You are currently browsing the tag archive for the ‘Riesz representation theorem’ tag.

A key theme in real analysis is that of studying general functions {f: X \rightarrow {\bf R}} or {f: X \rightarrow {\bf C}} by first approximating them by “simpler” or “nicer” functions. But the precise class of “simple” or “nice” functions may vary from context to context. In measure theory, for instance, it is common to approximate measurable functions by indicator functions or simple functions. But in other parts of analysis, it is often more convenient to approximate rough functions by continuous or smooth functions (perhaps with compact support, or some other decay condition), or by functions in some algebraic class, such as the class of polynomials or trigonometric polynomials.

In order to approximate rough functions by more continuous ones, one of course needs tools that can generate continuous functions with some specified behaviour. The two basic tools for this are Urysohn’s lemma, which approximates indicator functions by continuous functions, and the Tietze extension theorem, which extends continuous functions on a subdomain to continuous functions on a larger domain. An important consequence of these theorems is the Riesz representation theorem for linear functionals on the space of compactly supported continuous functions, which describes such functionals in terms of Radon measures.

Sometimes, approximation by continuous functions is not enough; one must approximate continuous functions in turn by an even smoother class of functions. A useful tool in this regard is the Stone-Weierstrass theorem, that generalises the classical Weierstrass approximation theorem to more general algebras of functions.

As an application of this theory (and of many of the results accumulated in previous lecture notes), we will present (in an optional section) the commutative Gelfand-Neimark theorem classifying all commutative unital {C^*}-algebras.

Read the rest of this entry »

In the next few lectures, we will be studying four major classes of function spaces. In decreasing order of generality, these classes are the topological vector spaces, the normed vector spaces, the Banach spaces, and the Hilbert spaces. In order to motivate the discussion of the more general classes of spaces, we will first focus on the most special class – that of (real and complex) Hilbert spaces. These spaces can be viewed as generalisations of (real and complex) Euclidean spaces such as {\Bbb R}^n and {\Bbb C}^n to infinite-dimensional settings, and indeed much of one’s Euclidean geometry intuition concerning lengths, angles, orthogonality, subspaces, etc. will transfer readily to arbitrary Hilbert spaces; in contrast, this intuition is not always accurate in the more general vector spaces mentioned above. In addition to Euclidean spaces, another fundamental example of Hilbert spaces comes from the Lebesgue spaces L^2(X,{\mathcal X},\mu) of a measure space (X,{\mathcal X},\mu). (There are of course many other Hilbert spaces of importance in complex analysis, harmonic analysis, and PDE, such as Hardy spaces {\mathcal H}^2, Sobolev spaces H^s = W^{s,2}, and the space HS of Hilbert-Schmidt operators, but we will not discuss those spaces much in this course.  Complex Hilbert spaces also play a fundamental role in the foundations of quantum mechanics, being the natural space to hold all the possible states of a quantum system (possibly after projectivising the Hilbert space), but we will not discuss this subject here.)

Hilbert spaces are the natural abstract framework in which to study two important (and closely related) concepts: orthogonality and unitarity, allowing us to generalise familiar concepts and facts from Euclidean geometry such as the Cartesian coordinate system, rotations and reflections, and the Pythagorean theorem to Hilbert spaces. (For instance, the Fourier transform is a unitary transformation and can thus be viewed as a kind of generalised rotation.) Furthermore, the Hodge duality on Euclidean spaces has a partial analogue for Hilbert spaces, namely the Riesz representation theorem for Hilbert spaces, which makes the theory of duality and adjoints for Hilbert spaces especially simple (when compared with the more subtle theory of duality for, say, Banach spaces). Much later (next quarter, in fact), we will see that this duality allows us to extend the spectral theorem for self-adjoint matrices to that of self-adjoint operators on a Hilbert space.

These notes are only the most basic introduction to the theory of Hilbert spaces.  In particular, the theory of linear transformations between two Hilbert spaces, which is perhaps the most important aspect of the subject, is not covered much at all here (but I hope to discuss it further in future lectures.)

Read the rest of this entry »

Archives

RSS Google+ feed

  • An error has occurred; the feed is probably down. Try again later.

RSS Mathematics in Australia

  • An error has occurred; the feed is probably down. Try again later.
Follow

Get every new post delivered to your Inbox.

Join 3,892 other followers