a comprehensive or fully detailed discussion of these topics, and I would refer interested readers to the references above for a properly thorough treatment.

An abstract finite-dimensional complex Lie algebra, or Lie algebra for short, is a finite-dimensional complex vector space ${{\mathfrak g}}$ together with an anti-symmetric bilinear form ${[,] = [,]_{\mathfrak g}: {\mathfrak g} \times {\mathfrak g} \rightarrow {\mathfrak g}}$ that obeys the Jacobi identity

$\displaystyle [[x,y],z] + [[y,z],x] + [[z,x],y] = 0 \ \ \ \ \ (1)$

for all ${x,y,z \in {\mathfrak g}}$; by anti-symmetry one can also rewrite the Jacobi identity as

$\displaystyle [x,[y,z]] = [[x,y],z] + [y,[x,z]]. \ \ \ \ \ (2)$

We will usually omit the subscript from the Lie bracket ${[,]_{\mathfrak g}}$ when this will not cause ambiguity. A homomorphism ${\phi: {\mathfrak g} \rightarrow {\mathfrak h}}$ between two Lie algebras ${{\mathfrak g},{\mathfrak h}}$ is a linear map that respects the Lie bracket, thus ${\phi([x,y]_{\mathfrak g}) =[\phi(x),\phi(y)]_{\mathfrak h}}$ for all ${x,y \in {\mathfrak g}}$. As with many other classes of mathematical objects, the class of Lie algebras together with their homomorphisms then form a category. One can of course also consider Lie algebras in infinite dimension or over other fields, but we will restrict attention throughout these notes to the finite-dimensional complex case. The trivial, zero-dimensional Lie algebra is denoted ${0}$; Lie algebras of positive dimension will be called non-trivial.

Lie algebras come up in many contexts in mathematics, in particular arising as the tangent space of complex Lie groups. It is thus very profitable to think of Lie algebras as being the infinitesimal component of a Lie group, and in particular almost all of the notation and concepts that are applicable to Lie groups (e.g. nilpotence, solvability, extensions, etc.) have infinitesimal counterparts in the category of Lie algebras (often with exactly the same terminology). See this previous blog post for more discussion about the connection between Lie algebras and Lie groups (that post was focused over the reals instead of the complexes, but much of the discussion carries over to the complex case).

A particular example of a Lie algebra is the general linear Lie algebra ${{\mathfrak{gl}}(V)}$ of linear transformations ${x: V \rightarrow V}$ on a finite-dimensional complex vector space (or vector space for short) ${V}$, with the commutator Lie bracket ${[x,y] := xy-yx}$; one easily verifies that this is indeed an abstract Lie algebra. We will define a concrete Lie algebra to be a Lie algebra that is a subalgebra of ${{\mathfrak{gl}}(V)}$ for some vector space ${V}$, and similarly define a representation of a Lie algebra ${{\mathfrak g}}$ to be a homomorphism ${\rho: {\mathfrak g} \rightarrow {\mathfrak h}}$ into a concrete Lie algebra ${{\mathfrak h}}$. It is a deep theorem of Ado (discussed in this previous post) that every abstract Lie algebra is in fact isomorphic to a concrete one (or equivalently, that every abstract Lie algebra has a faithful representation), but we will not need or prove this fact here.

Even without Ado’s theorem, though, the structure of abstract Lie algebras is very well understood. As with objects in many other algebraic categories, a basic way to understand a Lie algebra ${{\mathfrak g}}$ is to factor it into two simpler algebras ${{\mathfrak h}, {\mathfrak k}}$ via a short exact sequence

$\displaystyle 0 \rightarrow {\mathfrak h} \rightarrow {\mathfrak g} \rightarrow {\mathfrak k} \rightarrow 0, \ \ \ \ \ (3)$

thus one has an injective homomorphism from ${{\mathfrak h}}$ to ${{\mathfrak g}}$ and a surjective homomorphism from ${{\mathfrak g}}$ to ${{\mathfrak k}}$ such that the image of the former homomorphism is the kernel of the latter. (To be pedantic, a short exact sequence in a general category requires these homomorphisms to be monomorphisms and epimorphisms respectively, but in the category of Lie algebras these turn out to reduce to the more familiar concepts of injectivity and surjectivity respectively.) Given such a sequence, one can (non-uniquely) identify ${{\mathfrak g}}$ with the vector space ${{\mathfrak h} \times {\mathfrak k}}$ equipped with a Lie bracket of the form

