You are currently browsing the tag archive for the ‘similar triangles’ tag.

My colleague Ricardo Pérez-Marco showed me a very cute proof of Pythagoras’ theorem, which I thought I would share here; it’s not particularly earth-shattering, but it is perhaps the most intuitive proof of the theorem that I have seen yet.

In the above diagram, a, b, c are the lengths BC, CA, and AB of the right-angled triangle ACB, while x and y are the areas of the right-angled triangles CDB and ADC respectively. Thus the whole triangle ACB has area x+y.

Now observe that the right-angled triangles CDB, ADC, and ACB are all similar (because of all the common angles), and thus their areas are proportional to the square of their respective hypotenuses. In other words, (x,y,x+y) is proportional to $(a^2, b^2, c^2)$. Pythagoras’ theorem follows.

### Recent Comments

 Anthony Quas on 254A, Notes 2: Complex-analyti… Fan on An airport-inspired puzzle Anonymous on 245A, Notes 5: Differentiation… Anonymous on 245A, Notes 5: Differentiation… Anonymous on 245A, Notes 5: Differentiation… John Mangual on The Erdos-Ulam problem, variet… Anonymous on Every odd integer larger than… Fan on The Erdos-Ulam problem, variet… Terence Tao on The Erdos-Ulam problem, variet… Sean Eberhard on The Erdos-Ulam problem, variet… Sean Eberhard on The Erdos-Ulam problem, variet… Eytan Paldi on Long gaps between primes Eytan Paldi on Long gaps between primes Anthony Quas on 254A, Notes 2: Complex-analyti… Matthew Cory on 254A, Supplement 3: The Gamma…