You are currently browsing the tag archive for the ‘nilmanifolds’ tag.

This week I was in Columbus, Ohio, attending a conference on equidistribution on manifolds. I talked about my recent paper with Ben Green on the quantitative behaviour of polynomial sequences in nilmanifolds, which I have blogged about previously. During my talk (and inspired by the immediately preceding talk of Vitaly Bergelson), I stated explicitly for the first time a generalisation of the van der Corput trick which morally underlies our paper, though it is somewhat buried there as we specialised it to our application at hand (and also had to deal with various quantitative issues that made the presentation more complicated). After the talk, several people asked me for a more precise statement of this trick, so I am presenting it here, and as an application reproving an old theorem of Leon Green that gives a necessary and sufficient condition as to whether a linear sequence on a nilmanifold is equidistributed, which generalises the famous theorem of Weyl on equidistribution of polynomials.

UPDATE, Feb 2013: It has been pointed out to me by Pavel Zorin that this argument does not fully recover the theorem of Leon Green; to cover all cases, one needs the more complicated van der Corput argument in our paper.

The last two lectures of this course will be on Ratner’s theorems on equidistribution of orbits on homogeneous spaces. Due to lack of time, I will not be able to cover all the material here that I had originally planned; in particular, for an introduction to this family of results, and its connections with number theory, I will have to refer readers to my previous blog post on these theorems. In this course, I will discuss two special cases of Ratner-type theorems. In this lecture, I will talk about Ratner-type theorems for discrete actions (of the integers on nilmanifolds; this case is much simpler than the general case, because there is a simple criterion in the nilmanifold case to test whether any given orbit is equidistributed or not. Ben Green and I had need recently to develop quantitative versions of such theorems for a number-theoretic application. In the next and final lecture of this course, I will discuss Ratner-type theorems for actions of , which is simpler in a different way (due to the semisimplicity of , and lack of compact factors).

Ben Green and I have just uploaded our paper “The quantitative behaviour of polynomial orbits on nilmanifolds” to the arXiv (and shortly to be submitted to a journal, once a companion paper is finished). This paper grew out of our efforts to prove the *Möbius and Nilsequences conjecture* MN(s) from our earlier paper, which has applications to counting various linear patterns in primes (Dickson’s conjecture). These efforts were successful – as the companion paper will reveal – but it turned out that in order to establish this number-theoretic conjecture, we had to first establish a purely dynamical quantitative result about polynomial sequences in nilmanifolds, very much in the spirit of the celebrated theorems of Marina Ratner on unipotent flows; I plan to discuss her theorems in more detail in a followup post to this one.In this post I will not discuss the number-theoretic applications or the connections with Ratner’s theorem, and instead describe our result from a slightly different viewpoint, starting from some very simple examples and gradually moving to the general situation considered in our paper.

To begin with, consider a infinite linear sequence in the unit circle , where . (One can think of this sequence as the orbit of under the action of the shift operator on the unit circle.) This sequence can do one of two things:

- If is rational, then the sequence is periodic and thus only takes on finitely many values.
- If is irrational, then the sequence is dense in . In fact, it is not just dense, it is equidistributed, or equivalently that
for all continuous functions . This statement is known as the equidistribution theorem.

We thus see that infinite linear sequences exhibit a sharp dichotomy in behaviour between periodicity and equidistribution; intermediate scenarios, such as concentration on a fractal set (such as a Cantor set), do not occur with linear sequences. This dichotomy between structure and randomness is in stark contrast to exponential sequences such as , which can exhibit an extremely wide spectrum of behaviours. For instance, the question of whether is equidistributed mod 1 is an old unsolved problem, equivalent to asking whether is normal base 10.

Intermediate between linear sequences and exponential sequences are *polynomial sequences* , where P is a polynomial with coefficients in . A famous theorem of Weyl asserts that infinite polynomial sequences enjoy the same dichotomy as their linear counterparts, namely that they are either periodic (which occurs when all non-constant coefficients are rational) or equidistributed (which occurs when at least one non-constant coefficient is irrational). Thus for instance the fractional parts of are equidistributed modulo 1. This theorem is proven by Fourier analysis combined with non-trivial bounds on Weyl sums.

For our applications, we are interested in strengthening these results in two directions. Firstly, we wish to generalise from polynomial sequences in the circle to polynomial sequences in other homogeneous spaces, in particular nilmanifolds. Secondly, we need quantitative equidistribution results for finite orbits rather than qualitative equidistribution for infinite orbits .

## Recent Comments