You are currently browsing the tag archive for the ‘pseudorandomness’ tag.

One of the basic general problems in analytic number theory is to understand as much as possible the fluctuations of the Möbius function {\mu(n)}, defined as {(-1)^k} when {n} is the product of {k} distinct primes, and zero otherwise. For instance, as {\mu} takes values in {\{-1,0,1\}}, we have the trivial bound

\displaystyle  |\sum_{n \leq x} \mu(n)| \leq x

and the seemingly slight improvement

\displaystyle  \sum_{n \leq x} \mu(n) = o(x) \ \ \ \ \ (1)

is already equivalent to the prime number theorem, as observed by Landau (see e.g. this previous blog post for a proof), while the much stronger (and still open) improvement

\displaystyle  \sum_{n \leq x} \mu(n) = O(x^{1/2+o(1)})

is equivalent to the notorious Riemann hypothesis.

There is a general Möbius pseudorandomness heuristic that suggests that the sign pattern {\mu} behaves so randomly (or pseudorandomly) that one should expect a substantial amount of cancellation in sums that involve the sign fluctuation of the Möbius function in a nontrivial fashion, with the amount of cancellation present comparable to the amount that an analogous random sum would provide; cf. the probabilistic heuristic discussed in this recent blog post. There are a number of ways to make this heuristic precise. As already mentioned, the Riemann hypothesis can be considered one such manifestation of the heuristic. Another manifestation is the following old conjecture of Chowla:

Conjecture 1 (Chowla’s conjecture) For any fixed integer {m} and exponents {a_1,a_2,\ldots,a_m \geq 0}, with at least one of the {a_i} odd (so as not to completely destroy the sign cancellation), we have

\displaystyle  \sum_{n \leq x} \mu(n+1)^{a_1} \ldots \mu(n+m)^{a_m} = o_{x \rightarrow \infty;m}(x).

Note that as {\mu^a = \mu^{a+2}} for any {a \geq 1}, we can reduce to the case when the {a_i} take values in {0,1,2} here. When only one of the {a_i} are odd, this is essentially the prime number theorem in arithmetic progressions (after some elementary sieving), but with two or more of the {a_i} are odd, the problem becomes completely open. For instance, the estimate

\displaystyle  \sum_{n \leq x} \mu(n) \mu(n+2) = o(x)

is morally very close to the conjectured asymptotic

\displaystyle  \sum_{n \leq x} \Lambda(n) \Lambda(n+2) = 2\Pi_2 x + o(x)

for the von Mangoldt function {\Lambda}, where {\Pi_2 := \prod_{p > 2} (1 - \frac{1}{(p-1)^2}) = 0.66016\ldots} is the twin prime constant; this asymptotic in turn implies the twin prime conjecture. (To formally deduce estimates for von Mangoldt from estimates for Möbius, though, typically requires some better control on the error terms than {o()}, in particular gains of some power of {\log x} are usually needed. See this previous blog post for more discussion.)

Remark 1 The Chowla conjecture resembles an assertion that, for {n} chosen randomly and uniformly from {1} to {x}, the random variables {\mu(n+1),\ldots,\mu(n+k)} become asymptotically independent of each other (in the probabilistic sense) as {x \rightarrow \infty}. However, this is not quite accurate, because some moments (namely those with all exponents {a_i} even) have the “wrong” asymptotic value, leading to some unwanted correlation between the two variables. For instance, the events {\mu(n)=0} and {\mu(n+4)=0} have a strong correlation with each other, basically because they are both strongly correlated with the event of {n} being divisible by {4}. A more accurate interpretation of the Chowla conjecture is that the random variables {\mu(n+1),\ldots,\mu(n+k)} are asymptotically conditionally independent of each other, after conditioning on the zero pattern {\mu(n+1)^2,\ldots,\mu(n+k)^2}; thus, it is the sign of the Möbius function that fluctuates like random noise, rather than the zero pattern. (The situation is a bit cleaner if one works instead with the Liouville function {\lambda} instead of the Möbius function {\mu}, as this function never vanishes, but we will stick to the traditional Möbius function formalism here.)

