You are currently browsing the tag archive for the ‘equidistribution’ tag.

In Notes 5, we saw that the Gowers uniformity norms on vector spaces in high characteristic were controlled by classical polynomial phases .

Now we study the analogous situation on cyclic groups . Here, there is an unexpected surprise: the polynomial phases (classical or otherwise) are no longer sufficient to control the Gowers norms once exceeds . To resolve this problem, one must enlarge the space of polynomials to a larger class. It turns out that there are at least three closely related options for this class: the *local polynomials*, the *bracket polynomials*, and the *nilsequences*. Each of the three classes has its own strengths and weaknesses, but in my opinion the nilsequences seem to be the most natural class, due to the rich algebraic and dynamical structure coming from the nilpotent Lie group undergirding such sequences. For reasons of space we shall focus primarily on the nilsequence viewpoint here.

Traditionally, nilsequences have been defined in terms of linear orbits on nilmanifolds ; however, in recent years it has been realised that it is convenient for technical reasons (particularly for the quantitative “single-scale” theory) to generalise this setup to that of *polynomial* orbits , and this is the perspective we will take here.

A polynomial phase on a finite abelian group is formed by starting with a polynomial to the unit circle, and then composing it with the exponential function . To create a nilsequence , we generalise this construction by starting with a polynomial into a *nilmanifold* , and then composing this with a Lipschitz function . (The Lipschitz regularity class is convenient for minor technical reasons, but one could also use other regularity classes here if desired.) These classes of sequences certainly include the polynomial phases, but are somewhat more general; for instance, they *almost* include *bracket polynomial* phases such as . (The “almost” here is because the relevant functions involved are only piecewise Lipschitz rather than Lipschitz, but this is primarily a technical issue and one should view bracket polynomial phases as “morally” being nilsequences.)

In these notes we set out the basic theory for these nilsequences, including their equidistribution theory (which generalises the equidistribution theory of polynomial flows on tori from Notes 1) and show that they are indeed obstructions to the Gowers norm being small. This leads to the *inverse conjecture for the Gowers norms* that shows that the Gowers norms on cyclic groups are indeed controlled by these sequences.

In the previous lectures, we have focused mostly on the equidistribution or linear patterns on a subset of the integers , and in particular on intervals . The integers are of course a very important domain to study in additive combinatorics; but there are also other fundamental model examples of domains to study. One of these is that of a vector space over a finite field of prime order. Such domains are of interest in computer science (particularly when ) and also in number theory; but they also serve as an important simplified “dyadic model” for the integers. See this survey article of Green for further discussion of this point.

The additive combinatorics of the integers , and of vector spaces over finite fields, are analogous, but not quite identical. For instance, the analogue of an arithmetic progression in is a subspace of . In many cases, the finite field theory is a little bit simpler than the integer theory; for instance, subspaces are closed under addition, whereas arithmetic progressions are only “almost” closed under addition in various senses. (For instance, is closed under addition approximately half of the time.) However, there are some ways in which the integers are better behaved. For instance, because the integers can be generated by a single generator, a homomorphism from to some other group can be described by a single group element : . However, to specify a homomorphism from a vector space to one would need to specify one group element for each dimension of . Thus we see that there is a tradeoff when passing from (or ) to a vector space model; one gains a bounded torsion property, at the expense of conceding the bounded generation property. (Of course, if one wants to deal with arbitrarily large domains, one has to concede one or the other; the only additive groups that have both bounded torsion and boundedly many generators, are bounded.)

The starting point for this course (Notes 1) was the study of equidistribution of polynomials from the integers to the unit circle. We now turn to the parallel theory of equidistribution of polynomials from vector spaces over finite fields to the unit circle. Actually, for simplicity we will mostly focus on the *classical* case, when the polynomials in fact take values in the roots of unity (where is the characteristic of the field ). As it turns out, the non-classical case is also of importance (particularly in low characteristic), but the theory is more difficult; see these notes for some further discussion.

(Linear) Fourier analysis can be viewed as a tool to study an arbitrary function on (say) the integers , by looking at how such a function correlates with *linear phases* such as , where is the fundamental character, and is a frequency. These correlations control a number of expressions relating to , such as the expected behaviour of on arithmetic progressions of length three.

