You are currently browsing the monthly archive for August 2018.
Let be a field, and let
be a finite extension of that field; in this post we will denote such a relationship by
. We say that
is a Galois extension of
if the cardinality of the automorphism group
of
fixing
is as large as it can be, namely the degree
of the extension. In that case, we call
the Galois group of
over
and denote it also by
. The fundamental theorem of Galois theory then gives a one-to-one correspondence (also known as the Galois correspondence) between the intermediate extensions between
and
and the subgroups of
:
Theorem 1 (Fundamental theorem of Galois theory) Let
be a Galois extension of
.
- (i) If
is an intermediate field betwen
and
, then
is a Galois extension of
, and
is a subgroup of
.
- (ii) Conversely, if
is a subgroup of
, then there is a unique intermediate field
such that
; namely
is the set of elements of
that are fixed by
.
- (iii) If
and
, then
if and only if
is a subgroup of
.
- (iv) If
is an intermediate field between
and
, then
is a Galois extension of
if and only if
is a normal subgroup of
. In that case,
is isomorphic to the quotient group
.
Example 2 Let
, and let
be the degree
Galois extension formed by adjoining a primitive
root of unity (that is to say,
is the cyclotomic field of order
). Then
is isomorphic to the multiplicative cyclic group
(the invertible elements of the ring
). Amongst the intermediate fields, one has the cyclotomic fields of the form
where
divides
; they are also Galois extensions, with
isomorphic to
and
isomorphic to the elements
of
such that
modulo
. (There can also be other intermediate fields, corresponding to other subgroups of
.)
Example 3 Let
be the field of rational functions of one indeterminate
with complex coefficients, and let
be the field formed by adjoining an
root
to
, thus
. Then
is a degree
Galois extension of
with Galois group isomorphic to
(with an element
corresponding to the field automorphism of
that sends
to
). The intermediate fields are of the form
where
divides
; they are also Galois extensions, with
isomorphic to
and
isomorphic to the multiples of
in
.
There is an analogous Galois correspondence in the covering theory of manifolds. For simplicity we restrict attention to finite covers. If is a connected manifold and
is a finite covering map of
by another connected manifold
, we denote this relationship by
. (Later on we will change our function notations slightly and write
in place of the more traditional
, and similarly for the deck transformations
below; more on this below the fold.) If
, we can define
to be the group of deck transformations: continuous maps
which preserve the fibres of
. We say that this covering map is a Galois cover if the cardinality of the group
is as large as it can be. In that case we call
the Galois group of
over
and denote it by
.
Suppose is a finite cover of
. An intermediate cover
between
and
is a cover of
by
, such that
, in such a way that the covering maps are compatible, in the sense that
is the composition of
and
. This sort of compatibilty condition will be implicitly assumed whenever we chain together multiple instances of the
notation. Two intermediate covers
are equivalent if they cover each other, in a fashion compatible with all the other covering maps, thus
and
. We then have the analogous Galois correspondence:
Theorem 4 (Fundamental theorem of covering spaces) Let
be a Galois covering.
- (i) If
is an intermediate cover betwen
and
, then
is a Galois extension of
, and
is a subgroup of
.
- (ii) Conversely, if
is a subgroup of
, then there is a intermediate cover
, unique up to equivalence, such that
.
- (iii) If
and
, then
if and only if
is a subgroup of
.
- (iv) If
, then
is a Galois cover of
if and only if
is a normal subgroup of
. In that case,
is isomorphic to the quotient group
.
Example 5 Let
, and let
be the
-fold cover of
with covering map
. Then
is a Galois cover of
, and
is isomorphic to the cyclic group
. The intermediate covers are (up to equivalence) of the form
with covering map
where
divides
; they are also Galois covers, with
isomorphic to
and
isomorphic to the multiples of
in
.
Given the strong similarity between the two theorems, it is natural to ask if there is some more concrete connection between Galois theory and the theory of finite covers.
