You are currently browsing the category archive for the ‘expository’ category.

How many groups of order four are there? Technically, there are an enormous number, so much so, in fact, that the class of groups of order four is not even a set, but merely a proper class. This is because *any* four objects can be turned into a group by designating one of the four objects, say , to be the group identity, and imposing a suitable multiplication table (and inversion law) on the four elements in a manner that obeys the usual group axioms. Since all sets are themselves objects, the class of four-element groups is thus at least as large as the class of all sets, which by Russell’s paradox is known not to itself be a set (assuming the usual ZFC axioms of set theory).

A much better question is to ask how many groups of order four there are *up to isomorphism*, counting each isomorphism class of groups exactly once. Now, as one learns in undergraduate group theory classes, the answer is just “two”: the cyclic group and the Klein four-group .

More generally, given a class of objects and some equivalence relation on (which one should interpret as describing the property of two objects in being “isomorphic”), one can consider the number of objects in “up to isomorphism”, which is simply the cardinality of the collection of equivalence classes of . In the case where is finite, one can express this cardinality by the formula

thus one counts elements in , weighted by the reciprocal of the number of objects they are isomorphic to.

Example 1Let be the five-element set of integers between and . Let us say that two elements of are isomorphic if they have the same magnitude: . Then the quotient space consists of just three equivalence classes: , , and . Thus there are three objects in up to isomorphism, and the identity (1) is then justThus, to count elements in up to equivalence, the elements are given a weight of because they are each isomorphic to two elements in , while the element is given a weight of because it is isomorphic to just one element in (namely, itself).

Given a finite probability set , there is also a natural probability distribution on , namely the *uniform distribution*, according to which a random variable is set equal to any given element of with probability :

Given a notion of isomorphism on , one can then define the random equivalence class that the random element belongs to. But if the isomorphism classes are unequal in size, we now encounter a biasing effect: even if was drawn uniformly from , the equivalence class need not be uniformly distributed in . For instance, in the above example, if was drawn uniformly from , then the equivalence class will not be uniformly distributed in the three-element space , because it has a probability of being equal to the class or to the class , and only a probability of being equal to the class .

However, it is possible to remove this bias by changing the weighting in (1), and thus changing the notion of what cardinality means. To do this, we generalise the previous situation. Instead of considering sets with an equivalence relation to capture the notion of isomorphism, we instead consider groupoids, which are sets in which there are allowed to be *multiple* isomorphisms between elements in (and in particular, there are allowed to be multiple *automorphisms* from an element to itself). More precisely:

Definition 2A groupoid is a set (or proper class) , together with a (possibly empty) collection of “isomorphisms” between any pair of elements of , and a composition map from isomorphisms , to isomorphisms in for every , obeying the following group-like axioms:

- (Identity) For every , there is an identity isomorphism , such that for all and .
- (Associativity) If , , and for some , then .
- (Inverse) If for some , then there exists an inverse isomorphism such that and .
We say that two elements of a groupoid are

isomorphic, and write , if there is at least one isomorphism from to .

Example 3Any category gives a groupoid by taking to be the set (or class) of objects, and to be the collection of invertible morphisms from to . For instance, in the category of sets, would be the collection of bijections from to ; in the category of linear vector spaces over some given base field , would be the collection of invertible linear transformations from to ; and so forth.

Every set equipped with an equivalence relation can be turned into a groupoid by assigning precisely one isomorphism from to for any pair with , and no isomorphisms from to when , with the groupoid operations of identity, composition, and inverse defined in the only way possible consistent with the axioms. We will call this the *simply connected groupoid* associated with this equivalence relation. For instance, with as above, if we turn into a simply connected groupoid, there will be precisely one isomorphism from to , and also precisely one isomorphism from to , but no isomorphisms from to , , or .