$\displaystyle [(t,x), (s,y)]_{\mathfrak g} = ([t,s]_{\mathfrak h} + A(t,y) - A(s,x) + B(x,y), [x,y]_{\mathfrak k}) \ \ \ \ \ (4)$

for some bilinear maps ${A: {\mathfrak h} \times {\mathfrak k} \rightarrow {\mathfrak h}}$ and ${B: {\mathfrak k} \times {\mathfrak k} \rightarrow {\mathfrak h}}$ that obey some Jacobi-type identities which we will not record here. Understanding exactly what maps ${A,B}$ are possible here (up to coordinate change) can be a difficult task (and is one of the key objectives of Lie algebra cohomology), but in principle at least, the problem of understanding ${{\mathfrak g}}$ can be reduced to that of understanding that of its factors ${{\mathfrak k}, {\mathfrak h}}$. To emphasise this, I will (perhaps idiosyncratically) express the existence of a short exact sequence (3) by the ATLAS-type notation

$\displaystyle {\mathfrak g} = {\mathfrak h} . {\mathfrak k} \ \ \ \ \ (5)$

although one should caution that for given ${{\mathfrak h}}$ and ${{\mathfrak k}}$, there can be multiple non-isomorphic ${{\mathfrak g}}$ that can form a short exact sequence with ${{\mathfrak h},{\mathfrak k}}$, so that ${{\mathfrak h} . {\mathfrak k}}$ is not a uniquely defined combination of ${{\mathfrak h}}$ and ${{\mathfrak k}}$; one could emphasise this by writing ${{\mathfrak h} ._{A,B} {\mathfrak k}}$ instead of ${{\mathfrak h} . {\mathfrak k}}$, though we will not do so here. We will refer to ${{\mathfrak g}}$ as an extension of ${{\mathfrak k}}$ by ${{\mathfrak h}}$, and read the notation (5) as “ ${{\mathfrak g}}$ is ${{\mathfrak h}}$-by-${{\mathfrak k}}$“; confusingly, these two notations reverse the subject and object of “by”, but unfortunately both notations are well entrenched in the literature. We caution that the operation ${.}$ is not commutative, and it is only partly associative: every Lie algebra of the form ${{\mathfrak k} . ({\mathfrak h} . {\mathfrak l})}$ is also of the form ${({\mathfrak k} . {\mathfrak h}) . {\mathfrak l}}$, but the converse is not true (see this previous blog post for some related discussion). As we are working in the infinitesimal world of Lie algebras (which have an additive group operation) rather than Lie groups (in which the group operation is usually written multiplicatively), it may help to think of ${{\mathfrak h} . {\mathfrak k}}$ as a (twisted) “sum” of ${{\mathfrak h}}$ and ${{\mathfrak k}}$ rather than a “product”; for instance, we have ${{\mathfrak g} = 0 . {\mathfrak g}}$ and ${{\mathfrak g} = {\mathfrak g} . 0}$, and also ${\dim {\mathfrak h} . {\mathfrak k} = \dim {\mathfrak h} + \dim {\mathfrak k}}$.

Special examples of extensions ${{\mathfrak h} .{\mathfrak k}}$ of ${{\mathfrak k}}$ by ${{\mathfrak h}}$ include the direct sum (or direct product) ${{\mathfrak h} \oplus {\mathfrak k}}$ (also denoted ${{\mathfrak h} \times {\mathfrak k}}$), which is given by the construction (4) with ${A}$ and ${B}$ both vanishing, and the split extension (or semidirect product) ${{\mathfrak h} : {\mathfrak k} = {\mathfrak h} :_\rho {\mathfrak k}}$ (also denoted ${{\mathfrak h} \ltimes {\mathfrak k} = {\mathfrak h} \ltimes_\rho {\mathfrak k}}$), which is given by the construction (4) with ${B}$ vanishing and the bilinear map ${A: {\mathfrak h} \times {\mathfrak k} \rightarrow {\mathfrak h}}$ taking the form