A more recent formulation of the Möbius randomness heuristic is the following conjecture of Sarnak. Given a bounded sequence {f: {\bf N} \rightarrow {\bf C}}, define the topological entropy of the sequence to be the least exponent {\sigma} with the property that for any fixed {\epsilon > 0}, and for {m} going to infinity the set {\{ (f(n+1),\ldots,f(n+m)): n \in {\bf N} \} \subset {\bf C}^m} of {f} can be covered by {O( \exp( \sigma m + o(m) ) )} balls of radius {\epsilon}. (If {f} arises from a minimal topological dynamical system {(X,T)} by {f(n) := f(T^n x)}, the above notion is equivalent to the usual notion of the topological entropy of a dynamical system.) For instance, if the sequence is a bit sequence (i.e. it takes values in {\{0,1\}}), then there are only {\exp(\sigma m + o(m))} {m}-bit patterns that can appear as blocks of {m} consecutive bits in this sequence. As a special case, a Turing machine with bounded memory that had access to a random number generator at the rate of one random bit produced every {T} units of time, but otherwise evolved deterministically, would have an output sequence that had a topological entropy of at most {\frac{1}{T} \log 2}. A bounded sequence is said to be deterministic if its topological entropy is zero. A typical example is a polynomial sequence such as {f(n) := e^{2\pi i \alpha n^2}} for some fixed {\sigma}; the {m}-blocks of such polynomials sequence have covering numbers that only grow polynomially in {m}, rather than exponentially, thus yielding the zero entropy. Unipotent flows, such as the horocycle flow on a compact hyperbolic surface, are another good source of deterministic sequences.

Conjecture 2 (Sarnak’s conjecture) Let {f: {\bf N} \rightarrow {\bf C}} be a deterministic bounded sequence. Then

\displaystyle  \sum_{n \leq x} \mu(n) f(n) = o_{x \rightarrow \infty;f}(x).

This conjecture in general is still quite far from being solved. However, special cases are known:

  • For constant sequences, this is essentially the prime number theorem (1).
  • For periodic sequences, this is essentially the prime number theorem in arithmetic progressions.
  • For quasiperiodic sequences such as {f(n) = F(\alpha n \hbox{ mod } 1)} for some continuous {F}, this follows from the work of Davenport.
  • For nilsequences, this is a result of Ben Green and myself.
  • For horocycle flows, this is a result of Bourgain, Sarnak, and Ziegler.
  • For the Thue-Morse sequence, this is a result of Dartyge-Tenenbaum (with a stronger error term obtained by Maduit-Rivat). A subsequent result of Bourgain handles all bounded rank one sequences (though the Thue-Morse sequence is actually of rank two), and a related result of Green establishes asymptotic orthogonality of the Möbius function to bounded depth circuits, although such functions are not necessarily deterministic in nature.
  • For the Rudin-Shapiro sequence, I sketched out an argument at this MathOverflow post.
  • The Möbius function is known to itself be non-deterministic, because its square {\mu^2(n)} (i.e. the indicator of the square-free functions) is known to be non-deterministic (indeed, its topological entropy is {\frac{6}{\pi^2}\log 2}). (The corresponding question for the Liouville function {\lambda(n)}, however, remains open, as the square {\lambda^2(n)=1} has zero entropy.)
  • In the converse direction, it is easy to construct sequences of arbitrarily small positive entropy that correlate with the Möbius function (a rather silly example is {\mu(n) 1_{k|n}} for some fixed large (squarefree) {k}, which has topological entropy at most {\log 2/k} but clearly correlates with {\mu}).

See this survey of Sarnak for further discussion of this and related topics.

In this post I wanted to give a very nice argument of Sarnak that links the above two conjectures:

Proposition 3 The Chowla conjecture implies the Sarnak conjecture.

The argument does not use any number-theoretic properties of the Möbius function; one could replace {\mu} in both conjectures by any other function from the natural numbers to {\{-1,0,+1\}} and obtain the same implication. The argument consists of the following ingredients:

  1. To show that {\sum_{n<x} \mu(n) f(n) = o(x)}, it suffices to show that the expectation of the random variable {\frac{1}{m} (\mu(n+1)f(n+1)+\ldots+\mu(n+m)f(n+m))}, where {n} is drawn uniformly at random from {1} to {x}, can be made arbitrary small by making {m} large (and {n} even larger).
  2. By the union bound and the zero topological entropy of {f}, it suffices to show that for any bounded deterministic coefficients {c_1,\ldots,c_m}, the random variable {\frac{1}{m}(c_1 \mu(n+1) + \ldots + c_m \mu(n+m))} concentrates with exponentially high probability.
  3. Finally, this exponentially high concentration can be achieved by the moment method, using a slight variant of the moment method proof of the large deviation estimates such as the Chernoff inequality or Hoeffding inequality (as discussed in this blog post).

As is often the case, though, while the “top-down” order of steps presented above is perhaps the clearest way to think conceptually about the argument, in order to present the argument formally it is more convenient to present the arguments in the reverse (or “bottom-up”) order. This is the approach taken below the fold.

Read the rest of this entry »

In this, the final lecture notes of this course, we discuss one of the motivating applications of the theory developed thus far, namely to count solutions to linear equations in primes {{\mathcal P} = \{2,3,5,7,\ldots\}} (or in dense subsets {A} of primes {{\mathcal P}}). Unfortunately, the most famous linear equations in primes: the twin prime equation {p_2 - p_1 = 2} and the even Goldbach equation {p_1+p_2=N} – remain out of reach of this technology (because the relevant affine linear forms involved are commensurate, and thus have infinite complexity with respect to the Gowers norms), but most other systems of equations, in particular that of arithmetic progressions {p_i = n+ir} for {i=0,\ldots,k-1} (or equivalently, {p_i + p_{i+2} = 2p_{i+1}} for {i=0,\ldots,k-2}) , as well as the odd Goldbach equation {p_1+p_2+p_3=N}, are tractable.

