In this previous blog post I noted the following easy application of Cauchy-Schwarz:

Lemma 1 (Van der Corput inequality) Let {v,u_1,\dots,u_n} be unit vectors in a Hilbert space {H}. Then

\displaystyle  (\sum_{i=1}^n |\langle v, u_i \rangle_H|)^2 \leq \sum_{1 \leq i,j \leq n} |\langle u_i, u_j \rangle_H|.

Proof: The left-hand side may be written as {\langle v, \sum_{i=1}^n \epsilon_i u_i \rangle_H} for some unit complex numbers {\epsilon_i}. By Cauchy-Schwarz we have

\displaystyle  |\langle v, \sum_{i=1}^n \epsilon_i u_i \rangle_H|^2 \leq \langle \sum_{i=1}^n \epsilon_i u_i, \sum_{j=1}^n \epsilon_j u_j \rangle_H

and the claim now follows from the triangle inequality. \Box

As a corollary, correlation becomes transitive in a statistical sense (even though it is not transitive in an absolute sense):

Corollary 2 (Statistical transitivity of correlation) Let {v,u_1,\dots,u_n} be unit vectors in a Hilbert space {H} such that {|\langle v,u_i \rangle_H| \geq \delta} for all {i=1,\dots,n} and some {0 < \delta \leq 1}. Then we have {|\langle u_i, u_j \rangle_H| \geq \delta^2/2} for at least {\delta^2 n^2/2} of the pairs {(i,j) \in \{1,\dots,n\}^2}.

Proof: From the lemma, we have

\displaystyle  \sum_{1 \leq i,j \leq n} |\langle u_i, u_j \rangle_H| \geq \delta^2 n^2.

The contribution of those {i,j} with {|\langle u_i, u_j \rangle_H| < \delta^2/2} is at most {\delta^2 n^2/2}, and all the remaining summands are at most {1}, giving the claim. \Box

One drawback with this corollary is that it does not tell us which pairs {u_i,u_j} correlate. In particular, if the vector {v} also correlates with a separate collection {w_1,\dots,w_n} of unit vectors, the pairs {(i,j)} for which {u_i,u_j} correlate may have no intersection whatsoever with the pairs in which {w_i,w_j} correlate (except of course on the diagonal {i=j} where they must correlate).

While working on an ongoing research project, I recently found that there is a very simple way to get around the latter problem by exploiting the tensor power trick:

Corollary 3 (Simultaneous statistical transitivity of correlation) Let {v, u^k_i} be unit vectors in a Hilbert space for {i=1,\dots,n} and {k=1,\dots,K} such that {|\langle v, u^k_i \rangle_H| \geq \delta_k} for all {i=1,\dots,n}, {k=1,\dots,K} and some {0 < \delta_k \leq 1}. Then there are at least {(\delta_1 \dots \delta_K)^2 n^2/2} pairs {(i,j) \in \{1,\dots,n\}^2} such that {\prod_{k=1}^K |\langle u^k_i, u^k_j \rangle_H| \geq (\delta_1 \dots \delta_K)^2/2}. In particular (by Cauchy-Schwarz) we have {|\langle u^k_i, u^k_j \rangle_H| \geq (\delta_1 \dots \delta_K)^2/2} for all {k}.

Proof: Apply Corollary 2 to the unit vectors {v^{\otimes K}} and {u^1_i \otimes \dots \otimes u^K_i}, {i=1,\dots,n} in the tensor power Hilbert space {H^{\otimes K}}. \Box

It is surprisingly difficult to obtain even a qualitative version of the above conclusion (namely, if {v} correlates with all of the {u^k_i}, then there are many pairs {(i,j)} for which {u^k_i} correlates with {u^k_j} for all {k} simultaneously) without some version of the tensor power trick. For instance, even the powerful Szemerédi regularity lemma, when applied to the set of pairs {i,j} for which one has correlation of {u^k_i}, {u^k_j} for a single {i,j}, does not seem to be sufficient. However, there is a reformulation of the argument using the Schur product theorem as a substitute for (or really, a disguised version of) the tensor power trick. For simplicity of notation let us just work with real Hilbert spaces to illustrate the argument. We start with the identity

\displaystyle  \langle u^k_i, u^k_j \rangle_H = \langle v, u^k_i \rangle_H \langle v, u^k_j \rangle_H + \langle \pi(u^k_i), \pi(u^k_j) \rangle_H

where {\pi} is the orthogonal projection to the complement of {v}. This implies a Gram matrix inequality

\displaystyle  (\langle u^k_i, u^k_j \rangle_H)_{1 \leq i,j \leq n} \succ (\langle v, u^k_i \rangle_H \langle v, u^k_j \rangle_H)_{1 \leq i,j \leq n} \succ 0

for each {k} where {A \succ B} denotes the claim that {A-B} is positive semi-definite. By the Schur product theorem, we conclude that

\displaystyle  (\prod_{k=1}^K \langle u^k_i, u^k_j \rangle_H)_{1 \leq i,j \leq n} \succ (\prod_{k=1}^K \langle v, u^k_i \rangle_H \langle v, u^k_j \rangle_H)_{1 \leq i,j \leq n}

and hence for a suitable choice of signs {\epsilon_1,\dots,\epsilon_n},

\displaystyle  \sum_{1 \leq i, j \leq n} \epsilon_i \epsilon_j \prod_{k=1}^K \langle u^k_i, u^k_j \rangle_H \geq \delta_1^2 \dots \delta_K^2 n^2.

One now argues as in the proof of Corollary 2.

A separate application of tensor powers to amplify correlations was also noted in this previous blog post giving a cheap version of the Kabatjanskii-Levenstein bound, but this seems to not be directly related to this current application.