$\displaystyle A( t, x ) = \rho(x)(t)$

for some representation ${\rho: {\mathfrak k} \rightarrow \hbox{Der} {\mathfrak h}}$ of ${{\mathfrak k}}$ in the concrete Lie algebra of derivations ${\hbox{Der} {\mathfrak h} \subset {\mathfrak{gl}}({\mathfrak h})}$ of ${{\mathfrak h}}$, that is to say the algebra of linear maps ${D: {\mathfrak h} \rightarrow {\mathfrak h}}$ that obey the Leibniz rule

$\displaystyle D[s,t]_{\mathfrak h} = [Ds,t]_{\mathfrak h} + [s,Dt]_{\mathfrak h}$

for all ${s,t \in {\mathfrak h}}$. (The derivation algebra ${\hbox{Der} {\mathfrak g}}$ of a Lie algebra ${{\mathfrak g}}$ is analogous to the automorphism group ${\hbox{Aut}(G)}$ of a Lie group ${G}$, with the two concepts being intertwined by the tangent space functor ${G \mapsto {\mathfrak g}}$ from Lie groups to Lie algebras (i.e. the derivation algebra is the infinitesimal version of the automorphism group). Of course, this functor also intertwines the Lie algebra and Lie group versions of most of the other concepts discussed here, such as extensions, semidirect products, etc.)

There are two general ways to factor a Lie algebra ${{\mathfrak g}}$ as an extension ${{\mathfrak h} . {\mathfrak k}}$ of a smaller Lie algebra ${{\mathfrak k}}$ by another smaller Lie algebra ${{\mathfrak h}}$. One is to locate a Lie algebra ideal (or ideal for short) ${{\mathfrak h}}$ in ${{\mathfrak g}}$, thus ${[{\mathfrak h},{\mathfrak g}] \subset {\mathfrak h}}$, where ${[{\mathfrak h},{\mathfrak g}]}$ denotes the Lie algebra generated by ${\{ [x,y]: x \in {\mathfrak h}, y \in {\mathfrak g} \}}$, and then take ${{\mathfrak k}}$ to be the quotient space ${{\mathfrak g}/{\mathfrak h}}$ in the usual manner; one can check that ${{\mathfrak h}}$, ${{\mathfrak k}}$ are also Lie algebras and that we do indeed have a short exact sequence

$\displaystyle {\mathfrak g} = {\mathfrak h} . ({\mathfrak g}/{\mathfrak h}).$

Conversely, whenever one has a factorisation ${{\mathfrak g} = {\mathfrak h} . {\mathfrak k}}$, one can identify ${{\mathfrak h}}$ with an ideal in ${{\mathfrak g}}$, and ${{\mathfrak k}}$ with the quotient of ${{\mathfrak g}}$ by ${{\mathfrak h}}$.

The other general way to obtain such a factorisation is is to start with a homomorphism ${\rho: {\mathfrak g} \rightarrow {\mathfrak m}}$ of ${{\mathfrak g}}$ into another Lie algebra ${{\mathfrak m}}$, take ${{\mathfrak k}}$ to be the image ${\rho({\mathfrak g})}$ of ${{\mathfrak g}}$, and ${{\mathfrak h}}$ to be the kernel ${\hbox{ker} \rho := \{ x \in {\mathfrak g}: \rho(x) = 0 \}}$. Again, it is easy to see that this does indeed create a short exact sequence:

$\displaystyle {\mathfrak g} = \hbox{ker} \rho . \rho({\mathfrak g}).$

Conversely, whenever one has a factorisation ${{\mathfrak g} = {\mathfrak h} . {\mathfrak k}}$, one can identify ${{\mathfrak k}}$ with the image of ${{\mathfrak g}}$ under some homomorphism, and ${{\mathfrak h}}$ with the kernel of that homomorphism. Note that if a representation ${\rho: {\mathfrak g} \rightarrow {\mathfrak m}}$ is faithful (i.e. injective), then the kernel is trivial and ${{\mathfrak g}}$ is isomorphic to ${\rho({\mathfrak g})}$.

