You are currently browsing the monthly archive for December 2021.

Asgar Jamneshan and myself have just uploaded to the arXiv our preprint “The inverse theorem for the Gowers uniformity norm on arbitrary finite abelian groups: Fourier-analytic and ergodic approaches“. This paper, which is a companion to another recent paper of ourselves and Or Shalom, studies the inverse theory for the third Gowers uniformity norm

on an arbitrary finite abelian group , where is the multiplicative derivative. Our main result is as follows:

Theorem 1 (Inverse theorem for )Let be a finite abelian group, and let be a -bounded function with for some . Then:

- (i) (Correlation with locally quadratic phase) There exists a regular Bohr set with and , a locally quadratic function , and a function such that
- (ii) (Correlation with nilsequence) There exists an explicit degree two filtered nilmanifold of dimension , a polynomial map , and a Lipschitz function of constant such that

Such a theorem was proven by Ben Green and myself in the case when was odd, and by Samorodnitsky in the -torsion case . In all cases one uses the “higher order Fourier analysis” techniques introduced by Gowers. After some now-standard manipulations (using for instance what is now known as the Balog-Szemerédi-Gowers lemma), one arrives (for arbitrary ) at an estimate that is roughly of the form

where denotes various -bounded functions whose exact values are not too important, and is a symmetric locally bilinear form. The idea is then to “integrate” this form by expressing it in the form for some locally quadratic ; this then allows us to write the above correlation as (after adjusting the functions suitably), and one can now conclude part (i) of the above theorem using some linear Fourier analysis. Part (ii) follows by encoding locally quadratic phase functions as nilsequences; for this we adapt an algebraic construction of Manners.So the key step is to obtain a representation of the form (1), possibly after shrinking the Bohr set a little if needed. This has been done in the literature in two ways:

- When is odd, one has the ability to divide by , and on the set one can establish (1) with . (This is similar to how in single variable calculus the function is a function whose second derivative is equal to .)
- When , then after a change of basis one can take the Bohr set to be for some , and the bilinear form can be written in coordinates as for some with . The diagonal terms cause a problem, but by subtracting off the rank one form one can write on the orthogonal complement of for some coefficients which now vanish on the diagonal: . One can now obtain (1) on this complement by taking

In our paper we can now treat the case of arbitrary finite abelian groups , by means of the following two new ingredients:

- (i) Using some geometry of numbers, we can lift the group to a larger (possibly infinite, but still finitely generated) abelian group with a projection map , and find a
*globally*bilinear map on the latter group, such that one has a representation of the locally bilinear form by the globally bilinear form when are close enough to the origin. - (ii) Using an explicit construction, one can show that every globally bilinear map has a representation of the form (1) for some globally quadratic function .

To illustrate (i), consider the Bohr set in (where denotes the distance to the nearest integer), and consider a locally bilinear form of the form for some real number and all integers (which we identify with elements of . For generic , this form cannot be extended to a globally bilinear form on ; however if one lifts to the finitely generated abelian group

(with projection map ) and introduces the globally bilinear form by the formula then one has (2) when lie in the interval . A similar construction works for higher rank Bohr sets.To illustrate (ii), the key case turns out to be when is a cyclic group , in which case will take the form

for some integer . One can then check by direct construction that (1) will be obeyed with regardless of whether is even or odd. A variant of this construction also works for , and the general case follows from a short calculation verifying that the claim (ii) for any two groups implies the corresponding claim (ii) for the product .This concludes the Fourier-analytic proof of Theorem 1. In this paper we also give an ergodic theory proof of (a qualitative version of) Theorem 1(ii), using a correspondence principle argument adapted from this previous paper of Ziegler, and myself. Basically, the idea is to randomly generate a dynamical system on the group , by selecting an infinite number of random shifts , which induces an action of the infinitely generated free abelian group on by the formula