However, one can also form multiply-connected groupoids in which there can be multiple isomorphisms from one element of to another. For instance, one can view as a space that is acted on by multiplication by the two-element group . This gives rise to two types of isomorphisms, an identity isomorphism from to for each , and a negation isomorphism from to for each ; in particular, there are *two* automorphisms of (i.e., isomorphisms from to itself), namely and , whereas the other four elements of only have a single automorphism (the identity isomorphism). One defines composition, identity, and inverse in this groupoid in the obvious fashion (using the group law of the two-element group ); for instance, we have .

For a finite multiply-connected groupoid, it turns out that the natural notion of “cardinality” (or as I prefer to call it, “cardinality up to isomorphism”) is given by the variant

of (1). That is to say, in the multiply connected case, the denominator is no longer the number of objects isomorphic to , but rather the number of *isomorphisms* from to other objects . Grouping together all summands coming from a single equivalence class in , we can also write this expression as

where is the automorphism group of , that is to say the group of isomorphisms from to itself. (Note that if belong to the same equivalence class , then the two groups and will be isomorphic and thus have the same cardinality, and so the above expression is well-defined.

For instance, if we take to be the simply connected groupoid on , then the number of elements of up to isomorphism is

exactly as before. If however we take the multiply connected groupoid on , in which has two automorphisms, the number of elements of up to isomorphism is now the smaller quantity

the equivalence class is now counted with weight rather than due to the two automorphisms on . Geometrically, one can think of this groupoid as being formed by taking the five-element set , and “folding it in half” around the fixed point , giving rise to two “full” quotient points and one “half” point . More generally, given a finite group acting on a finite set , and forming the associated multiply connected groupoid, the cardinality up to isomorphism of this groupoid will be , since each element of will have isomorphisms on it (whether they be to the same element , or to other elements of ).

The definition (2) can also make sense for some infinite groupoids; to my knowledge this was first explicitly done in this paper of Baez and Dolan. Consider for instance the category of finite sets, with isomorphisms given by bijections as in Example 3. Every finite set is isomorphic to for some natural number , so the equivalence classes of may be indexed by the natural numbers. The automorphism group of has order , so the cardinality of up to isomorphism is

(This fact is sometimes loosely stated as “the number of finite sets is “, but I view this statement as somewhat misleading if the qualifier “up to isomorphism” is not added.) Similarly, when one allows for multiple isomorphisms from a group to itself, the number of groups of order four up to isomorphism is now

because the cyclic group has two automorphisms, whereas the Klein four-group has six.

In the case that the cardinality of a groupoid up to isomorphism is finite and non-empty, one can now define the notion of a random isomorphism class in drawn “uniformly up to isomorphism”, by requiring the probability of attaining any given isomorphism class to be

thus the probability of being isomorphic to a given element will be inversely proportional to the number of automorphisms that has. For instance, if we take to be the set with the simply connected groupoid, will be drawn uniformly from the three available equivalence classes , with a probability of attaining each; but if instead one uses the multiply connected groupoid coming from the action of , and draws uniformly up to isomorphism, then and will now be selected with probability each, and will be selected with probability . Thus this distribution has accounted for the bias mentioned previously: if a finite group acts on a finite space , and is drawn uniformly from , then now still be drawn uniformly up to isomorphism from , if we use the multiply connected groupoid coming from the action, rather than the simply connected groupoid coming from just the -orbit structure on .

Using the groupoid of finite sets, we see that a finite set chosen uniformly up to isomorphism will have a cardinality that is distributed according to the Poisson distribution of parameter , that is to say it will be of cardinality with probability .

One important source of groupoids are the fundamental groupoids of a manifold (one can also consider more general topological spaces than manifolds, but for simplicity we will restrict this discussion to the manifold case), in which the underlying space is simply , and the isomorphisms from to are the equivalence classes of paths from to up to homotopy; in particular, the automorphism group of any given point is just the fundamental group of at that base point. The equivalence class of a point in is then the connected component of in . The cardinality up to isomorphism of the fundamental groupoid is then

where is the collection of connected components of , and is the order of the fundamental group of . Thus, simply connected components of count for a full unit of cardinality, whereas multiply connected components (which can be viewed as quotients of their simply connected cover by their fundamental group) will count for a fractional unit of cardinality, inversely to the order of their fundamental group.