Now we consider some examples of factoring some class of Lie algebras into simpler Lie algebras. The easiest examples of Lie algebras to understand are the abelian Lie algebras ${{\mathfrak g}}$, in which the Lie bracket identically vanishes. Every one-dimensional Lie algebra is automatically abelian, and thus isomorphic to the scalar algebra ${{\bf C}}$. Conversely, by using an arbitrary linear basis of ${{\mathfrak g}}$, we see that an abelian Lie algebra is isomorphic to the direct sum of one-dimensional algebras. Thus, a Lie algebra is abelian if and only if it is isomorphic to the direct sum of finitely many copies of ${{\bf C}}$.

Now consider a Lie algebra ${{\mathfrak g}}$ that is not necessarily abelian. We then form the derived algebra ${[{\mathfrak g},{\mathfrak g}]}$; this algebra is trivial if and only if ${{\mathfrak g}}$ is abelian. It is easy to see that ${[{\mathfrak h},{\mathfrak k}]}$ is an ideal whenever ${{\mathfrak h},{\mathfrak k}}$ are ideals, so in particular the derived algebra ${[{\mathfrak g},{\mathfrak g}]}$ is an ideal and we thus have the short exact sequence

$\displaystyle {\mathfrak g} = [{\mathfrak g},{\mathfrak g}] . ({\mathfrak g}/[{\mathfrak g},{\mathfrak g}]).$

The algebra ${{\mathfrak g}/[{\mathfrak g},{\mathfrak g}]}$ is the maximal abelian quotient of ${{\mathfrak g}}$, and is known as the abelianisation of ${{\mathfrak g}}$. If it is trivial, we call the Lie algebra perfect. If instead it is non-trivial, then the derived algebra has strictly smaller dimension than ${{\mathfrak g}}$. From this, it is natural to associate two series to any Lie algebra ${{\mathfrak g}}$, the lower central series

$\displaystyle {\mathfrak g}_1 = {\mathfrak g}; {\mathfrak g}_2 := [{\mathfrak g}, {\mathfrak g}_1]; {\mathfrak g}_3 := [{\mathfrak g}, {\mathfrak g}_2]; \ldots$

and the derived series

$\displaystyle {\mathfrak g}^{(1)} := {\mathfrak g}; {\mathfrak g}^{(2)} := [{\mathfrak g}^{(1)}, {\mathfrak g}^{(1)}]; {\mathfrak g}^{(3)} := [{\mathfrak g}^{(2)}, {\mathfrak g}^{(2)}]; \ldots.$

By induction we see that these are both decreasing series of ideals of ${{\mathfrak g}}$, with the derived series being slightly smaller (${{\mathfrak g}^{(k)} \subseteq {\mathfrak g}_k}$ for all ${k}$). We say that a Lie algebra is nilpotent if its lower central series is eventually trivial, and solvable if its derived series eventually becomes trivial. Thus, abelian Lie algebras are nilpotent, and nilpotent Lie algebras are solvable, but the converses are not necessarily true. For instance, in the general linear group ${{\mathfrak{gl}}_n = {\mathfrak{gl}}({\bf C}^n)}$, which can be identified with the Lie algebra of ${n \times n}$ complex matrices, the subalgebra ${{\mathfrak n}}$ of strictly upper triangular matrices is nilpotent (but not abelian for ${n \geq 3}$), while the subalgebra ${{\mathfrak n}}$ of upper triangular matrices is solvable (but not nilpotent for ${n \geq 2}$). It is also clear that any subalgebra of a nilpotent algebra is nilpotent, and similarly for solvable or abelian algebras.

