You are currently browsing the tag archive for the ‘Euler-Arnold equation’ tag.

Throughout this post, we will work only at the formal level of analysis, ignoring issues of convergence of integrals, justifying differentiation under the integral sign, and so forth. (Rigorous justification of the conservation laws and other identities arising from the formal manipulations below can usually be established in an a posteriori fashion once the identities are in hand, without the need to rigorously justify the manipulations used to come up with these identities).

It is a remarkable fact in the theory of differential equations that many of the ordinary and partial differential equations that are of interest (particularly in geometric PDE, or PDE arising from mathematical physics) admit a variational formulation; thus, a collection {\Phi: \Omega \rightarrow M} of one or more fields on a domain {\Omega} taking values in a space {M} will solve the differential equation of interest if and only if {\Phi} is a critical point to the functional

\displaystyle  J[\Phi] := \int_\Omega L( x, \Phi(x), D\Phi(x) )\ dx \ \ \ \ \ (1)

involving the fields {\Phi} and their first derivatives {D\Phi}, where the Lagrangian {L: \Sigma \rightarrow {\bf R}} is a function on the vector bundle {\Sigma} over {\Omega \times M} consisting of triples {(x, q, \dot q)} with {x \in \Omega}, {q \in M}, and {\dot q: T_x \Omega \rightarrow T_q M} a linear transformation; we also usually keep the boundary data of {\Phi} fixed in case {\Omega} has a non-trivial boundary, although we will ignore these issues here. (We also ignore the possibility of having additional constraints imposed on {\Phi} and {D\Phi}, which require the machinery of Lagrange multipliers to deal with, but which will only serve as a distraction for the current discussion.) It is common to use local coordinates to parameterise {\Omega} as {{\bf R}^d} and {M} as {{\bf R}^n}, in which case {\Sigma} can be viewed locally as a function on {{\bf R}^d \times {\bf R}^n \times {\bf R}^{dn}}.

Example 1 (Geodesic flow) Take {\Omega = [0,1]} and {M = (M,g)} to be a Riemannian manifold, which we will write locally in coordinates as {{\bf R}^n} with metric {g_{ij}(q)} for {i,j=1,\dots,n}. A geodesic {\gamma: [0,1] \rightarrow M} is then a critical point (keeping {\gamma(0),\gamma(1)} fixed) of the energy functional

\displaystyle  J[\gamma] := \frac{1}{2} \int_0^1 g_{\gamma(t)}( D\gamma(t), D\gamma(t) )\ dt

or in coordinates (ignoring coordinate patch issues, and using the usual summation conventions)

\displaystyle  J[\gamma] = \frac{1}{2} \int_0^1 g_{ij}(\gamma(t)) \dot \gamma^i(t) \dot \gamma^j(t)\ dt.

As discussed in this previous post, both the Euler equations for rigid body motion, and the Euler equations for incompressible inviscid flow, can be interpreted as geodesic flow (though in the latter case, one has to work really formally, as the manifold {M} is now infinite dimensional).

More generally, if {\Omega = (\Omega,h)} is itself a Riemannian manifold, which we write locally in coordinates as {{\bf R}^d} with metric {h_{ab}(x)} for {a,b=1,\dots,d}, then a harmonic map {\Phi: \Omega \rightarrow M} is a critical point of the energy functional

\displaystyle  J[\Phi] := \frac{1}{2} \int_\Omega h(x) \otimes g_{\gamma(x)}( D\gamma(x), D\gamma(x) )\ dh(x)

or in coordinates (again ignoring coordinate patch issues)

\displaystyle  J[\Phi] = \frac{1}{2} \int_{{\bf R}^d} h_{ab}(x) g_{ij}(\Phi(x)) (\partial_a \Phi^i(x)) (\partial_b \Phi^j(x))\ \sqrt{\det(h(x))}\ dx.

If we replace the Riemannian manifold {\Omega} by a Lorentzian manifold, such as Minkowski space {{\bf R}^{1+3}}, then the notion of a harmonic map is replaced by that of a wave map, which generalises the scalar wave equation (which corresponds to the case {M={\bf R}}).

