You are currently browsing the monthly archive for June 2018.
This is a sequel to this previous blog post, in which we discussed the effect of the heat flow evolution
on the zeroes of a time-dependent family of polynomials , with a particular focus on the case when the polynomials
had real zeroes. Here (inspired by some discussions I had during a recent conference on the Riemann hypothesis in Bristol) we record the analogous theory in which the polynomials instead have zeroes on a circle
, with the heat flow slightly adjusted to compensate for this. As we shall discuss shortly, a key example of this situation arises when
is the numerator of the zeta function of a curve.
More precisely, let be a natural number. We will say that a polynomial
of degree (so that
) obeys the functional equation if the
are all real and
for all , thus
and
for all non-zero . This means that the
zeroes
of
(counting multiplicity) lie in
and are symmetric with respect to complex conjugation
and inversion
across the circle
. We say that this polynomial obeys the Riemann hypothesis if all of its zeroes actually lie on the circle
. For instance, in the
case, the polynomial
obeys the Riemann hypothesis if and only if
.
Such polynomials arise in number theory as follows: if is a projective curve of genus
over a finite field
, then, as famously proven by Weil, the associated local zeta function
(as defined for instance in this previous blog post) is known to take the form
where is a degree
polynomial obeying both the functional equation and the Riemann hypothesis. In the case that
is an elliptic curve, then
and
takes the form
, where
is the number of
-points of
minus
. The Riemann hypothesis in this case is a famous result of Hasse.
Another key example of such polynomials arise from rescaled characteristic polynomials
of matrices
in the compact symplectic group
. These polynomials obey both the functional equation and the Riemann hypothesis. The Sato-Tate conjecture (in higher genus) asserts, roughly speaking, that “typical” polyomials
arising from the number theoretic situation above are distributed like the rescaled characteristic polynomials (1), where
is drawn uniformly from
with Haar measure.
Given a polynomial of degree
with coefficients
we can evolve it in time by the formula
thus for
. Informally, as one increases
, this evolution accentuates the effect of the extreme monomials, particularly,
and
at the expense of the intermediate monomials such as
, and conversely as one decreases
. This family of polynomials obeys the heat-type equation
In view of the results of Marcus, Spielman, and Srivastava, it is also very likely that one can interpret this flow in terms of expected characteristic polynomials involving conjugation over the compact symplectic group , and should also be tied to some sort of “
” version of Brownian motion on this group, but we have not attempted to work this connection out in detail.
It is clear that if obeys the functional equation, then so does
for any other time
. Now we investigate the evolution of the zeroes. Suppose at some time
that the zeroes
of
are distinct, then
From the inverse function theorem we see that for times sufficiently close to
, the zeroes
of
continue to be distinct (and vary smoothly in
), with
Differentiating this at any not equal to any of the
, we obtain
and
and
Inserting these formulae into (2) (expanding as
) and canceling some terms, we conclude that
for sufficiently close to
, and
not equal to
. Extracting the residue at
, we conclude that
which we can rearrange as
If we make the change of variables (noting that one can make
depend smoothly on
for
sufficiently close to
), this becomes
Intuitively, this equation asserts that the phases repel each other if they are real (and attract each other if their difference is imaginary). If
obeys the Riemann hypothesis, then the
are all real at time
, then the Picard uniqueness theorem (applied to
and its complex conjugate) then shows that the
are also real for
sufficiently close to
. If we then define the entropy functional
then the above equation becomes a gradient flow
which implies in particular that is non-increasing in time. This shows that as one evolves time forward from
, there is a uniform lower bound on the separation between the phases
, and hence the equation can be solved indefinitely; in particular,
obeys the Riemann hypothesis for all
if it does so at time
. Our argument here assumed that the zeroes of
were simple, but this assumption can be removed by the usual limiting argument.
For any polynomial obeying the functional equation, the rescaled polynomials
converge locally uniformly to
as
. By Rouche’s theorem, we conclude that the zeroes of
converge to the equally spaced points
on the circle
. Together with the symmetry properties of the zeroes, this implies in particular that
obeys the Riemann hypothesis for all sufficiently large positive
. In the opposite direction, when
, the polynomials
converge locally uniformly to
, so if
,
of the zeroes converge to the origin and the other
converge to infinity. In particular,
fails the Riemann hypothesis for sufficiently large negative
. Thus (if
), there must exist a real number
, which we call the de Bruijn-Newman constant of the original polynomial
, such that
obeys the Riemann hypothesis for
and fails the Riemann hypothesis for
. The situation is a bit more complicated if
vanishes; if
is the first natural number such that
(or equivalently,
) does not vanish, then by the above arguments one finds in the limit
that
of the zeroes go to the origin,
go to infinity, and the remaining
zeroes converge to the equally spaced points
. In this case the de Bruijn-Newman constant remains finite except in the degenerate case
, in which case
.
For instance, consider the case when and
for some real
with
. Then the quadratic polynomial
has zeroes
and one easily checks that these zeroes lie on the circle when
, and are on the real axis otherwise. Thus in this case we have
(with
if
). Note how as
increases to
, the zeroes repel each other and eventually converge to
, while as
decreases to
, the zeroes collide and then separate on the real axis, with one zero going to the origin and the other to infinity.
The arguments in my paper with Brad Rodgers (discussed in this previous post) indicate that for a “typical” polynomial of degree
that obeys the Riemann hypothesis, the expected time to relaxation to equilibrium (in which the zeroes are equally spaced) should be comparable to
, basically because the average spacing is
and hence by (3) the typical velocity of the zeroes should be comparable to
, and the diameter of the unit circle is comparable to
, thus requiring time comparable to
to reach equilibrium. Taking contrapositives, this suggests that the de Bruijn-Newman constant
should typically take on values comparable to
(since typically one would not expect the initial configuration of zeroes to be close to evenly spaced). I have not attempted to formalise or prove this claim, but presumably one could do some numerics (perhaps using some of the examples of
given previously) to explore this further.
Recent Comments