From the above discussion we see that a Lie algebra is solvable if and only if it can be represented by a tower of abelian extensions, thus

$\displaystyle {\mathfrak g} = {\mathfrak a}_1 . ({\mathfrak a}_2 . \ldots ({\mathfrak a}_{k-1} . {\mathfrak a}_k) \ldots )$

for some abelian ${{\mathfrak a}_1,\ldots,{\mathfrak a}_k}$. Similarly, a Lie algebra ${{\mathfrak g}}$ is nilpotent if it is expressible as a tower of central extensions (so that in all the extensions ${{\mathfrak h} . {\mathfrak k}}$ in the above factorisation, ${{\mathfrak h}}$ is central in ${{\mathfrak h} . {\mathfrak k}}$, where we say that ${{\mathfrak h}}$ is central in ${{\mathfrak g}}$ if ${[{\mathfrak h},{\mathfrak g}]=0}$). We also see that an extension ${{\mathfrak h} . {\mathfrak k}}$ is solvable if and only of both factors ${{\mathfrak h}, {\mathfrak k}}$ are solvable. Splitting abelian algebras into cyclic (i.e. one-dimensional) ones, we thus see that a finite-dimensional Lie algebra is solvable if and only if it is polycylic, i.e. it can be represented by a tower of cyclic extensions.

For our next fundamental example of using short exact sequences to split a general Lie algebra into simpler objects, we observe that every abstract Lie algebra ${{\mathfrak g}}$ has an adjoint representation ${\hbox{ad}: {\mathfrak g} \rightarrow \hbox{ad} {\mathfrak g} \subset {\mathfrak{gl}}({\mathfrak g})}$, where for each ${x \in {\mathfrak g}}$, ${\hbox{ad} x \in {\mathfrak{gl}}({\mathfrak g})}$ is the linear map ${(\hbox{ad} x)(y) := [x,y]}$; one easily verifies that this is indeed a representation (indeed, (2) is equivalent to the assertion that ${\hbox{ad} [x,y] = [\hbox{ad} x, \hbox{ad} y]}$ for all ${x,y \in {\mathfrak g}}$). The kernel of this representation is the center ${Z({\mathfrak g}) := \{ x \in {\mathfrak g}: [x,{\mathfrak g}] = 0\}}$, which the maximal central subalgebra of ${{\mathfrak g}}$. We thus have the short exact sequence

$\displaystyle {\mathfrak g} = Z({\mathfrak g}) . \hbox{ad} g \ \ \ \ \ (6)$

which, among other things, shows that every abstract Lie algebra is a central extension of a concrete Lie algebra (which can serve as a cheap substitute for Ado’s theorem mentioned earlier).

For our next fundamental decomposition of Lie algebras, we need some more definitions. A Lie algebra ${{\mathfrak g}}$ is simple if it is non-abelian and has no ideals other than ${0}$ and ${{\mathfrak g}}$; thus simple Lie algebras cannot be factored ${{\mathfrak g} = {\mathfrak h} . {\mathfrak k}}$ into strictly smaller algebras ${{\mathfrak h},{\mathfrak k}}$. In particular, simple Lie algebras are automatically perfect and centerless. We have the following fundamental theorem:

Theorem 1 (Equivalent definitions of semisimplicity) Let ${{\mathfrak g}}$ be a Lie algebra. Then the following are equivalent:

• (i) ${{\mathfrak g}}$ does not contain any non-trivial solvable ideal.
• (ii) ${{\mathfrak g}}$ does not contain any non-trivial abelian ideal.
• (iii) The Killing form ${K: {\mathfrak g} \times {\mathfrak g} \rightarrow {\bf C}}$, defined as the bilinear form ${K(x,y) := \hbox{tr}_{\mathfrak g}( (\hbox{ad} x) (\hbox{ad} y) )}$, is non-degenerate on ${{\mathfrak g}}$.
• (iv) ${{\mathfrak g}}$ is isomorphic to the direct sum of finitely many non-abelian simple Lie algebras.

We review the proof of this theorem later in these notes. A Lie algebra obeying any (and hence all) of the properties (i)-(iv) is known as a semisimple Lie algebra. The statement (iv) is usually taken as the definition of semisimplicity; the equivalence of (iv) and (i) is a special case of Weyl’s complete reducibility theorem (see Theorem 32), and the equivalence of (iv) and (iii) is known as the Cartan semisimplicity criterion. (The equivalence of (i) and (ii) is easy.)