In this course we will be studying higher-order correlations, such as the correlation of with quadratic phases such as , as these will control the expected behaviour of on more complex patterns, such as arithmetic progressions of length four. In order to do this, we must first understand the behaviour of exponential sums such as

Such sums are closely related to the distribution of expressions such as in the unit circle , as varies from to . More generally, one is interested in the distribution of polynomials of one or more variables taking values in a torus ; for instance, one might be interested in the distribution of the quadruplet as both vary from to . Roughly speaking, once we understand these types of distributions, then the general machinery of quadratic Fourier analysis will then allow us to understand the distribution of the quadruplet for more general classes of functions ; this can lead for instance to an understanding of the distribution of arithmetic progressions of length in the primes, if is somehow related to the primes.

More generally, to find arithmetic progressions such as in a set , it would suffice to understand the equidistribution of the quadruplet in as and vary. This is the starting point for the fundamental connection between *combinatorics* (and more specifically, the task of finding patterns inside sets) and *dynamics* (and more specifically, the theory of equidistribution and recurrence in measure-preserving dynamical systems, which is a subfield of ergodic theory). This connection was explored in one of my previous classes; it will also be important in this course (particularly as a source of motivation), but the primary focus will be on finitary, and Fourier-based, methods.

The theory of equidistribution of polynomial orbits was developed in the linear case by Dirichlet and Kronecker, and in the polynomial case by Weyl. There are two regimes of interest; the (qualitative) *asymptotic regime* in which the scale parameter is sent to infinity, and the (quantitative) *single-scale regime* in which is kept fixed (but large). Traditionally, it is the asymptotic regime which is studied, which connects the subject to other asymptotic fields of mathematics, such as dynamical systems and ergodic theory. However, for many applications (such as the study of the primes), it is the single-scale regime which is of greater importance. The two regimes are not directly equivalent, but are closely related: the single-scale theory can be usually used to derive analogous results in the asymptotic regime, and conversely the arguments in the asymptotic regime can serve as a simplified model to show the way to proceed in the single-scale regime. The analogy between the two can be made tighter by introducing the (qualitative) *ultralimit regime*, which is formally equivalent to the single-scale regime (except for the fact that explicitly quantitative bounds are abandoned in the ultralimit), but resembles the asymptotic regime quite closely.

We will view the equidistribution theory of polynomial orbits as a special case of Ratner’s theorem, which we will study in more generality later in this course.

For the finitary portion of the course, we will be using *asymptotic notation*: , , or denotes the bound for some absolute constant , and if we need to depend on additional parameters then we will indicate this by subscripts, e.g. means that for some depending only on . In the ultralimit theory we will use an analogue of asymptotic notation, which we will review later in these notes.

Today, Prof. Margulis continued his lecture series, focusing on two specific examples of homogeneous dynamics applications to number theory, namely counting lattice points on algebraic varieties, and quantitative versions of the Oppenheim conjecture. (Due to lack of time, the third application mentioned in the previous lecture, namely metric theory of Diophantine approximation, was not covered.)

The final distinguished lecture series for the academic year here at UCLA is being given this week by Gregory Margulis, who is giving three lectures on “homogeneous dynamics and number theory”. In his first lecture, Prof. Margulis surveyed some classical problems in number theory that turn out, rather surprisingly, to have more or less equivalent counterparts in homogeneous dynamics – the theory of dynamical systems on homogeneous spaces .

As usual, any errors in this post are due to my transcription of the talk.

This week I was in Columbus, Ohio, attending a conference on equidistribution on manifolds. I talked about my recent paper with Ben Green on the quantitative behaviour of polynomial sequences in nilmanifolds, which I have blogged about previously. During my talk (and inspired by the immediately preceding talk of Vitaly Bergelson), I stated explicitly for the first time a generalisation of the van der Corput trick which morally underlies our paper, though it is somewhat buried there as we specialised it to our application at hand (and also had to deal with various quantitative issues that made the presentation more complicated). After the talk, several people asked me for a more precise statement of this trick, so I am presenting it here, and as an application reproving an old theorem of Leon Green that gives a necessary and sufficient condition as to whether a linear sequence on a nilmanifold is equidistributed, which generalises the famous theorem of Weyl on equidistribution of polynomials.