This notion of cardinality up to isomorphism of a groupoid behaves well with respect to various basic notions. For instance, suppose one has an -fold covering map of one finite groupoid by another . This means that is a functor that is surjective, with all preimages of cardinality , with the property that given any pair in the base space and any in the preimage of , every isomorphism has a unique lift from the given initial point (and some in the preimage of ). Then one can check that the cardinality up to isomorphism of is times the cardinality up to isomorphism of , which fits well with the geometric picture of as the -fold cover of . (For instance, if one covers a manifold with finite fundamental group by its universal cover, this is a -fold cover, the base has cardinality up to isomorphism, and the universal cover has cardinality one up to isomorphism.) Related to this, if one draws an equivalence class of uniformly up to isomorphism, then will be an equivalence class of drawn uniformly up to isomorphism also.

Indeed, one can show that this notion of cardinality up to isomorphism for groupoids is uniquely determined by a small number of axioms such as these (similar to the axioms that determine Euler characteristic); see this blog post of Qiaochu Yuan for details.

The probability distributions on isomorphism classes described by the above recipe seem to arise naturally in many applications. For instance, if one draws a profinite abelian group up to isomorphism at random in this fashion (so that each isomorphism class of a profinite abelian group occurs with probability inversely proportional to the number of automorphisms of this group), then the resulting distribution is known as the *Cohen-Lenstra distribution*, and seems to emerge as the natural asymptotic distribution of many randomly generated profinite abelian groups in number theory and combinatorics, such as the class groups of random quadratic fields; see this previous blog post for more discussion. For a simple combinatorial example, the set of fixed points of a random permutation on elements will have a cardinality that converges in distribution to the Poisson distribution of rate (as discussed in this previous post), thus we see that the fixed points of a large random permutation asymptotically are distributed uniformly up to isomorphism. I’ve been told that this notion of cardinality up to isomorphism is also particularly compatible with stacks (which are a good framework to describe such objects as moduli spaces of algebraic varieties up to isomorphism), though I am not sufficiently acquainted with this theory to say much more than this.

Given a function on the natural numbers taking values in , one can invoke the Furstenberg correspondence principle to locate a measure preserving system – a probability space together with a measure-preserving shift (or equivalently, a measure-preserving -action on ) – together with a measurable function (or “observable”) that has essentially the same statistics as in the sense that

for any integers . In particular, one has

whenever the limit on the right-hand side exists. We will refer to the system together with the designated function as a *Furstenberg limit* ot the sequence . These Furstenberg limits capture some, but not all, of the asymptotic behaviour of ; roughly speaking, they control the typical “local” behaviour of , involving correlations such as in the regime where are much smaller than . However, the control on error terms here is usually only qualitative at best, and one usually does not obtain non-trivial control on correlations in which the are allowed to grow at some significant rate with (e.g. like some power of ).

The correspondence principle is discussed in these previous blog posts. One way to establish the principle is by introducing a Banach limit that extends the usual limit functional on the subspace of consisting of convergent sequences while still having operator norm one. Such functionals cannot be constructed explicitly, but can be proven to exist (non-constructively and non-uniquely) using the Hahn-Banach theorem; one can also use a non-principal ultrafilter here if desired. One can then seek to construct a system and a measurable function for which one has the statistics

for all . One can explicitly construct such a system as follows. One can take to be the Cantor space with the product -algebra and the shift

with the function being the coordinate function at zero:

(so in particular for any ). The only thing remaining is to construct the invariant measure . In order to be consistent with (2), one must have

for any distinct integers and signs . One can check that this defines a premeasure on the Boolean algebra of defined by cylinder sets, and the existence of then follows from the Hahn-Kolmogorov extension theorem (or the closely related Kolmogorov extension theorem). One can then check that the correspondence (2) holds, and that is translation-invariant; the latter comes from the translation invariance of the (Banach-)Césaro averaging operation . A variant of this construction shows that the Furstenberg limit is unique up to equivalence if and only if all the limits appearing in (1) actually exist.

