You are currently browsing the tag archive for the ‘Hilbert-Schmidt operators’ tag.

Let {F} be a field. A definable set over {F} is a set of the form

\displaystyle  \{ x \in F^n | \phi(x) \hbox{ is true} \} \ \ \ \ \ (1)

where {n} is a natural number, and {\phi(x)} is a predicate involving the ring operations {+,\times} of {F}, the equality symbol {=}, an arbitrary number of constants and free variables in {F}, the quantifiers {\forall, \exists}, boolean operators such as {\vee,\wedge,\neg}, and parentheses and colons, where the quantifiers are always understood to be over the field {F}. Thus, for instance, the set of quadratic residues

\displaystyle  \{ x \in F | \exists y: x = y \times y \}

is definable over {F}, and any algebraic variety over {F} is also a definable set over {F}. Henceforth we will abbreviate “definable over {F}” simply as “definable”.

If {F} is a finite field, then every subset of {F^n} is definable, since finite sets are automatically definable. However, we can obtain a more interesting notion in this case by restricting the complexity of a definable set. We say that {E \subset F^n} is a definable set of complexity at most {M} if {n \leq M}, and {E} can be written in the form (1) for some predicate {\phi} of length at most {M} (where all operators, quantifiers, relations, variables, constants, and punctuation symbols are considered to have unit length). Thus, for instance, a hypersurface in {n} dimensions of degree {d} would be a definable set of complexity {O_{n,d}(1)}. We will then be interested in the regime where the complexity remains bounded, but the field size (or field characteristic) becomes large.

In a recent paper, I established (in the large characteristic case) the following regularity lemma for dense definable graphs, which significantly strengthens the Szemerédi regularity lemma in this context, by eliminating “bad” pairs, giving a polynomially strong regularity, and also giving definability of the cells:

Lemma 1 (Algebraic regularity lemma) Let {F} be a finite field, let {V,W} be definable non-empty sets of complexity at most {M}, and let {E \subset V \times W} also be definable with complexity at most {M}. Assume that the characteristic of {F} is sufficiently large depending on {M}. Then we may partition {V = V_1 \cup \ldots \cup V_m} and {W = W_1 \cup \ldots \cup W_n} with {m,n = O_M(1)}, with the following properties:

  • (Definability) Each of the {V_1,\ldots,V_m,W_1,\ldots,W_n} are definable of complexity {O_M(1)}.
  • (Size) We have {|V_i| \gg_M |V|} and {|W_j| \gg_M |W|} for all {i=1,\ldots,m} and {j=1,\ldots,n}.
  • (Regularity) We have

    \displaystyle  |E \cap (A \times B)| = d_{ij} |A| |B| + O_M( |F|^{-1/4} |V| |W| ) \ \ \ \ \ (2)

    for all {i=1,\ldots,m}, {j=1,\ldots,n}, {A \subset V_i}, and {B\subset W_j}, where {d_{ij}} is a rational number in {[0,1]} with numerator and denominator {O_M(1)}.

My original proof of this lemma was quite complicated, based on an explicit calculation of the “square”

\displaystyle  \mu(w,w') := \{ v \in V: (v,w), (v,w') \in E \}

of {E} using the Lang-Weil bound and some facts about the étale fundamental group. It was the reliance on the latter which was the main reason why the result was restricted to the large characteristic setting. (I then applied this lemma to classify expanding polynomials over finite fields of large characteristic, but I will not discuss these applications here; see this previous blog post for more discussion.)

Recently, Anand Pillay and Sergei Starchenko (and independently, Udi Hrushovski) have observed that the theory of the étale fundamental group is not necessary in the argument, and the lemma can in fact be deduced from quite general model theoretic techniques, in particular using (a local version of) the concept of stability. One of the consequences of this new proof of the lemma is that the hypothesis of large characteristic can be omitted; the lemma is now known to be valid for arbitrary finite fields {F} (although its content is trivial if the field is not sufficiently large depending on the complexity at most {M}).

Inspired by this, I decided to see if I could find yet another proof of the algebraic regularity lemma, again avoiding the theory of the étale fundamental group. It turns out that the spectral proof of the Szemerédi regularity lemma (discussed in this previous blog post) adapts very nicely to this setting. The key fact needed about definable sets over finite fields is that their cardinality takes on an essentially discrete set of values. More precisely, we have the following fundamental result of Chatzidakis, van den Dries, and Macintyre:

Proposition 2 Let {F} be a finite field, and let {M > 0}.