If ${{\mathfrak h}}$ and ${{\mathfrak k}}$ are solvable ideals of a Lie algebra ${{\mathfrak g}}$, then it is not difficult to see that the vector sum ${{\mathfrak h}+{\mathfrak k}}$ is also a solvable ideal (because on quotienting by ${{\mathfrak h}}$ we see that the derived series of ${{\mathfrak h}+{\mathfrak k}}$ must eventually fall inside ${{\mathfrak h}}$, and thence must eventually become trivial by the solvability of ${{\mathfrak h}}$). As our Lie algebras are finite dimensional, we conclude that ${{\mathfrak g}}$ has a unique maximal solvable ideal, known as the radical ${\hbox{rad} {\mathfrak g}}$ of ${{\mathfrak g}}$. The quotient ${{\mathfrak g}/\hbox{rad} {\mathfrak g}}$ is then a Lie algebra with trivial radical, and is thus semisimple by the above theorem, giving the Levi decomposition

$\displaystyle {\mathfrak g} = \hbox{rad} {\mathfrak g} . ({\mathfrak g} / \hbox{rad} {\mathfrak g})$

expressing an arbitrary Lie algebra as an extension of a semisimple Lie algebra ${{\mathfrak g}/\hbox{rad}{\mathfrak g}}$ by a solvable algebra ${\hbox{rad} {\mathfrak g}}$ (and it is not hard to see that this is the only possible such extension up to isomorphism). Indeed, a deep theorem of Levi allows one to upgrade this decomposition to a split extension

$\displaystyle {\mathfrak g} = \hbox{rad} {\mathfrak g} : ({\mathfrak g} / \hbox{rad} {\mathfrak g})$

although we will not need or prove this result here.

In view of the above decompositions, we see that we can factor any Lie algebra (using a suitable combination of direct sums and extensions) into a finite number of simple Lie algebras and the scalar algebra ${{\bf C}}$. In principle, this means that one can understand an arbitrary Lie algebra once one understands all the simple Lie algebras (which, being defined over ${{\bf C}}$, are somewhat confusingly referred to as simple complex Lie algebras in the literature). Amazingly, this latter class of algebras are completely classified:

Theorem 2 (Classification of simple Lie algebras) Up to isomorphism, every simple Lie algebra is of one of the following forms:

• ${A_n = \mathfrak{sl}_{n+1}}$ for some ${n \geq 1}$.
• ${B_n = \mathfrak{so}_{2n+1}}$ for some ${n \geq 2}$.
• ${C_n = \mathfrak{sp}_{2n}}$ for some ${n \geq 3}$.
• ${D_n = \mathfrak{so}_{2n}}$ for some ${n \geq 4}$.
• ${E_6, E_7}$, or ${E_8}$.
• ${F_4}$.
• ${G_2}$.

(The precise definition of the classical Lie algebras ${A_n,B_n,C_n,D_n}$ and the exceptional Lie algebras ${E_6,E_7,E_8,F_4,G_2}$ will be recalled later.)

(One can extend the families ${A_n,B_n,C_n,D_n}$ of classical Lie algebras a little bit to smaller values of ${n}$, but the resulting algebras are either isomorphic to other algebras on this list, or cease to be simple; see this previous post for further discussion.)

This classification is a basic starting point for the classification of many other related objects, including Lie algebras and Lie groups over more general fields (e.g. the reals ${{\bf R}}$), as well as finite simple groups. Being so fundamental to the subject, this classification is covered in almost every basic textbook in Lie algebras, and I myself learned it many years ago in an honours undergraduate course back in Australia. The proof is rather lengthy, though, and I have always had difficulty keeping it straight in my head. So I have decided to write some notes on the classification in this blog post, aiming to be self-contained (though moving rapidly). There is no new material in this post, though; it is all drawn from standard reference texts (I relied particularly on Fulton and Harris’s text, which I highly recommend). In fact it seems remarkably hard to deviate from the standard routes given in the literature to the classification; I would be interested in knowing about other ways to reach the classification (or substeps in that classification) that are genuinely different from the orthodox route.