One can obtain a slightly tighter correspondence by using a smoother average than the Césaro average. For instance, one can use the logarithmic Césaro averages in place of the Césaro average , thus one replaces (2) by

Whenever the Césaro average of a bounded sequence exists, then the logarithmic Césaro average exists and is equal to the Césaro average. Thus, a Furstenberg limit constructed using logarithmic Banach-Césaro averaging still obeys (1) for all when the right-hand side limit exists, but also obeys the more general assertion

whenever the limit of the right-hand side exists.

In a recent paper of Frantizinakis, the Furstenberg limits of the Liouville function (with logarithmic averaging) were studied. Some (but not all) of the known facts and conjectures about the Liouville function can be interpreted in the Furstenberg limit. For instance, in a recent breakthrough result of Matomaki and Radziwill (discussed previously here), it was shown that the Liouville function exhibited cancellation on short intervals in the sense that

In terms of Furstenberg limits of the Liouville function, this assertion is equivalent to the assertion that

for all Furstenberg limits of Liouville (including those without logarithmic averaging). Invoking the mean ergodic theorem (discussed in this previous post), this assertion is in turn equivalent to the observable that corresponds to the Liouville function being orthogonal to the invariant factor of ; equivalently, the first Gowers-Host-Kra seminorm of (as defined for instance in this previous post) vanishes. The Chowla conjecture, which asserts that

for all distinct integers , is equivalent to the assertion that all the Furstenberg limits of Liouville are equivalent to the Bernoulli system ( with the product measure arising from the uniform distribution on , with the shift and observable as before). Similarly, the logarithmically averaged Chowla conjecture

is equivalent to the assertion that all the Furstenberg limits of Liouville with logarithmic averaging are equivalent to the Bernoulli system. Recently, I was able to prove the two-point version

of the logarithmically averaged Chowla conjecture, for any non-zero integer ; this is equivalent to the perfect strong mixing property

for any Furstenberg limit of Liouville with logarithmic averaging, and any .

The situation is more delicate with regards to the Sarnak conjecture, which is equivalent to the assertion that

for any zero-entropy sequence (see this previous blog post for more discussion). Morally speaking, this conjecture should be equivalent to the assertion that any Furstenberg limit of Liouville is disjoint from any zero entropy system, but I was not able to formally establish an implication in either direction due to some technical issues regarding the fact that the Furstenberg limit does not directly control long-range correlations, only short-range ones. (There are however ergodic theoretic interpretations of the Sarnak conjecture that involve the notion of generic points; see this paper of El Abdalaoui, Lemancyk, and de la Rue.) But the situation is currently better with the logarithmically averaged Sarnak conjecture

as I was able to show that this conjecture was equivalent to the logarithmically averaged Chowla conjecture, and hence to all Furstenberg limits of Liouville with logarithmic averaging being Bernoulli; I also showed the conjecture was equivalent to local Gowers uniformity of the Liouville function, which is in turn equivalent to the function having all Gowers-Host-Kra seminorms vanishing in every Furstenberg limit with logarithmic averaging. In this recent paper of Frantzikinakis, this analysis was taken further, showing that the logarithmically averaged Chowla and Sarnak conjectures were in fact equivalent to the much milder seeming assertion that all Furstenberg limits with logarithmic averaging were ergodic.

Actually, the logarithmically averaged Furstenberg limits have more structure than just a -action on a measure preserving system with a single observable . Let denote the semigroup of affine maps on the integers with and positive. Also, let denote the profinite integers (the inverse limit of the cyclic groups ). Observe that acts on by taking the inverse limit of the obvious actions of on .

