You are currently browsing the tag archive for the ‘Kakeya conjecture’ tag.

In this post I would like to make some technical notes on a standard reduction used in the (Euclidean, maximal) Kakeya problem, known as the two ends reduction. This reduction (which takes advantage of the approximate scale-invariance of the Kakeya problem) was introduced by Wolff, and has since been used many times, both for the Kakeya problem and in other similar problems (e.g. by Jim Wright and myself to study curved Radon-like transforms). I was asked about it recently, so I thought I would describe the trick here. As an application I give a proof of the {d=\frac{n+1}{2}} case of the Kakeya maximal conjecture.

Read the rest of this entry »

Below the fold is a version of my talk “Recent progress on the Kakeya conjecture” that I gave at the Fefferman conference.

Read the rest of this entry »

Jordan Ellenberg, Richard Oberlin, and I have just uploaded to the arXiv the paper “The Kakeya set and maximal conjectures for algebraic varieties over finite fields“, submitted to Mathematika.  This paper builds upon some work of Dvir and later authors on the Kakeya problem in finite fields, which I have discussed in this earlier blog post.  Dvir established the following:

Kakeya set conjecture for finite fields. Let F be a finite field, and let E be a subset of F^n that contains a line in every direction.  Then E has cardinality at least c_n |F|^n for some c_n > 0.

The initial argument of Dvir gave c_n = 1/n!.  This was improved to c_n = c^n for some explicit 0 < c < 1 by Saraf and Sudan, and recently to c_n =1/2^n by Dvir, Kopparty, Saraf, and Sudan, which is within a factor 2 of the optimal result.

In our work we investigate a somewhat different set of improvements to Dvir’s result.  The first concerns the Kakeya maximal function f^*: {\Bbb P}^{n-1}(F) \to {\Bbb R} of a function f: F^n \to {\Bbb R}, defined for all directions \xi \in {\Bbb P}^{n-1}(F) in the projective hyperplane at infinity by the formula

f^*(\xi) = \sup_{\ell // \xi} \sum_{x \in \ell} |f(x)|

where the supremum ranges over all lines \ell in F^n oriented in the direction \xi.  Our first result is the endpoint L^p estimate for this operator, namely

Kakeya maximal function conjecture in finite fields. We have \| f^* \|_{\ell^n({\Bbb P}^{n-1}(F))} \leq C_n |F|^{(n-1)/n} \|f\|_{\ell^n(F^n)} for some constant C_n > 0.

This result implies Dvir’s result, since if f is the indicator function of the set E in Dvir’s result, then f^*(\xi) = |F| for every \xi \in {\Bbb P}^{n-1}(F).  However, it also gives information on more general sets E which do not necessarily contain a line in every direction, but instead contain a certain fraction of a line in a subset of directions.  The exponents here are best possible in the sense that all other \ell^p \to \ell^q mapping properties of the operator can be deduced (with bounds that are optimal up to constants) by interpolating the above estimate with more trivial estimates.  This result is the finite field analogue of a long-standing (and still open) conjecture for the Kakeya maximal function in Euclidean spaces; we rely on the polynomial method of Dvir, which thus far has not extended to the Euclidean setting (but note the very interesting variant of this method by Guth that has established the endpoint multilinear Kakeya maximal function estimate in this setting, see this blog post for further discussion).

It turns out that a direct application of the polynomial method is not sufficient to recover the full strength of the maximal function estimate; but by combining the polynomial method with the Nikishin-Maurey-Pisier-Stein “method of random rotations” (as interpreted nowadays by Stein and later by Bourgain, and originally inspired by the factorisation theorems of Nikishin, Maurey, and Pisier), one can already recover a “restricted weak type” version of the above estimate.  If one then enhances the polynomial method with the “method of multiplicities” (as introduced by Saraf and Sudan) we can then recover the full “strong type” estimate; a few more details below the fold.

It turns out that one can generalise the above results to more general affine or projective algebraic varieties over finite fields.  In particular, we showed

Kakeya maximal function conjecture in algebraic varieties. Suppose that W \subset {\Bbb P}^N is an (n-1)-dimensional algebraic variety.  Let d \geq 1 be an integer. Then we have

\| \sup_{\gamma \ni x; \gamma \not \subset W} \sum_{y \in \gamma} f(y) \|_{\ell^n_x(W(F))} \leq C_{n,d,N,W} |F|^{(n-1)/n} \|f\|_{\ell^n({\Bbb P}^N(F))}

for some constant C_{n,d,N,W} > 0, where the supremum is over all irreducible algebraic curves \gamma of degree at most d that pass through x but do not lie in W, and W(F) denotes the F-points of W.

