You are currently browsing the tag archive for the ‘von Neumann ergodic theorem’ tag.

The von Neumann ergodic theorem (the Hilbert space version of the mean ergodic theorem) asserts that if {U: H \rightarrow H} is a unitary operator on a Hilbert space {H}, and {v \in H} is a vector in that Hilbert space, then one has

\displaystyle  \lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N U^n v = \pi_{H^U} v

in the strong topology, where {H^U := \{ w \in H: Uw = w \}} is the {U}-invariant subspace of {H}, and {\pi_{H^U}} is the orthogonal projection to {H^U}. (See e.g. these previous lecture notes for a proof.) The same proof extends to more general amenable groups: if {G} is a countable amenable group acting on a Hilbert space {H} by unitary transformations {g: H \rightarrow H}, and {v \in H} is a vector in that Hilbert space, then one has

\displaystyle  \lim_{N \rightarrow \infty} \frac{1}{|\Phi_N|} \sum_{g \in \Phi_N} gv = \pi_{H^G} v \ \ \ \ \ (1)

for any Folner sequence {\Phi_N} of {G}, where {H^G := \{ w \in H: gw = w \hbox{ for all }g \in G \}} is the {G}-invariant subspace. Thus one can interpret {\pi_{H^G} v} as a certain average of elements of the orbit {Gv := \{ gv: g \in G \}} of {v}.

I recently discovered that there is a simple variant of this ergodic theorem that holds even when the group {G} is not amenable (or not discrete), using a more abstract notion of averaging:

Theorem 1 (Abstract ergodic theorem) Let {G} be an arbitrary group acting unitarily on a Hilbert space {H}, and let {v} be a vector in {H}. Then {\pi_{H^G} v} is the element in the closed convex hull of {Gv := \{ gv: g \in G \}} of minimal norm, and is also the unique element of {H^G} in this closed convex hull.

Proof: As the closed convex hull of {Gv} is closed, convex, and non-empty in a Hilbert space, it is a classical fact (see e.g. Proposition 1 of this previous post) that it has a unique element {F} of minimal norm. If {T_g F \neq F} for some {g}, then the midpoint of {T_g F} and {F} would be in the closed convex hull and be of smaller norm, a contradiction; thus {F} is {G}-invariant. To finish the first claim, it suffices to show that {v-F} is orthogonal to every element {h} of {H^G}. But if this were not the case for some such {h}, we would have {\langle T_g v - F, h \rangle = \langle v-F,h\rangle \neq 0} for all {g \in G}, and thus on taking convex hulls {\langle F-F,h\rangle = \langle f-F,f\rangle \neq 0}, a contradiction.

Finally, since {T_g v - F} is orthogonal to {H^G}, the same is true for {F'-F} for any {F'} in the closed convex hull of {Gv}, and this gives the second claim. \Box

This result is due to Alaoglu and Birkhoff. It implies the amenable ergodic theorem (1); indeed, given any {\epsilon>0}, Theorem 1 implies that there is a finite convex combination {v_\epsilon} of shifts {gv} of {v} which lies within {\epsilon} (in the {H} norm) to {\pi_{H^G} v}. By the triangle inequality, all the averages {\frac{1}{|\Phi_N|} \sum_{g \in \Phi_N} gv_\epsilon} also lie within {\epsilon} of {\pi_{H^G} v}, but by the Folner property this implies that the averages {\frac{1}{|\Phi_N|} \sum_{g \in \Phi_N} gv} are eventually within {2\epsilon} (say) of {\pi_{H^G} v}, giving the claim.

It turns out to be possible to use Theorem 1 as a substitute for the mean ergodic theorem in a number of contexts, thus removing the need for an amenability hypothesis. Here is a basic application:

Corollary 2 (Relative orthogonality) Let {G} be a group acting unitarily on a Hilbert space {H}, and let {V} be a {G}-invariant subspace of {H}. Then {V} and {H^G} are relatively orthogonal over their common subspace {V^G}, that is to say the restrictions of {V} and {H^G} to the orthogonal complement of {V^G} are orthogonal to each other.

Proof: By Theorem 1, we have {\pi_{H^G} v = \pi_{V^G} v} for all {v \in V}, and the claim follows. (Thanks to Gergely Harcos for this short argument.) \Box

Now we give a more advanced application of Theorem 1, to establish some “Mackey theory” over arbitrary groups {G}. Define a {G}-system {(X, {\mathcal X}, \mu, (T_g)_{g \in G})} to be a probability space {X = (X, {\mathcal X}, \mu)} together with a measure-preserving action {(T_g)_{g \in G}} of {G} on {X}; this gives an action of {G} on {L^2(X) = L^2(X,{\mathcal X},\mu)}, which by abuse of notation we also call {T_g}:

\displaystyle  T_g f := f \circ T_{g^{-1}}.