Much as the law of large numbers ensures the almost sure convergence of Monte Carlo integration, one can show that this action is almost surely ergodic (after passing to a suitable Furstenberg-type limit where the size of goes to infinity), and that the dynamical Host-Kra-Gowers seminorms of that system coincide with the combinatorial Gowers norms of the original functions. One is then well placed to apply an inverse theorem for the third Host-Kra-Gowers seminorm for -actions, which was accomplished in the companion paper to this one. After doing so, one*almost*gets the desired conclusion of Theorem 1(ii), except that after undoing the application of the Furstenberg correspondence principle, the map is merely an

*almost polynomial*rather than a polynomial, which roughly speaking means that instead of certain derivatives of vanishing, they instead are merely very small outside of a small exceptional set. To conclude we need to invoke a “stability of polynomials” result, which at this level of generality was first established by Candela and Szegedy (though we also provide an independent proof here in an appendix), which roughly speaking asserts that every approximate polynomial is close in measure to an actual polynomial. (This general strategy is also employed in the Candela-Szegedy paper, though in the absence of the ergodic inverse theorem input that we rely upon here, the conclusion is weaker in that the filtered nilmanifold is replaced with a general space known as a “CFR nilspace”.)

This transference principle approach seems to work well for the higher step cases (for instance, the stability of polynomials result is known in arbitrary degree); the main difficulty is to establish a suitable higher step inverse theorem in the ergodic theory setting, which we hope to do in future research.

Asgar Jamneshan, Or Shalom, and myself have just uploaded to the arXiv our preprint “The structure of arbitrary Conze–Lesigne systems“. As the title suggests, this paper is devoted to the structural classification of Conze-Lesigne systems, which are a type of measure-preserving system that are “quadratic” or of “complexity two” in a certain technical sense, and are of importance in the theory of multiple recurrence. There are multiple ways to define such systems; here is one. Take a countable abelian group acting in a measure-preserving fashion on a probability space , thus each group element gives rise to a measure-preserving map . Define the *third Gowers-Host-Kra seminorm* of a function via the formula

*Conze-Lesigne factor*or the

*second Host-Kra-Ziegler factor*of the system, and this factor controls all the complexity two recurrence properties of the system.

The analogous theory in complexity one is well understood. Here, one replaces the norm by the norm

and the ergodic systems for which is a norm are called*Kronecker systems*. These systems are completely classified: a system is Kronecker if and only if it arises from a compact abelian group equipped with Haar probability measure and a translation action for some homomorphism with dense image. Such systems can then be analyzed quite efficiently using the Fourier transform, and this can then be used to satisfactory analyze “complexity one” patterns, such as length three progressions, in arbitrary systems (or, when translated back to combinatorial settings, in arbitrary dense sets of abelian groups).

We return now to the complexity two setting. The most famous examples of Conze-Lesigne systems are (order two) *nilsystems*, in which the space is a quotient of a two-step nilpotent Lie group by a lattice (equipped with Haar probability measure), and the action is given by a translation for some group homomorphism . For instance, the Heisenberg -nilsystem

Our main result is that even in the infinitely generated case, Conze-Lesigne systems are still inverse limits of a slight generalisation of the nilsystem concept, in which is a locally compact Polish group rather than a Lie group:

Theorem 1 (Classification of Conze-Lesigne systems)Let be a countable abelian group, and an ergodic measure-preserving -system. Then is a Conze-Lesigne system if and only if it is the inverse limit of translational systems , where is a nilpotent locally compact Polish group of nilpotency class two, and is a lattice in (and also a lattice in the commutator group ), with equipped with the Haar probability measure and a translation action for some homomorphism .

In a forthcoming companion paper to this one, Asgar Jamneshan and I will use this theorem to derive an inverse theorem for the Gowers norm for an arbitrary finite abelian group (with no restrictions on the order of , in particular our result handles the case of even and odd in a unified fashion). In principle, having a higher order version of this theorem will similarly allow us to derive inverse theorems for norms for arbitrary and finite abelian ; we hope to investigate this further in future work.