UPDATE, Feb 2013: It has been pointed out to me by Pavel Zorin that this argument does not fully recover the theorem of Leon Green; to cover all cases, one needs the more complicated van der Corput argument in our paper.

Ben Green and I have just uploaded our joint paper, “The distribution of polynomials over finite fields, with applications to the Gowers norms“, to the arXiv, and submitted to Contributions to Discrete Mathematics. This paper, which we first announced at the recent FOCS meeting, and then gave an update on two weeks ago on this blog, is now in final form. It is being made available simultaneously with a closely related paper of Lovett, Meshulam, and Samorodnitsky.

In the previous post on this topic, I focused on the negative results in the paper, and in particular the fact that the inverse conjecture for the Gowers norm fails for certain degrees in low characteristic. Today, I’d like to focus instead on the positive results, which assert that for polynomials in many variables over finite fields whose degree is less than the characteristic of the field, one has a satisfactory theory for the distribution of these polynomials. Very roughly speaking, the main technical results are:

- A
*regularity lemma*: Any polynomial can be expressed as a combination of a bounded number of other polynomials which are*regular*, in the sense that no non-trivial linear combination of these polynomials can be expressed efficiently in terms of lower degree polynomials. - A
*counting lemma*: A regular collection of polynomials behaves as if the polynomials were selected randomly. In particular, the polynomials are jointly equidistributed.

Ben Green and I have just uploaded our paper “The quantitative behaviour of polynomial orbits on nilmanifolds” to the arXiv (and shortly to be submitted to a journal, once a companion paper is finished). This paper grew out of our efforts to prove the *Möbius and Nilsequences conjecture* MN(s) from our earlier paper, which has applications to counting various linear patterns in primes (Dickson’s conjecture). These efforts were successful – as the companion paper will reveal – but it turned out that in order to establish this number-theoretic conjecture, we had to first establish a purely dynamical quantitative result about polynomial sequences in nilmanifolds, very much in the spirit of the celebrated theorems of Marina Ratner on unipotent flows; I plan to discuss her theorems in more detail in a followup post to this one.In this post I will not discuss the number-theoretic applications or the connections with Ratner’s theorem, and instead describe our result from a slightly different viewpoint, starting from some very simple examples and gradually moving to the general situation considered in our paper.

To begin with, consider a infinite linear sequence in the unit circle , where . (One can think of this sequence as the orbit of under the action of the shift operator on the unit circle.) This sequence can do one of two things:

- If is rational, then the sequence is periodic and thus only takes on finitely many values.
- If is irrational, then the sequence is dense in . In fact, it is not just dense, it is equidistributed, or equivalently that
for all continuous functions . This statement is known as the equidistribution theorem.

We thus see that infinite linear sequences exhibit a sharp dichotomy in behaviour between periodicity and equidistribution; intermediate scenarios, such as concentration on a fractal set (such as a Cantor set), do not occur with linear sequences. This dichotomy between structure and randomness is in stark contrast to exponential sequences such as , which can exhibit an extremely wide spectrum of behaviours. For instance, the question of whether is equidistributed mod 1 is an old unsolved problem, equivalent to asking whether is normal base 10.

Intermediate between linear sequences and exponential sequences are *polynomial sequences* , where P is a polynomial with coefficients in . A famous theorem of Weyl asserts that infinite polynomial sequences enjoy the same dichotomy as their linear counterparts, namely that they are either periodic (which occurs when all non-constant coefficients are rational) or equidistributed (which occurs when at least one non-constant coefficient is irrational). Thus for instance the fractional parts of are equidistributed modulo 1. This theorem is proven by Fourier analysis combined with non-trivial bounds on Weyl sums.

For our applications, we are interested in strengthening these results in two directions. Firstly, we wish to generalise from polynomial sequences in the circle to polynomial sequences in other homogeneous spaces, in particular nilmanifolds. Secondly, we need quantitative equidistribution results for finite orbits rather than qualitative equidistribution for infinite orbits .

## Recent Comments