Example 2 ({N}-particle interactions) Take {\Omega = {\bf R}} and {M = {\bf R}^3 \otimes {\bf R}^N}; then a function {\Phi: \Omega \rightarrow M} can be interpreted as a collection of {N} trajectories {q_1,\dots,q_N: {\bf R} \rightarrow {\bf R}^3} in space, which we give a physical interpretation as the trajectories of {N} particles. If we assign each particle a positive mass {m_1,\dots,m_N > 0}, and also introduce a potential energy function {V: M \rightarrow {\bf R}}, then it turns out that Newton’s laws of motion {F=ma} in this context (with the force {F_i} on the {i^{th}} particle being given by the conservative force {-\nabla_{q_i} V}) are equivalent to the trajectories {q_1,\dots,q_N} being a critical point of the action functional

\displaystyle  J[\Phi] := \int_{\bf R} \sum_{i=1}^N \frac{1}{2} m_i |\dot q_i(t)|^2 - V( q_1(t),\dots,q_N(t) )\ dt.

Formally, if {\Phi = \Phi_0} is a critical point of a functional {J[\Phi]}, this means that

\displaystyle  \frac{d}{ds} J[ \Phi[s] ]|_{s=0} = 0

whenever {s \mapsto \Phi[s]} is a (smooth) deformation with {\Phi[0]=\Phi_0} (and with {\Phi[s]} respecting whatever boundary conditions are appropriate). Interchanging the derivative and integral, we (formally, at least) arrive at

\displaystyle  \int_\Omega \frac{d}{ds} L( x, \Phi[s](x), D\Phi[s](x) )|_{s=0}\ dx = 0. \ \ \ \ \ (2)

Write {\delta \Phi := \frac{d}{ds} \Phi[s]|_{s=0}} for the infinitesimal deformation of {\Phi_0}. By the chain rule, {\frac{d}{ds} L( x, \Phi[s](x), D\Phi[s](x) )|_{s=0}} can be expressed in terms of {x, \Phi_0(x), \delta \Phi(x), D\Phi_0(x), D \delta \Phi(x)}. In coordinates, we have

\displaystyle  \frac{d}{ds} L( x, \Phi[s](x), D\Phi[s](x) )|_{s=0} = \delta \Phi^i(x) L_{q^i}(x,\Phi_0(x), D\Phi_0(x)) \ \ \ \ \ (3)

\displaystyle  + \partial_{x^a} \delta \Phi^i(x) L_{\partial_{x^a} q^i} (x,\Phi_0(x), D\Phi_0(x)),

where we parameterise {\Sigma} by {x, (q^i)_{i=1,\dots,n}, (\partial_{x^a} q^i)_{a=1,\dots,d; i=1,\dots,n}}, and we use subscripts on {L} to denote partial derivatives in the various coefficients. (One can of course work in a coordinate-free manner here if one really wants to, but the notation becomes a little cumbersome due to the need to carefully split up the tangent space of {\Sigma}, and we will not do so here.) Thus we can view (2) as an integral identity that asserts the vanishing of a certain integral, whose integrand involves {x, \Phi_0(x), \delta \Phi(x), D\Phi_0(x), D \delta \Phi(x)}, where {\delta \Phi} vanishes at the boundary but is otherwise unconstrained.

A general rule of thumb in PDE and calculus of variations is that whenever one has an integral identity of the form {\int_\Omega F(x)\ dx = 0} for some class of functions {F} that vanishes on the boundary, then there must be an associated differential identity {F = \hbox{div} X} that justifies this integral identity through Stokes’ theorem. This rule of thumb helps explain why integration by parts is used so frequently in PDE to justify integral identities. The rule of thumb can fail when one is dealing with “global” or “cohomologically non-trivial” integral identities of a topological nature, such as the Gauss-Bonnet or Kazhdan-Warner identities, but is quite reliable for “local” or “cohomologically trivial” identities, such as those arising from calculus of variations.

In any case, if we apply this rule to (2), we expect that the integrand {\frac{d}{ds} L( x, \Phi[s](x), D\Phi[s](x) )|_{s=0}} should be expressible as a spatial divergence. This is indeed the case:

Proposition 1 (Formal) Let {\Phi = \Phi_0} be a critical point of the functional {J[\Phi]} defined in (1). Then for any deformation {s \mapsto \Phi[s]} with {\Phi[0] = \Phi_0}, we have

\displaystyle  \frac{d}{ds} L( x, \Phi[s](x), D\Phi[s](x) )|_{s=0} = \hbox{div} X \ \ \ \ \ (4)

where {X} is the vector field that is expressible in coordinates as

\displaystyle  X^a := \delta \Phi^i(x) L_{\partial_{x^a} q^i}(x,\Phi_0(x), D\Phi_0(x)). \ \ \ \ \ (5)

