Next week, I will be teaching Math 246A, the first course in the three-quarter graduate complex analysis sequence.  This first course covers much of the same ground as an honours undergraduate complex analysis course, in particular focusing on the basic properties of holomorphic functions such as the Cauchy and residue theorems, the classification of singularities, and the maximum principle, but there will be more of an emphasis on rigour, generalisation and abstraction, and connections with other parts of mathematics.  If time permits I may also cover topics such as factorisation theorems, harmonic functions, conformal mapping, and/or applications to analytic number theory.  The main text I will be using for this course is Stein-Shakarchi (with Ahlfors as a secondary text), but as usual I will also be writing notes for the course on this blog.