You are currently browsing the tag archive for the ‘rhetoric’ tag.

This will be a more frivolous post than usual, in part due to the holiday season.

I recently happened across the following video, which exploits a simple rhetorical trick that I had not seen before:

If nothing else, it’s a convincing (albeit unsubtle) demonstration that the English language is non-commutative (or perhaps non-associative); a linguistic analogue of the swindle, if you will.

Of course, the trick relies heavily on sentence fragments that negate or compare; I wonder if it is possible to achieve a comparable effect without using such fragments.

A related trick which I have seen (though I cannot recall any explicit examples right now; perhaps some readers know of some?) is to set up the verses of a song so that the last verse is identical to the first, but now has a completely distinct meaning (e.g. an ironic interpretation rather than a literal one) due to the context of the preceding verses.  The ultimate challenge would be to set up a Möbius song, in which each iteration of the song completely reverses the meaning of the next iterate (cf. this xkcd strip), but this may be beyond the capability of the English language.

On a related note: when I was a graduate student in Princeton, I recall John Conway (and another author whose name I forget) producing another light-hearted demonstration that the English language was highly non-commutative, by showing that if one takes the free group with 26 generators a,b,\ldots,z and quotients out by all relations given by anagrams (e.g. cat=act) then the resulting group was commutative.    Unfortunately I was not able to locate this recreational mathematics paper of Conway (which also treated the French language, if I recall correctly); perhaps one of the readers knows of it?


RSS Google+ feed

  • An error has occurred; the feed is probably down. Try again later.

RSS Mathematics in Australia

  • An error has occurred; the feed is probably down. Try again later.

Get every new post delivered to your Inbox.

Join 3,889 other followers