(In this post we follow the usual convention of defining the {L^p} spaces by quotienting out by almost everywhere equivalence.) We say that a {G}-system is ergodic if {L^2(X)^G} consists only of the constants.

(A technical point: the theory becomes slightly cleaner if we interpret our measure spaces abstractly (or “pointlessly“), removing the underlying space {X} and quotienting {{\mathcal X}} by the {\sigma}-ideal of null sets, and considering maps such as {T_g} only on this quotient {\sigma}-algebra (or on the associated von Neumann algebra {L^\infty(X)} or Hilbert space {L^2(X)}). However, we will stick with the more traditional setting of classical probability spaces here to keep the notation familiar, but with the understanding that many of the statements below should be understood modulo null sets.)

A factor {Y = (Y, {\mathcal Y}, \nu, (S_g)_{g \in G})} of a {G}-system {X = (X,{\mathcal X},\mu, (T_g)_{g \in G})} is another {G}-system together with a factor map {\pi: X \rightarrow Y} which commutes with the {G}-action (thus {T_g \pi = \pi S_g} for all {g \in G}) and respects the measure in the sense that {\mu(\pi^{-1}(E)) = \nu(E)} for all {E \in {\mathcal Y}}. For instance, the {G}-invariant factor {Z^0_G(X) := (X, {\mathcal X}^G, \mu\downharpoonright_{{\mathcal X}^G}, (T_g)_{g \in G})}, formed by restricting {X} to the invariant algebra {{\mathcal X}^G := \{ E \in {\mathcal X}: T_g E = E \hbox{ a.e. for all } g \in G \}}, is a factor of {X}. (This factor is the first factor in an important hierachy, the next element of which is the Kronecker factor {Z^1_G(X)}, but we will not discuss higher elements of this hierarchy further here.) If {Y} is a factor of {X}, we refer to {X} as an extension of {Y}.

From Corollary 2 we have

Corollary 3 (Relative independence) Let {X} be a {G}-system for a group {G}, and let {Y} be a factor of {X}. Then {Y} and {Z^0_G(X)} are relatively independent over their common factor {Z^0(Y)}, in the sense that the spaces {L^2(Y)} and {L^2(Z^0_G(X))} are relatively orthogonal over {L^2(Z^0_G(Y))} when all these spaces are embedded into {L^2(X)}.

This has a simple consequence regarding the product {X \times Y = (X \times Y, {\mathcal X} \times {\mathcal Y}, \mu \times \nu, (T_g \oplus S_g)_{g \in G})} of two {G}-systems {X = (X, {\mathcal X}, \mu, (T_g)_{g \in G})} and {Y = (Y, {\mathcal Y}, \nu, (S_g)_{g \in G})}, in the case when the {Y} action is trivial:

Lemma 4 If {X,Y} are two {G}-systems, with the action of {G} on {Y} trivial, then {Z^0_G(X \times Y)} is isomorphic to {Z^0_G(X) \times Y} in the obvious fashion.

This lemma is immediate for countable {G}, since for a {G}-invariant function {f}, one can ensure that {T_g f = f} holds simultaneously for all {g \in G} outside of a null set, but is a little trickier for uncountable {G}.

Proof: It is clear that {Z^0_G(X) \times Y} is a factor of {Z^0_G(X \times Y)}. To obtain the reverse inclusion, suppose that it fails, thus there is a non-zero {f \in L^2(Z^0_G(X \times Y))} which is orthogonal to {L^2(Z^0_G(X) \times Y)}. In particular, we have {fg} orthogonal to {L^2(Z^0_G(X))} for any {g \in L^\infty(Y)}. Since {fg} lies in {L^2(Z^0_G(X \times Y))}, we conclude from Corollary 3 (viewing {X} as a factor of {X \times Y}) that {fg} is also orthogonal to {L^2(X)}. Since {g} is an arbitrary element of {L^\infty(Y)}, we conclude that {f} is orthogonal to {L^2(X \times Y)} and in particular is orthogonal to itself, a contradiction. (Thanks to Gergely Harcos for this argument.) \Box

Now we discuss the notion of a group extension.

