You are currently browsing the tag archive for the ‘exchangeable measures’ tag.

I’ve just uploaded to the arXiv my joint paper with Tim Austin, “On the testability and repair of hereditary hypergraph properties“, which has been submitted to Random Structures and Algorithms. In this paper we prove some positive and negative results for the testability (and the local repairability) of various properties of directed or undirected graphs and hypergraphs, which can be either monochromatic or multicoloured.

The negative results have already been discussed in a previous posting of mine, so today I will focus on the positive results. The property testing results here are finitary results, but it turns out to be rather convenient to use a certain correspondence principle (the hypergraph version of the Furstenberg correspondence principle) to convert the question into one about exchangeable probability measures on spaces of hypergraphs (i.e. on random hypergraphs whose probability distribution is invariant under exchange of vertices). Such objects are also closely related to the”graphons” and “hypergraphons” that emerge as graph limits, as studied by Lovasz-Szegedy, Elek-Szegedy, and others. Somewhat amusingly, once one does so, it then becomes convenient to keep track of objects indexed by vertex sets and how they are exchanged via the language of category theory, and in particular using the concept of a natural transformation to describe such objects as exchangeable measures, graph colourings, and local modification rules. I will try to sketch out some of these connections, after describing the main positive results.

Read the rest of this entry »


RSS Google+ feed

  • An error has occurred; the feed is probably down. Try again later.

Get every new post delivered to your Inbox.

Join 3,331 other followers