We sketch some of the main ideas used to prove the theorem. The existing machinery developed by Conze-Lesigne, Furstenberg-Weiss, Host-Kra, and others allows one to describe an arbitrary Conze-Lesigne system as a group extension , where is a Kronecker system (a rotational system on a compact abelian group and translation action ), is another compact abelian group, and the cocycle is a collection of measurable maps obeying the cocycle equation

for almost all . Furthermore, is of “type two”, which means in this concrete setting that it obeys an additional equation for all and almost all , and some measurable function ; roughly speaking this asserts that is “linear up to coboundaries”. For technical reasons it is also convenient to reduce to the case where is separable. The problem is that the equation (2) is unwieldy to work with. In the model case when the target group is a circle , one can use some Fourier analysis to convert (2) into the more tractable*Conze-Lesigne equation*for all , all , and almost all , where for each , is a measurable function, and is a homomorphism. (For technical reasons it is often also convenient to enforce that depend in a measurable fashion on ; this can always be achieved, at least when the Conze-Lesigne system is separable, but actually verifying that this is possible actually requires a certain amount of effort, which we devote an appendix to in our paper.) It is not difficult to see that (3) implies (2) for any group (as long as one has the measurability in mentioned previously), but the converse turns out to fail for some groups , such as solenoid groups (e.g., inverse limits of as ), as was essentially shown by Rudolph. However, in our paper we were able to find a separate argument that also derived the Conze-Lesigne equation in the case of a cyclic group . Putting together the and cases, one can then derive the Conze-Lesigne equation for arbitrary compact abelian

*Lie*groups (as such groups are isomorphic to direct products of finitely many tori and cyclic groups). As has been known for some time (see e.g., this paper of Host and Kra), once one has a Conze-Lesigne equation, one can more or less describe the system as a translational system , where the

*Host-Kra group*is the set of all pairs that solve an equation of the form (3) (with these pairs acting on by the law ), and is the stabiliser of a point in this system. This then establishes the theorem in the case when is a Lie group, and the general case basically comes from the fact (from Fourier analysis or the Peter-Weyl theorem) that an arbitrary compact abelian group is an inverse limit of Lie groups. (There is a technical issue here in that one has to check that the space of translational system factors of form a directed set in order to have a genuine inverse limit, but this can be dealt with by modifications of the tools mentioned here.)

There is an additional technical issue worth pointing out here (which unfortunately was glossed over in some previous work in the area). Because the cocycle equation (1) and the Conze-Lesigne equation (3) are only valid almost everywhere instead of everywhere, the action of on is technically only a *near-action* rather than a genuine action, and as such one cannot directly define to be the stabiliser of a point without running into multiple problems. To fix this, one has to pass to a *topological model* of in which the action becomes continuous, and the stabilizer becomes well defined, although one then has to work a little more to check that the action is still transitive. This can be done via Gelfand duality; we proceed using a mixture of a construction from this book of Host and Kra, and the machinery in this recent paper of Asgar and myself.

Now we discuss how to establish the Conze-Lesigne equation (3) in the cyclic group case . As this group embeds into the torus , it is easy to use existing methods obtain (3) but with the homomorphism and the function taking values in rather than in . The main task is then to fix up the homomorphism so that it takes values in , that is to say that vanishes. This only needs to be done locally near the origin, because the claim is easy when lies in the dense subgroup of , and also because the claim can be shown to be additive in . Near the origin one can leverage the Steinhaus lemma to make depend linearly (or more precisely, homomorphically) on , and because the cocycle already takes values in , vanishes and must be an eigenvalue of the system . But as was assumed to be separable, there are only countably many eigenvalues, and by another application of Steinhaus and linearity one can then make vanish on an open neighborhood of the identity, giving the claim.

## Recent Comments