Proof: Comparing (4) with (3), we see that the claim is equivalent to the Euler-Lagrange equation

\displaystyle  L_{q^i}(x,\Phi_0(x), D\Phi_0(x)) - \partial_{x^a} L_{\partial_{x^a} q^i}(x,\Phi_0(x), D\Phi_0(x)) = 0. \ \ \ \ \ (6)

The same computation, together with an integration by parts, shows that (2) may be rewritten as

\displaystyle  \int_\Omega ( L_{q^i}(x,\Phi_0(x), D\Phi_0(x)) - \partial_{x^a} L_{\partial_{x^a} q^i}(x,\Phi_0(x), D\Phi_0(x)) ) \delta \Phi^i(x)\ dx = 0.

Since {\delta \Phi^i(x)} is unconstrained on the interior of {\Omega}, the claim (6) follows (at a formal level, at least). \Box

Many variational problems also enjoy one-parameter continuous symmetries: given any field {\Phi_0} (not necessarily a critical point), one can place that field in a one-parameter family {s \mapsto \Phi[s]} with {\Phi[0] = \Phi_0}, such that

\displaystyle  J[ \Phi[s] ] = J[ \Phi[0] ]

for all {s}; in particular,

\displaystyle  \frac{d}{ds} J[ \Phi[s] ]|_{s=0} = 0,

which can be written as (2) as before. Applying the previous rule of thumb, we thus expect another divergence identity

\displaystyle  \frac{d}{ds} L( x, \Phi[s](x), D\Phi[s](x) )|_{s=0} = \hbox{div} Y \ \ \ \ \ (7)

whenever {s \mapsto \Phi[s]} arises from a continuous one-parameter symmetry. This expectation is indeed the case in many examples. For instance, if the spatial domain {\Omega} is the Euclidean space {{\bf R}^d}, and the Lagrangian (when expressed in coordinates) has no direct dependence on the spatial variable {x}, thus

\displaystyle  L( x, \Phi(x), D\Phi(x) ) = L( \Phi(x), D\Phi(x) ), \ \ \ \ \ (8)

then we obtain {d} translation symmetries

\displaystyle  \Phi[s](x) := \Phi(x - s e^a )

for {a=1,\dots,d}, where {e^1,\dots,e^d} is the standard basis for {{\bf R}^d}. For a fixed {a}, the left-hand side of (7) then becomes

\displaystyle  \frac{d}{ds} L( \Phi(x-se^a), D\Phi(x-se^a) )|_{s=0} = -\partial_{x^a} [ L( \Phi(x), D\Phi(x) ) ]

\displaystyle  = \hbox{div} Y

where {Y(x) = - L(\Phi(x), D\Phi(x)) e^a}. Another common type of symmetry is a pointwise symmetry, in which

\displaystyle  L( x, \Phi[s](x), D\Phi[s](x) ) = L( x, \Phi[0](x), D\Phi[0](x) ) \ \ \ \ \ (9)

for all {x}, in which case (7) clearly holds with {Y=0}.

If we subtract (4) from (7), we obtain the celebrated theorem of Noether linking symmetries with conservation laws:

Theorem 2 (Noether’s theorem) Suppose that {\Phi_0} is a critical point of the functional (1), and let {\Phi[s]} be a one-parameter continuous symmetry with {\Phi[0] = \Phi_0}. Let {X} be the vector field in (5), and let {Y} be the vector field in (7). Then we have the pointwise conservation law

\displaystyle  \hbox{div}(X-Y) = 0.

In particular, for one-dimensional variational problems, in which {\Omega \subset {\bf R}}, we have the conservation law {(X-Y)(t) = (X-Y)(0)} for all {t \in \Omega} (assuming of course that {\Omega} is connected and contains {0}).