In one direction, if the manifolds have an algebraic structure (or a complex structure), then one can relate covering spaces to field extensions by considering the field of rational functions (or meromorphic functions) on the space. For instance, if
and
is the coordinate on
, one can consider the field
of rational functions on
; the
-fold cover
with coordinate
from Example 5 similarly has a field
of rational functions. The covering
relates the two coordinates
by the relation
, at which point one sees that the rational functions
on
are a degree
extension of that of
(formed by adjoining the
root of unity
to
). In this way we see that Example 5 is in fact closely related to Example 3.
Exercise 6 What happens if one uses meromorphic functions in place of rational functions in the above example? (To answer this question, I found it convenient to use a discrete Fourier transform associated to the multiplicative action of the
roots of unity on
to decompose the meromorphic functions on
as a linear combination of functions invariant under this action, times a power
of the coordinate
for
.)
I was curious however about the reverse direction. Starting with some field extensions , is it is possible to create manifold like spaces
associated to these fields in such a fashion that (say)
behaves like a “covering space” to
with a group
of deck transformations isomorphic to
, so that the Galois correspondences agree? Also, given how the notion of a path (and associated concepts such as loops, monodromy and the fundamental group) play a prominent role in the theory of covering spaces, can spaces such as
or
also come with a notion of a path that is somehow compatible with the Galois correspondence?
The standard answer from modern algebraic geometry (as articulated for instance in this nice MathOverflow answer by Minhyong Kim) is to set equal to the spectrum
of the field
. As a set, the spectrum
of a commutative ring
is defined as the set of prime ideals of
. Generally speaking, the map
that maps a commutative ring to its spectrum tends to act like an inverse of the operation that maps a space
to a ring of functions on that space. For instance, if one considers the commutative ring
of regular functions on
, then each point
in
gives rise to the prime ideal
, and one can check that these are the only such prime ideals (other than the zero ideal
), giving an almost one-to-one correspondence between
and
. (The zero ideal corresponds instead to the generic point of
.)
Of course, the spectrum of a field such as is just a point, as the zero ideal
is the only prime ideal. Naively, it would then seem that there is not enough space inside such a point to support a rich enough structure of paths to recover the Galois theory of this field. In modern algebraic geometry, one addresses this issue by considering not just the set-theoretic elements of
, but more general “base points”
that map from some other (affine) scheme
to
(one could also consider non-affine base points of course). One has to rework many of the fundamentals of the subject to accommodate this “relative point of view“, for instance replacing the usual notion of topology with an étale topology, but once one does so one obtains a very satisfactory theory.
As an exercise, I set myself the task of trying to interpret Galois theory as an analogue of covering space theory in a more classical fashion, without explicit reference to more modern concepts such as schemes, spectra, or étale topology. After some experimentation, I found a reasonably satisfactory way to do so as follows. The space that one associates with
in this classical perspective is not the single point
, but instead the much larger space consisting of ring homomorphisms
from
to arbitrary integral domains
; informally,
consists of all the “models” or “representations” of
(in the spirit of this previous blog post). (There is a technical set-theoretic issue here because the class of integral domains
is a proper class, so that
will also be a proper class; I will completely ignore such technicalities in this post.) We view each such homomorphism
as a single point in
. The analogous notion of a path from one point
to another
is then a homomorphism
of integral domains, such that
is the composition of
with
. Note that every prime ideal
in the spectrum
of a commutative ring
gives rise to a point
in the space
defined here, namely the quotient map
to the ring
, which is an integral domain because
is prime. So one can think of
as being a distinguished subset of
; alternatively, one can think of
as a sort of “penumbra” surrounding
. In particular, when
is a field,
defines a special point
in
, namely the identity homomorphism
.
Below the fold I would like to record this interpretation of Galois theory, by first revisiting the theory of covering spaces using paths as the basic building block, and then adapting that theory to the theory of field extensions using the spaces indicated above. This is not too far from the usual scheme-theoretic way of phrasing the connection between the two topics (basically I have replaced étale-type points with more classical points
), but I had not seen it explicitly articulated before, so I am recording it here for my own benefit and for any other readers who may be interested.
As readers who have followed my previous post will know, I have been spending the last few weeks extending my previous interactive text on propositional logic (entitied “QED”) to also cover first-order logic. The text has now reached what seems to be a stable form, with a complete set of deductive rules for first-order logic with equality, and no major bugs as far as I can tell (apart from one weird visual bug I can’t eradicate, in that some graphics elements can occasionally temporarily disappear when one clicks on an item). So it will likely not change much going forward.