Definition 5 (Group extension) Let {G} be an arbitrary group, let {Y = (Y, {\mathcal Y}, \nu, (S_g)_{g \in G})} be a {G}-system, and let {K} be a compact metrisable group. A {K}-extension of {Y} is an extension {X = (X, {\mathcal X}, \mu, (T_g)_{g \in G})} whose underlying space is {X = Y \times K} (with {{\mathcal X}} the product of {{\mathcal Y}} and the Borel {\sigma}-algebra on {K}), the factor map is {\pi: (y,k) \mapsto y}, and the shift maps {T_g} are given by

\displaystyle  T_g ( y, k ) = (S_g y, \rho_g(y) k )

where for each {g \in G}, {\rho_g: Y \rightarrow K} is a measurable map (known as the cocycle associated to the {K}-extension {X}).

An important special case of a {K}-extension arises when the measure {\mu} is the product of {\nu} with the Haar measure {dk} on {K}. In this case, {X} also has a {K}-action {k': (y,k) \mapsto (y,k(k')^{-1})} that commutes with the {G}-action, making {X} a {G \times K}-system. More generally, {\mu} could be the product of {\nu} with the Haar measure {dh} of some closed subgroup {H} of {K}, with {\rho_g} taking values in {H}; then {X} is now a {G \times H} system. In this latter case we will call {X} {H}-uniform.

If {X} is a {K}-extension of {Y} and {U: Y \rightarrow K} is a measurable map, we can define the gauge transform {X_U} of {X} to be the {K}-extension of {Y} whose measure {\mu_U} is the pushforward of {\mu} under the map {(y,k) \mapsto (y, U(y) k)}, and whose cocycles {\rho_{g,U}: Y \rightarrow K} are given by the formula

\displaystyle  \rho_{g,U}(y) := U(gy) \rho_g(y) U(y)^{-1}.

It is easy to see that {X_U} is a {K}-extension that is isomorphic to {X} as a {K}-extension of {Y}; we will refer to {X_U} and {X} as equivalent systems, and {\rho_{g,U}} as cohomologous to {\rho_g}. We then have the following fundamental result of Mackey and of Zimmer:

Theorem 6 (Mackey-Zimmer theorem) Let {G} be an arbitrary group, let {Y} be an ergodic {G}-system, and let {K} be a compact metrisable group. Then every ergodic {K}-extension {X} of {Y} is equivalent to an {H}-uniform extension of {Y} for some closed subgroup {H} of {K}.

This theorem is usually stated for amenable groups {G}, but by using Theorem 1 (or more precisely, Corollary 3) the result is in fact also valid for arbitrary groups; we give the proof below the fold. (In the usual formulations of the theorem, {X} and {Y} are also required to be Lebesgue spaces, or at least standard Borel, but again with our abstract approach here, such hypotheses will be unnecessary.) Among other things, this theorem plays an important role in the Furstenberg-Zimmer structural theory of measure-preserving systems (as well as subsequent refinements of this theory by Host and Kra); see this previous blog post for some relevant discussion. One can obtain similar descriptions of non-ergodic extensions via the ergodic decomposition, but the result becomes more complicated to state, and we will not do so here.

Read the rest of this entry »

We now begin our study of measure-preserving systems (X, {\mathcal X}, \mu, T), i.e. a probability space (X, {\mathcal X}, \mu) together with a probability space isomorphism T: (X, {\mathcal X}, \mu) \to (X, {\mathcal X}, \mu) (thus T: X \to X is invertible, with T and T^{-1} both being measurable, and \mu(T^n E) = \mu(E) for all E \in {\mathcal X} and all n). For various technical reasons it is convenient to restrict to the case when the \sigma-algebra {\mathcal X} is separable, i.e. countably generated. One reason for this is as follows:

Exercise 1. Let (X, {\mathcal X}, \mu) be a probability space with {\mathcal X} separable. Then the Banach spaces L^p(X, {\mathcal X}, \mu) are separable (i.e. have a countable dense subset) for every 1 \leq p < \infty; in particular, the Hilbert space L^2(X, {\mathcal X}, \mu) is separable. Show that the claim can fail for p = \infty. (We allow the L^p spaces to be either real or complex valued, unless otherwise specified.) \diamond

Remark 1. In practice, the requirement that {\mathcal X} be separable is not particularly onerous. For instance, if one is studying the recurrence properties of a function f: X \to {\Bbb R} on a non-separable measure-preserving system (X, {\mathcal X}, \mu, T), one can restrict {\mathcal X} to the separable sub-\sigma-algebra {\mathcal X}' generated by the level sets \{ x \in X: T^n f(x) > q \} for integer n and rational q, thus passing to a separable measure-preserving system (X, {\mathcal X}', \mu, T) on which f is still measurable. Thus we see that in many cases of interest, we can immediately reduce to the separable case. (In particular, for many of the theorems in this course, the hypothesis of separability can be dropped, though we won’t bother to specify for which ones this is the case.) \diamond