Noether’s theorem gives a systematic way to locate conservation laws for solutions to variational problems. For instance, if {\Omega \subset {\bf R}} and the Lagrangian has no explicit time dependence, thus

\displaystyle  L(t, \Phi(t), \dot \Phi(t)) = L(\Phi(t), \dot \Phi(t)),

then by using the time translation symmetry {\Phi[s](t) := \Phi(t-s)}, we have

\displaystyle  Y(t) = - L( \Phi(t), \dot\Phi(t) )

as discussed previously, whereas we have {\delta \Phi(t) = - \dot \Phi(t)}, and hence by (5)

\displaystyle  X(t) := - \dot \Phi^i(x) L_{\dot q^i}(\Phi(t), \dot \Phi(t)),

and so Noether’s theorem gives conservation of the Hamiltonian

\displaystyle  H(t) := \dot \Phi^i(x) L_{\dot q^i}(\Phi(t), \dot \Phi(t))- L(\Phi(t), \dot \Phi(t)). \ \ \ \ \ (10)

For instance, for geodesic flow, the Hamiltonian works out to be

\displaystyle  H(t) = \frac{1}{2} g_{ij}(\gamma(t)) \dot \gamma^i(t) \dot \gamma^j(t),

so we see that the speed of the geodesic is conserved over time.

For pointwise symmetries (9), {Y} vanishes, and so Noether’s theorem simplifies to {\hbox{div} X = 0}; in the one-dimensional case {\Omega \subset {\bf R}}, we thus see from (5) that the quantity

\displaystyle  \delta \Phi^i(t) L_{\dot q^i}(t,\Phi_0(t), \dot \Phi_0(t)) \ \ \ \ \ (11)

is conserved in time. For instance, for the {N}-particle system in Example 2, if we have the translation invariance

\displaystyle  V( q_1 + h, \dots, q_N + h ) = V( q_1, \dots, q_N )

for all {q_1,\dots,q_N,h \in {\bf R}^3}, then we have the pointwise translation symmetry

\displaystyle  q_i[s](t) := q_i(t) + s e^j

for all {i=1,\dots,N}, {s \in{\bf R}} and some {j=1,\dots,3}, in which case {\dot q_i(t) = e^j}, and the conserved quantity (11) becomes

\displaystyle  \sum_{i=1}^n m_i \dot q_i^j(t);

as {j=1,\dots,3} was arbitrary, this establishes conservation of the total momentum

\displaystyle  \sum_{i=1}^n m_i \dot q_i(t).

Similarly, if we have the rotation invariance

\displaystyle  V( R q_1, \dots, Rq_N ) = V( q_1, \dots, q_N )

for any {q_1,\dots,q_N \in {\bf R}^3} and {R \in SO(3)}, then we have the pointwise rotation symmetry

\displaystyle  q_i[s](t) := \exp( s A ) q_i(t)

for any skew-symmetric real {3 \times 3} matrix {A}, in which case {\dot q_i(t) = A q_i(t)}, and the conserved quantity (11) becomes

\displaystyle  \sum_{i=1}^n m_i \langle A q_i(t), \dot q_i(t) \rangle;

since {A} is an arbitrary skew-symmetric matrix, this establishes conservation of the total angular momentum

\displaystyle  \sum_{i=1}^n m_i q_i(t) \wedge \dot q_i(t).

Below the fold, I will describe how Noether’s theorem can be used to locate all of the conserved quantities for the Euler equations of inviscid fluid flow, discussed in this previous post, by interpreting that flow as geodesic flow in an infinite dimensional manifold.

Read the rest of this entry »

A (smooth) Riemannian manifold is a smooth manifold {M} without boundary, equipped with a Riemannian metric {{\rm g}}, which assigns a length {|v|_{{\rm g}(x)} \in {\bf R}^+} to every tangent vector {v \in T_x M} at a point {x \in M}, and more generally assigns an inner product

\displaystyle  \langle v, w \rangle_{{\rm g}(x)} \in {\bf R}

to every pair of tangent vectors {v, w \in T_x M} at a point {x \in M}. (We use Roman font for {g} here, as we will need to use {g} to denote group elements later in this post.) This inner product is assumed to symmetric, positive definite, and smoothly varying in {x}, and the length is then given in terms of the inner product by the formula

\displaystyle  |v|_{{\rm g}(x)}^2 := \langle v, v \rangle_{{\rm g}(x)}.

In coordinates (and also using abstract index notation), the metric {{\rm g}} can be viewed as an invertible symmetric rank {(0,2)} tensor {{\rm g}_{ij}(x)}, with

\displaystyle  \langle v, w \rangle_{{\rm g}(x)} = {\rm g}_{ij}(x) v^i w^j.

One can also view the Riemannian metric as providing a (self-adjoint) identification between the tangent bundle {TM} of the manifold and the cotangent bundle {T^* M}; indeed, every tangent vector {v \in T_x M} is then identified with the cotangent vector {\iota_{TM \rightarrow T^* M}(v) \in T_x^* M}, defined by the formula

\displaystyle \iota_{TM \rightarrow T^* M}(v)(w) := \langle v, w \rangle_{{\rm g}(x)}.