The ordinary Kakeya maximal function conjecture corresponds to the case when N=n, W is the hyperplane at infinity, and the degree d is equal to 1.  One corollary of this estimate is a Dvir-type result: a subset of {\Bbb P}^N(F) which contains, for each x in W, an irreducible algebraic curve of degree d passing through x but not lying in W, has cardinality \gg |F|^n if |W| \gg |F|^{n-1}.  (In particular this implies a lower bound for Nikodym sets worked out by Li.)  The dependence of the implied constant on W is only via the degree of W.

The techniques used in the flat case can easily handle curves \gamma of higher degree (provided that we allow the implied constants to depend on d), but the method of random rotations does not seem to work directly on the algebraic variety W as there are usually no symmetries of this variety to exploit.  Fortunately, we can get around this by using a “random projection trick” to “flatten” W into a hyperplane (after first expressing W as the zero locus of some polynomials, and then composing with the graphing map for such polynomials), reducing the non-flat case to the flat case.

Below the fold, I wish to sketch two of the key ingredients in our arguments, the random rotations method and the random projections trick.  (We of course also use some algebraic geometry, but mostly low-tech stuff, on the level of Bezout’s theorem, though we do need one non-trivial result of Kleiman (from SGA6), that asserts that bounded degree varieties can be cut out by a bounded number of polynomials of bounded degree.)

[Update, March 14: See also Jordan's own blog post on our paper.]

Read the rest of this entry »

In 1917, Soichi Kakeya posed the following problem:

Kakeya needle problem. What is the least amount of area required to continuously rotate a unit line segment in the plane by a full rotation (i.e. by 360^\circ)?

In 1928, Besicovitch showed that given any \varepsilon > 0, there exists a planar set of area at most \varepsilon within which a unit needle can be continuously rotated; the proof relies on the construction of what is now known as a Besicovitch set – a set of measure zero in the plane which contains a unit line segment in every direction.  So the answer to the Kakeya needle problem is “zero”.

I was recently asked (by Claus Dollinger) whether one can take \varepsilon = 0; in other words,

Question. Does there exist a set of measure zero within which a unit line segment can be continuously rotated by a full rotation?

This question does not seem to be explicitly answered in the literature.  In the papers of von Alphen and of Cunningham, it is shown that it is possible to continuously rotate a unit line segment inside a set of arbitrarily small measure and of uniformly bounded diameter; this result is of course implied by a positive answer to the above question (since continuous functions on compact sets are bounded), but the converse is not true.

Below the fold, I give the answer to the problem… but perhaps readers may wish to make a guess as to what the answer is first before proceeding, to see how good their real analysis intuition is.  (To partially prevent spoilers for those reading this post via RSS, I will be whitening the text; you will have to highlight the text in order to see it.  Unfortunately, I do not know how to white out the LaTeX in such a way that it is visible upon highlighting, so RSS readers may wish to stop reading right now; but I suppose one can view the LaTeX as supplying hints to the problem, without giving away the full solution.)

[Update, March 13: a non-whitened version of this article can be found as part of this book.]

Read the rest of this entry »

One of my favourite family of conjectures (and one that has preoccupied a significant fraction of my own research) is the family of Kakeya conjectures in geometric measure theory and harmonic analysis.  There are many (not quite equivalent) conjectures in this family.  The cleanest one to state is the set conjecture:

Kakeya set conjecture: Let n \geq 1, and let E \subset {\Bbb R}^n contain a unit line segment in every direction (such sets are known as Kakeya sets or Besicovitch sets).  Then E has Hausdorff dimension and Minkowski dimension equal to n.

One reason why I find these conjectures fascinating is the sheer variety of mathematical fields that arise both in the partial results towards this conjecture, and in the applications of those results to other problems.  See for instance this survey of Wolff, my Notices article and this article of Łaba on the connections between this problem and other problems in Fourier analysis, PDE, and additive combinatorics; there have even been some connections to number theory and to cryptography.  At the other end of the pipeline, the mathematical tools that have gone into the proofs of various partial results have included:

[This list is not exhaustive.]

