You are currently browsing the tag archive for the ‘Emmanuel Kowalski’ tag.

[This post is authored by Emmanuel Kowalski.]

This post may be seen as complementary to the post “The parity problem in sieve theory“. In addition to a survey of another important sieve technique, it might be interesting as a discussion of some of the foundational issues which were discussed in the comments to that post.

Many readers will certainly have heard already of one form or another of the “large sieve inequality”. The name itself is misleading however, and what is meant by this may be something having very little, if anything, to do with sieves. What I will discuss are genuine sieve situations.

The framework I will describe is explained in the preprint arXiv:math.NT/0610021, and in a forthcoming Cambridge Tract. I started looking at this first to have a common setting for the usual large sieve and a “sieve for Frobenius” I had devised earlier to study some arithmetic properties of families of zeta functions over finite fields. Another version of such a sieve was described by Zywina (“The large sieve and Galois representations”, preprint), and his approach was quite helpful in suggesting more general settings than I had considered at first. The latest generalizations more or less took life naturally when looking at new applications, such as discrete groups.

Unfortunately (maybe), there will be quite a bit of notation involved; hopefully, the illustrations related to the classical case of sieving integers to obtain the primes (or other subsets of integers with special multiplicative features) will clarify the general case, and the “new” examples will motivate readers to find yet more interesting applications of sieves.

Read the rest of this entry »


RSS Google+ feed

  • An error has occurred; the feed is probably down. Try again later.

Get every new post delivered to your Inbox.

Join 3,864 other followers