In coordinates, {\iota_{TM \rightarrow T^* M}(v)_i = {\rm g}_{ij} v^j}.

A fundamental dynamical system on the tangent bundle (or equivalently, the cotangent bundle, using the above identification) of a Riemannian manifold is that of geodesic flow. Recall that geodesics are smooth curves {\gamma: [a,b] \rightarrow M} that minimise the length

\displaystyle  |\gamma| := \int_a^b |\gamma'(t)|_{{\rm g}(\gamma(t))}\ dt.

There is some degeneracy in this definition, because one can reparameterise the curve {\gamma} without affecting the length. In order to fix this degeneracy (and also because the square of the speed is a more tractable quantity analytically than the speed itself), it is better if one replaces the length with the energy

\displaystyle  E(\gamma) := \frac{1}{2} \int_a^b |\gamma'(t)|_{{\rm g}(\gamma(t))}^2\ dt.

Minimising the energy of a parameterised curve {\gamma} turns out to be the same as minimising the length, together with an additional requirement that the speed {|\gamma'(t)|_{{\rm g}(\gamma(t))}} stay constant in time. Minimisers (and more generally, critical points) of the energy functional (holding the endpoints fixed) are known as geodesic flows. From a physical perspective, geodesic flow governs the motion of a particle that is subject to no external forces and thus moves freely, save for the constraint that it must always lie on the manifold {M}.

One can also view geodesic flows as a dynamical system on the tangent bundle (with the state at any time {t} given by the position {\gamma(t) \in M} and the velocity {\gamma'(t) \in T_{\gamma(t)} M}) or on the cotangent bundle (with the state then given by the position {\gamma(t) \in M} and the momentum {\iota_{TM \rightarrow T^* M}( \gamma'(t) ) \in T_{\gamma(t)}^* M}). With the latter perspective (sometimes referred to as cogeodesic flow), geodesic flow becomes a Hamiltonian flow, with Hamiltonian {H: T^* M \rightarrow {\bf R}} given as

\displaystyle  H( x, p ) := \frac{1}{2} \langle p, p \rangle_{{\rm g}(x)^{-1}} = \frac{1}{2} {\rm g}^{ij}(x) p_i p_j

where {\langle ,\rangle_{{\rm g}(x)^{-1}}: T^*_x M \times T^*_x M \rightarrow {\bf R}} is the inverse inner product to {\langle, \rangle_{{\rm g}(x)}: T_x M \times T_x M \rightarrow {\bf R}}, which can be defined for instance by the formula

\displaystyle  \langle p_1, p_2 \rangle_{{\rm g}(x)^{-1}} = \langle \iota_{TM \rightarrow T^* M}^{-1}(p_1), \iota_{TM \rightarrow T^* M}^{-1}(p_2)\rangle_{{\rm g}(x)}.

In coordinates, geodesic flow is given by Hamilton’s equations of motion

\displaystyle  \frac{d}{dt} x^i = {\rm g}^{ij} p_j; \quad \frac{d}{dt} p_i = - \frac{1}{2} (\partial_i {\rm g}^{jk}(x)) p_j p_k.

In terms of the velocity {v^i := \frac{d}{dt} x^i = {\rm g}^{ij} p_j}, we can rewrite these equations as the geodesic equation

\displaystyle  \frac{d}{dt} v^i = - \Gamma^i_{jk} v^j v^k

where

\displaystyle  \Gamma^i_{jk} = \frac{1}{2} {\rm g}^{im} (\partial_k {\rm g}_{mj} + \partial_j {\rm g}_{mk} - \partial_m {\rm g}_{jk} )

are the Christoffel symbols; using the Levi-Civita connection {\nabla}, this can be written more succinctly as

\displaystyle  (\gamma^* \nabla)_t v = 0.