We are interested in the recurrence properties of sets E \in {\mathcal X} or functions f \in L^p(X, {\mathcal X}, \mu). The simplest such recurrence theorem is

Theorem 1. (Poincaré recurrence theorem) Let (X,{\mathcal X},\mu,T) be a measure-preserving system, and let E \in {\mathcal X} be a set of positive measure. Then \limsup_{n \to +\infty} \mu( E \cap T^n E ) \geq \mu(E)^2. In particular, E \cap T^n E has positive measure (and is thus non-empty) for infinitely many n.

(Compare with Theorem 1 of Lecture 3.)

Proof. For any integer N > 1, observe that \int_X \sum_{n=1}^N 1_{T^n E}\ d\mu = N \mu(E), and thus by Cauchy-Schwarz

\int_X (\sum_{n=1}^N 1_{T^n E})^2\ d\mu \geq N^2 \mu(E)^2. (1)

The left-hand side of (1) can be rearranged as

\sum_{n=1}^N \sum_{m=1}^N \mu( T^n E \cap T^m E ). (2)

On the other hand, \mu( T^n E \cap T^m E) = \mu( E \cap T^{m-n} E ). From this one easily obtains the asymptotic

(2)\leq (\limsup_{n \to \infty} \mu( E \cap T^n E ) + o(1)) N^2, (3)

where o(1) denotes an expression which goes to zero as N goes to infinity. Combining (1), (2), (3) and taking limits as N \to +\infty we obtain

\limsup_{n \to \infty} \mu( E \cap T^n E ) \geq \mu(E)^2 (4)

as desired. \Box

Remark 2. In classical physics, the evolution of a physical system in a compact phase space is given by a (continuous-time) measure-preserving system (this is Hamilton’s equations of motion combined with Liouville’s theorem). The Poincaré recurrence theorem then has the following unintuitive consequence: every collection E of states of positive measure, no matter how small, must eventually return to overlap itself given sufficient time. For instance, if one were to burn a piece of paper in a closed system, then there exist arbitrarily small perturbations of the initial conditions such that, if one waits long enough, the piece of paper will eventually reassemble (modulo arbitrarily small error)! This seems to contradict the second law of thermodynamics, but the reason for the discrepancy is because the time required for the recurrence theorem to take effect is inversely proportional to the measure of the set E, which in physical situations is exponentially small in the number of degrees of freedom (which is already typically quite large, e.g. of the order of the Avogadro constant). This gives more than enough opportunity for Maxwell’s demon to come into play to reverse the increase of entropy. (This can be viewed as a manifestation of the curse of dimensionality.) The more sophisticated recurrence theorems we will see later have much poorer quantitative bounds still, so much so that they basically have no direct significance for any physical dynamical system with many relevant degrees of freedom. \diamond

Exercise 2. Prove the following generalisation of the Poincaré recurrence theorem: if (X, {\mathcal X}, \mu, T) is a measure-preserving system and f \in L^1(X, {\mathcal X},\mu) is non-negative, then \limsup_{n \to +\infty} \int_X f T^n f \geq (\int_X f\ d\mu)^2. \diamond

Exercise 3. Give examples to show that the quantity \mu(E)^2 in the conclusion of Theorem 1 cannot be replaced by any smaller quantity in general, regardless of the actual value of \mu(E). (Hint: use a Bernoulli system example.) \diamond

Exercise 4. Using the pigeonhole principle instead of the Cauchy-Schwarz inequality (and in particular, the statement that if \mu(E_1) + \ldots + \mu(E_n) > 1, then the sets E_1,\ldots,E_n cannot all be disjoint), prove the weaker statement that for any set E of positive measure in a measure-preserving system, the set E \cap T^n E is non-empty for infinitely many n. (This exercise illustrates the general point that the Cauchy-Schwarz inequality can be viewed as a quantitative strengthening of the pigeonhole principle.) \diamond

For this lecture and the next we shall study several variants of the Poincaré recurrence theorem. We begin by looking at the mean ergodic theorem, which studies the limiting behaviour of the ergodic averages \frac{1}{N} \sum_{n=1}^N T^n f in various L^p spaces, and in particular in L^2.

Read the rest of this entry »

Archives

RSS Google+ feed

  • An error has occurred; the feed is probably down. Try again later.
Follow

Get every new post delivered to your Inbox.

Join 3,585 other followers