You are currently browsing the tag archive for the ‘horns’ tag.

In the previous lecture, we studied high curvature regions of Ricci flows t \mapsto (M,g(t)) on some time interval {}[0,T), and concluded that (as long as a mild topological condition was obeyed) they all had canonical neighbourhoods. This is enough control to now study the limits of such flows as one approaches the singularity time T. It turns out that one can subdivide the manifold M into a continuing region C in which the geometry remains well behaved (for instance, the curvature does not blow up, and in fact converges smoothly to an (incomplete) limit), and a disappearing region D, whose topology is well controlled. (For instance, the interface \Sigma between C and D will be a finite union of disjoint surfaces homeomorphic to S^2.) This allows one (at the topological level, at least) to perform surgery on the interface \Sigma, removing the disappearing region D and replacing them with a finite number of “caps” homeomorphic to the 3-ball B^3. The relationship between the topology of the post-surgery manifold and pre-surgery manifold is as is described way back in Lecture 2.

However, once surgery is completed, one needs to restart the Ricci flow process, at which point further singularities can occur. In order to apply surgery to these further singularities, we need to check that all the properties we have been exploiting about Ricci flows – notably the Hamilton-Ivey pinching property, the \kappa-noncollapsing property, and the existence of canonical neighbourhoods for every point of high curvature – persist even in the presence of a large number of surgeries (indeed, with the way the constants are structured, all quantitative bounds on a fixed time interval [0,T] have to be uniform in the number of surgery times, although we will of course need the set of such times to be discrete). To ensure that surgeries do not disrupt any of these properties, it turns out that one has to perform these surgeries deep in certain \varepsilon-horns of the Ricci flow at the singular time, in which the geometry is extremely close to being cylindrical (in particular, it should be a \delta-neck and not just a \varepsilon-neck, where the surgery control parameter \delta is much smaller than \varepsilon; selection of this parameter can get a little tricky if one wants to evolve Ricci flow with surgery indefinitely, although for the purposes of the Poincaré conjecture the situation is simpler as there is a fixed upper bound on the time for which one needs to evolve the flow). Furthermore, the geometry of the manifolds one glues in to replace the disappearing regions has to be carefully chosen (in particular, it has to not disrupt the pinching condition, and the geometry of these glued in regions has to resemble a (C,\varepsilon)-cap for a significant amount of (rescaled) time). The construction of the “standard solution” needed to achieve all these properties is somewhat delicate, although we will not discuss this issue much here.

In this, the final lecture, we shall present these issues from a high-level perspective; due to lack of time and space we will not cover the finer details of the surgery procedure. More detailed versions of the material here can be found in Perelman’s second paper, the notes of Kleiner-Lott, the book of Morgan-Tian, and the paper of Cao-Zhu. (See also a forthcoming paper of Bessières, Besson, Boileau, Maillot, and Porti.)

Read the rest of this entry »

Archives

RSS Google+ feed

  • An error has occurred; the feed is probably down. Try again later.
Follow

Get every new post delivered to your Inbox.

Join 3,332 other followers