If the manifold {M} is an embedded submanifold of a larger Euclidean space {R^n}, with the metric {{\rm g}} on {M} being induced from the standard metric on {{\bf R}^n}, then the geodesic flow equation can be rewritten in the equivalent form

\displaystyle  \gamma''(t) \perp T_{\gamma(t)} M,

where {\gamma} is now viewed as taking values in {{\bf R}^n}, and {T_{\gamma(t)} M} is similarly viewed as a subspace of {{\bf R}^n}. This is intuitively obvious from the geometric interpretation of geodesics: if the curvature of a curve {\gamma} contains components that are transverse to the manifold rather than normal to it, then it is geometrically clear that one should be able to shorten the curve by shifting it along the indicated transverse direction. It is an instructive exercise to rigorously formulate the above intuitive argument. This fact also conforms well with one’s physical intuition of geodesic flow as the motion of a free particle constrained to be in {M}; the normal quantity {\gamma''(t)} then corresponds to the centripetal force necessary to keep the particle lying in {M} (otherwise it would fly off along a tangent line to {M}, as per Newton’s first law). The precise value of the normal vector {\gamma''(t)} can be computed via the second fundamental form as {\gamma''(t) = \Pi_{\gamma(t)}( \gamma'(t), \gamma'(t) )}, but we will not need this formula here.

In a beautiful paper from 1966, Vladimir Arnold (who, sadly, passed away last week), observed that many basic equations in physics, including the Euler equations of motion of a rigid body, and also (by which is a priori a remarkable coincidence) the Euler equations of fluid dynamics of an inviscid incompressible fluid, can be viewed (formally, at least) as geodesic flows on a (finite or infinite dimensional) Riemannian manifold. And not just any Riemannian manifold: the manifold is a Lie group (or, to be truly pedantic, a torsor of that group), equipped with a right-invariant (or left-invariant, depending on one’s conventions) metric. In the context of rigid bodies, the Lie group is the group {SE(3) = {\bf R}^3 \rtimes SO(3)} of rigid motions; in the context of incompressible fluids, it is the group {Sdiff({\bf R}^3}) of measure-preserving diffeomorphisms. The right-invariance makes the Hamiltonian mechanics of geodesic flow in this context (where it is sometimes known as the Euler-Arnold equation or the Euler-Poisson equation) quite special; it becomes (formally, at least) completely integrable, and also indicates (in principle, at least) a way to reformulate these equations in a Lax pair formulation. And indeed, many further completely integrable equations, such as the Korteweg-de Vries equation, have since been reinterpreted as Euler-Arnold flows.

From a physical perspective, this all fits well with the interpretation of geodesic flow as the free motion of a system subject only to a physical constraint, such as rigidity or incompressibility. (I do not know, though, of a similarly intuitive explanation as to why the Korteweg de Vries equation is a geodesic flow.)

One consequence of being a completely integrable system is that one has a large number of conserved quantities. In the case of the Euler equations of motion of a rigid body, the conserved quantities are the linear and angular momentum (as observed in an external reference frame, rather than the frame of the object). In the case of the two-dimensional Euler equations, the conserved quantities are the pointwise values of the vorticity (as viewed in Lagrangian coordinates, rather than Eulerian coordinates). In higher dimensions, the conserved quantity is now the (Hodge star of) the vorticity, again viewed in Lagrangian coordinates. The vorticity itself then evolves by the vorticity equation, and is subject to vortex stretching as the diffeomorphism between the initial and final state becomes increasingly sheared.

The elegant Euler-Arnold formalism is reasonably well-known in some circles (particularly in Lagrangian and symplectic dynamics, where it can be viewed as a special case of the Euler-Poincaré formalism or Lie-Poisson formalism respectively), but not in others; I for instance was only vaguely aware of it until recently, and I think that even in fluid mechanics this perspective to the subject is not always emphasised. Given the circumstances, I thought it would therefore be appropriate to present Arnold’s original 1966 paper here. (For a more modern treatment of these topics, see the books of Arnold-Khesin and Marsden-Ratiu.)

In order to avoid technical issues, I will work formally, ignoring questions of regularity or integrability, and pretending that infinite-dimensional manifolds behave in exactly the same way as their finite-dimensional counterparts. In the finite-dimensional setting, it is not difficult to make all of the formal discussion below rigorous; but the situation in infinite dimensions is substantially more delicate. (Indeed, it is a notorious open problem whether the Euler equations for incompressible fluids even forms a global continuous flow in a reasonable topology in the first place!) However, I do not want to discuss these analytic issues here; see this paper of Ebin and Marsden for a treatment of these topics.

Read the rest of this entry »

Archives

RSS Google+ feed

  • An error has occurred; the feed is probably down. Try again later.
Follow

Get every new post delivered to your Inbox.

Join 3,332 other followers