  • (Discretised cardinality) If {E} is a non-empty definable set of complexity at most {M}, then one has

    \displaystyle  |E| = c |F|^d + O_M( |F|^{d-1/2} ) \ \ \ \ \ (3)

    where {d = O_M(1)} is a natural number, and {c} is a positive rational number with numerator and denominator {O_M(1)}. In particular, we have {|F|^d \ll_M |E| \ll_M |F|^d}.

  • (Definable cardinality) Assume {|F|} is sufficiently large depending on {M}. If {V, W}, and {E \subset V \times W} are definable sets of complexity at most {M}, so that {E_w := \{ v \in V: (v,w) \in W \}} can be viewed as a definable subset of {V} that is definably parameterised by {w \in W}, then for each natural number {d = O_M(1)} and each positive rational {c} with numerator and denominator {O_M(1)}, the set

    \displaystyle  \{ w \in W: |E_w| = c |F|^d + O_M( |F|^{d-1/2} ) \} \ \ \ \ \ (4)

    is definable with complexity {O_M(1)}, where the implied constants in the asymptotic notation used to define (4) are the same as those that appearing in (3). (Informally: the “dimension” {d} and “measure” {c} of {E_w} depends definably on {w}.)

We will take this proposition as a black box; a proof can be obtained by combining the description of definable sets over pseudofinite fields (discussed in this previous post) with the Lang-Weil bound (discussed in this previous post). (The former fact is phrased using nonstandard analysis, but one can use standard compactness-and-contradiction arguments to convert such statements to statements in standard analysis, as discussed in this post.)

The above proposition places severe restrictions on the cardinality of definable sets; for instance, it shows that one cannot have a definable set of complexity at most {M} and cardinality {|F|^{1/2}}, if {|F|} is sufficiently large depending on {M}. If {E \subset V} are definable sets of complexity at most {M}, it shows that {|E| = (c+ O_M(|F|^{-1/2})) |V|} for some rational {0\leq c \leq 1} with numerator and denominator {O_M(1)}; furthermore, if {c=0}, we may improve this bound to {|E| = O_M( |F|^{-1} |V|)}. In particular, we obtain the following “self-improving” properties:

  • If {E \subset V} are definable of complexity at most {M} and {|E| \leq \epsilon |V|} for some {\epsilon>0}, then (if {\epsilon} is sufficiently small depending on {M} and {F} is sufficiently large depending on {M}) this forces {|E| = O_M( |F|^{-1} |V| )}.
  • If {E \subset V} are definable of complexity at most {M} and {||E| - c |V|| \leq \epsilon |V|} for some {\epsilon>0} and positive rational {c}, then (if {\epsilon} is sufficiently small depending on {M,c} and {F} is sufficiently large depending on {M,c}) this forces {|E| = c |V| + O_M( |F|^{-1/2} |V| )}.

It turns out that these self-improving properties can be applied to the coefficients of various matrices (basically powers of the adjacency matrix associated to {E}) that arise in the spectral proof of the regularity lemma to significantly improve the bounds in that lemma; we describe how this is done below the fold. We also make some connections to the stability-based proofs of Pillay-Starchenko and Hrushovski.

Read the rest of this entry »

Having studied compact extensions in the previous lecture, we now consider the opposite type of extension, namely that of a weakly mixing extension. Just as compact extensions are “relative” versions of compact systems, weakly mixing extensions are “relative” versions of weakly mixing systems, in which the underlying algebra of scalars {\Bbb C} is replaced by L^\infty(Y). As in the case of unconditionally weakly mixing systems, we will be able to use the van der Corput lemma to neglect “conditionally weakly mixing” functions, thus allowing us to lift the uniform multiple recurrence property (UMR) from a system to any weakly mixing extension of that system.

To finish the proof of the Furstenberg recurrence theorem requires two more steps. One is a relative version of the dichotomy between mixing and compactness: if a system is not weakly mixing relative to some factor, then that factor has a non-trivial compact extension. This will be accomplished using the theory of conditional Hilbert-Schmidt operators in this lecture. Finally, we need the (easy) result that the UMR property is preserved under limits of chains; this will be accomplished in the next lecture.

Read the rest of this entry »


RSS Google+ feed

  • An error has occurred; the feed is probably down. Try again later.

Get every new post delivered to your Inbox.

Join 3,307 other followers