I feel though that there could be more that could be done with this sort of framework (e.g., improved GUI, modification to other logics, developing the ability to write one’s own texts and libraries, exploring mathematical theories such as Peano arithmetic, etc.). But writing this text (particularly the first-order logic sections) has brought me close to the limit of my programming ability, as the number of bugs introduced with each new feature implemented has begun to grow at an alarming rate. I would like to repackage the code so that it can be re-used by more adept programmers for further possible applications, though I have never done something like this before and would appreciate advice on how to do so. The code is already available under a Creative Commons licence, but I am not sure how readable and modifiable it will be to others currently. [Update: it is now on GitHub.]
[One thing I noticed is that I would probably have to make more of a decoupling between the GUI elements, the underlying logical elements, and the interactive text. For instance, at some point I made the decision (convenient at the time) to use some GUI elements to store some of the state variables of the text, e.g. the exercise buttons are currently storing the status of what exercises are unlocked or not. This is presumably not an example of good programming practice, though it would be relatively easy to fix. More seriously, due to my inability to come up with a good general-purpose matching algorithm (or even specification of such an algorithm) for the the laws of first-order logic, many of the laws have to be hard-coded into the matching routine, so one cannot currently remove them from the text. It may well be that the best thing to do in fact is to rework the entire codebase from scratch using more professional software design methods.]
[Update, Aug 23: links moved to GitHub version.]
Every four years at the International Congress of Mathematicians (ICM), the Fields Medal laureates are announced. Today, at the 2018 ICM in Rio de Janeiro, it was announced that the Fields Medal was awarded to Caucher Birkar, Alessio Figalli, Peter Scholze, and Akshay Venkatesh.
After the two previous congresses in 2010 and 2014, I wrote blog posts describing some of the work of each of the winners. This time, though, I happened to be a member of the Fields Medal selection committee, and as such had access to a large number of confidential letters and discussions about the candidates with the other committee members; in order to have the opinions and discussion as candid as possible, it was explicitly understood that these communications would not be publicly disclosed. Because of this, I will unfortunately not be able to express much of a comment or opinion on the candidates or the process as an individual (as opposed to a joint statement of the committee). I can refer you instead to the formal citations of the laureates (which, as a committee member, I was involved in crafting, and then signing off on), or the profiles of the laureates by Quanta magazine; see also the short biographical videos of the laureates by the Simons Foundation that accompanied the formal announcements of the winners. I am sure, though, that there will be plenty of other mathematicians who will be able to present the work of each of the medalists (for instance, there was a laudatio given at the ICM for each of the winners, which should eventually be made available at this link).
I know that there is a substantial amount of interest in finding out more about the inner workings of the Fields Medal selection process. For the reasons stated above, I as an individual will unfortunately be unable to answer any questions about this process (e.g., I cannot reveal any information about other nominees, or of any comparisons between any two candidates or nominees). I think I can safely express the following two personal opinions though. Firstly, while I have served on many prize committees in the past, the process for the Fields Medal committee was by far the most thorough and deliberate of any I have been part of, and I for one learned an astonishing amount about the mathematical work of all of the shortlisted nominees, which was an absolutely essential component of the deliberations, in particular giving the discussions a context which would have been very difficult to obtain for an individual mathematician not in possession of all the confidential letters, presentations, and other information available to the committee (in particular, some of my preconceived impressions about the nominees going into the process had to be corrected in light of this more complete information). Secondly, I believe the four medalists are all extremely deserving recipients of the prize, and I fully stand by the decision of the committee to award the Fields medals this year to these four.
I’ll leave the comments to this post open for anyone who wishes to discuss the work of the medalists. But, for the reasons above, I will not participate in the discussion myself.
[Edit, Aug 1: looks like the ICM site is (barely) up and running now, so links have been added. At this time of writing, there does not seem to be an online announcement of the composition of the committee, but this should appear in due course. -T.]
[Edit, Aug 9: the composition of the Fields Medal Committee for 2018 (which included myself) can be found here. -T.]
Recent Comments