To illustrate the main ideas, we will focus on the following result of Green:

Theorem 1 (Roth’s theorem in the primes) Let {A \subset {\mathcal P}} be a subset of primes whose upper density {\limsup_{N \rightarrow \infty} |A \cap [N]|/|{\mathcal P} \cap [N]|} is positive. Then {A} contains infinitely many arithmetic progressions of length three.

This should be compared with Roth’s theorem in the integers (Notes 2), which is the same statement but with the primes {{\mathcal P}} replaced by the integers {{\bf Z}} (or natural numbers {{\bf N}}). Indeed, Roth’s theorem for the primes is proven by transferring Roth’s theorem for the integers to the prime setting; the latter theorem is used as a “black box”. The key difficulty here in performing this transference is that the primes have zero density inside the integers; indeed, from the prime number theorem we have {|{\mathcal P} \cap [N]| = (1+o(1)) \frac{N}{\log N} = o(N)}.

There are a number of generalisations of this transference technique. In a paper of Green and myself, we extended the above theorem to progressions of longer length (thus transferring Szemerédi’s theorem to the primes). In a series of papers (culminating in a paper to appear shortly) of Green, myself, and also Ziegler, related methods are also used to obtain an asymptotic for the number of solutions in the primes to any system of linear equations of bounded complexity. This latter result uses the full power of higher order Fourier analysis, in particular relying heavily on the inverse conjecture for the Gowers norms; in contrast, Roth’s theorem and Szemerédi’s theorem in the primes are “softer” results that do not need this conjecture.

To transfer results from the integers to the primes, there are three basic steps:

  • A general transference principle, that transfers certain types of additive combinatorial results from dense subsets of the integers to dense subsets of a suitably “pseudorandom set” of integers (or more precisely, to the integers weighted by a suitably “pseudorandom measure”);
  • An application of sieve theory to show that the primes (or more precisely, an affine modification of the primes) lie inside a suitably pseudorandom set of integers (or more precisely, have significant mass with respect to a suitably pseudorandom measure).
  • If one is seeking asymptotics for patterns in the primes, and not simply lower bounds, one also needs to control correlations between the primes (or proxies for the primes, such as the Möbius function) with various objects that arise from higher order Fourier analysis, such as nilsequences.

The former step can be accomplished in a number of ways. For progressions of length three (and more generally, for controlling linear patterns of complexity at most one), transference can be accomplished by Fourier-analytic methods. For more complicated patterns, one can use techniques inspired by ergodic theory; more recently, simplified and more efficient methods based on duality (the Hahn-Banach theorem) have also been used. No number theory is used in this step. (In the case of transference to genuinely random sets, rather than pseudorandom sets, similar ideas appeared earlier in the graph theory setting, see this paper of Kohayakawa, Luczak, and Rodl.

The second step is accomplished by fairly standard sieve theory methods (e.g. the Selberg sieve, or the slight variants of this sieve used by Goldston and Yildirim). Remarkably, very little of the formidable apparatus of modern analytic number theory is needed for this step; for instance, the only fact about the Riemann zeta function that is truly needed is that it has a simple pole at {s=1}, and no knowledge of L-functions is needed.

The third step does draw more significantly on analytic number theory techniques and results (most notably, the method of Vinogradov to compute oscillatory sums over the primes, and also the Siegel-Walfisz theorem that gives a good error term on the prime number theorem in arithemtic progressions). As these techniques are somewhat orthogonal to the main topic of this course, we shall only touch briefly on this aspect of the transference strategy.

Read the rest of this entry »

[This post is authored by Luca Trevisan. - T.]

Notions of “quasirandomness” for graphs and hypergraphs have many applications in combinatorics and computer science. Several past posts by Terry have addressed the role of quasirandom structures in additive combinatorics. A recurring theme is that if an object (a graph, a hypergraph, a subset of integers, …) is quasirandom, then several useful properties can be immediately deduced, but, also, if an object is not quasirandom then it possesses some “structure” than can be usefully exploited in an inductive argument. The contrapositive statements of such randomness-structure dichotomies are that certain simple properties imply quasirandomness. One can view such results as algorithms that can be used to “certify” quasirandomness, and the existence (or, in some cases, conjectural non-existence) of such algorithms has implications in computer science, as I shall discuss in this post.
Read the rest of this entry »

Archives

RSS Google+ feed

  • An error has occurred; the feed is probably down. Try again later.
Follow

Get every new post delivered to your Inbox.

Join 3,704 other followers