Very recently, I was pleasantly surprised to see yet another mathematical tool used to obtain new progress on the Kakeya conjecture, namely (a generalisation of) the famous Ham Sandwich theorem from algebraic topology.  This was recently used by Guth to establish a certain endpoint multilinear Kakeya estimate left open by the work of Bennett, Carbery, and myself.  With regards to the Kakeya set conjecture, Guth’s arguments assert, roughly speaking, that the only Kakeya sets that can fail to have full dimension are those which obey a certain “planiness” property, which informally means that the line segments that pass through a typical point in the set must be essentially coplanar. (This property first surfaced in my paper with Katz and Łaba.)  Guth’s arguments can be viewed as a partial analogue of Dvir’s arguments in the finite field setting (which I discussed in this blog post) to the Euclidean setting; in particular, both arguments rely crucially on the ability to create a polynomial of controlled degree that vanishes at or near a large number of points.  Unfortunately, while these arguments fully settle the Kakeya conjecture in the finite field setting, it appears that some new ideas are still needed to finish off the problem in the Euclidean setting.  Nevertheless this is an interesting new development in the long history of this conjecture, in particular demonstrating that the polynomial method can be successfully applied to continuous Euclidean problems (i.e. it is not confined to the finite field setting).

In this post I would like to sketch some of the key ideas in Guth’s paper, in particular the role of the Ham Sandwich theorem (or more precisely, a polynomial generalisation of this theorem first observed by Gromov).

Read the rest of this entry »

One of my favourite unsolved problems in mathematics is the Kakeya conjecture in geometric measure theory. This conjecture is descended from the

Kakeya needle problem. (1917) What is the least area in the plane required to continuously rotate a needle of unit length and zero thickness around completely (i.e. by 360^\circ)?

For instance, one can rotate a unit needle inside a unit disk, which has area \pi/4. By using a deltoid one requires only \pi/8 area.

In 1928, Besicovitch showed that that in fact one could rotate a unit needle using an arbitrarily small amount of positive area. This unintuitive fact was a corollary of two observations. The first, which is easy, is that one can translate a needle using arbitrarily small area, by sliding the needle along the direction it points in for a long distance (which costs zero area), turning it slightly (costing a small amount of area), sliding back, and then undoing the turn. The second fact, which is less obvious, can be phrased as follows. Define a Kakeya set in {\Bbb R}^2 to be any set which contains a unit line segment in each direction. (See this Java applet of mine, or the wikipedia page, for some pictures of such sets.)

Theorem. (Besicovitch, 1919) There exists Kakeya sets {\Bbb R}^2 of arbitrarily small area (or more precisely, Lebesgue measure).

In fact, one can construct such sets with zero Lebesgue measure. On the other hand, it was shown by Davies that even though these sets had zero area, they were still necessarily two-dimensional (in the sense of either Hausdorff dimension or Minkowski dimension). This led to an analogous conjecture in higher dimensions:

Kakeya conjecture. A Besicovitch set in {\Bbb R}^n (i.e. a subset of {\Bbb R}^n that contains a unit line segment in every direction) has Minkowski and Hausdorff dimension equal to n.

This conjecture remains open in dimensions three and higher (and gets more difficult as the dimension increases), although many partial results are known. For instance, when n=3, it is known that Besicovitch sets have Hausdorff dimension at least 5/2 and (upper) Minkowski dimension at least 5/2 + 10^{-10}. See my Notices article for a general survey of this problem (and its connections with Fourier analysis, additive combinatorics, and PDE), my paper with Katz for a more technical survey, and Wolff’s survey for a systematic treatment of the field (up to about 1998 or so).

In 1999, Wolff proposed a simpler finite field analogue of the Kakeya conjecture as a model problem that avoided all the technical issues involving Minkowski and Hausdorff dimension. If F^n is a vector space over a finite field F, define a Kakeya set to be a subset of F^n which contains a line in every direction.

Finite field Kakeya conjecture. Let E \subset F^n be a Kakeya set. Then E has cardinality at least c_n |F|^n, where c_n > 0 depends only on n.

This conjecture has had a significant influence in the subject, in particular inspiring work on the sum-product phenomenon in finite fields, which has since proven to have many applications in number theory and computer science. Modulo minor technicalities, the progress on the finite field Kakeya conjecture was, until very recently, essentially the same as that of the original “Euclidean” Kakeya conjecture.

Last week, the finite field Kakeya conjecture was proven using a beautifully simple argument by Zeev Dvir, using the polynomial method in algebraic extremal combinatorics. The proof is so short that I can present it in full here.

Read the rest of this entry »

Archives

RSS Google+ feed

  • An error has occurred; the feed is probably down. Try again later.
Follow

Get every new post delivered to your Inbox.

Join 3,313 other followers