Proposition 1 (Enriched logarithmically averaged Furstenberg limit of Liouville)Let be a Banach limit. Then there exists a probability space with an action of the affine semigroup , as well as measurable functions and , with the following properties:

- (i) (Affine Furstenberg limit) For any , and any congruence class , one has
- (ii) (Equivariance of ) For any , one has
for -almost every .

- (iii) (Multiplicativity at fixed primes) For any prime , one has
for -almost every , where is the dilation map .

- (iv) (Measure pushforward) If is of the form and is the set , then the pushforward of by is equal to , that is to say one has
for every measurable .

Note that can be viewed as the subgroup of consisting of the translations . If one only keeps the -portion of the action and forgets the rest (as well as the function ) then the action becomes measure-preserving, and we recover an ordinary Furstenberg limit with logarithmic averaging. However, the additional structure here can be quite useful; for instance, one can transfer the proof of (3) to this setting, which we sketch below the fold, after proving the proposition.

The observable , roughly speaking, means that points in the Furstenberg limit constructed by this proposition are still “virtual integers” in the sense that one can meaningfully compute the residue class of modulo any natural number modulus , by first applying and then reducing mod . The action of means that one can also meaningfully multiply by any natural number, and translate it by any integer. As with other applications of the correspondence principle, the main advantage of moving to this more “virtual” setting is that one now acquires a probability measure , so that the tools of ergodic theory can be readily applied.

Given a random variable that takes on only finitely many values, we can define its Shannon entropy by the formula

with the convention that . (In some texts, one uses the logarithm to base rather than the natural logarithm, but the choice of base will not be relevant for this discussion.) This is clearly a nonnegative quantity. Given two random variables taking on finitely many values, the joint variable is also a random variable taking on finitely many values, and also has an entropy . It obeys the *Shannon inequalities*

so we can define some further nonnegative quantities, the mutual information

and the conditional entropies

More generally, given three random variables , one can define the conditional mutual information

and the final of the Shannon entropy inequalities asserts that this quantity is also non-negative.

The mutual information is a measure of the extent to which and fail to be independent; indeed, it is not difficult to show that vanishes if and only if and are independent. Similarly, vanishes if and only if and are *conditionally* independent relative to . At the other extreme, is a measure of the extent to which fails to depend on ; indeed, it is not difficult to show that if and only if is determined by in the sense that there is a deterministic function such that . In a related vein, if and are equivalent in the sense that there are deterministic functional relationships , between the two variables, then is interchangeable with for the purposes of computing the above quantities, thus for instance , , , , etc..

One can get some initial intuition for these information-theoretic quantities by specialising to a simple situation in which all the random variables being considered come from restricting a single random (and uniformly distributed) boolean function on a given finite domain to some subset of :

In this case, has the law of a random uniformly distributed boolean function from to , and the entropy here can be easily computed to be , where denotes the cardinality of . If is the restriction of to , and is the restriction of to , then the joint variable is equivalent to the restriction of to . If one discards the normalisation factor , one then obtains the following dictionary between entropy and the combinatorics of finite sets:

Random variables | Finite sets |

Entropy | Cardinality |

Joint variable | Union |

Mutual information | Intersection cardinality |

Conditional entropy | Set difference cardinality |

Conditional mutual information | |

independent | disjoint |

determined by | a subset of |

conditionally independent relative to |

Every (linear) inequality or identity about entropy (and related quantities, such as mutual information) then specialises to a combinatorial inequality or identity about finite sets that is easily verified. For instance, the Shannon inequality becomes the union bound , and the definition of mutual information becomes the inclusion-exclusion formula

For a more advanced example, consider the data processing inequality that asserts that if are conditionally independent relative to , then . Specialising to sets, this now says that if are disjoint outside of , then ; this can be made apparent by considering the corresponding Venn diagram. This dictionary also suggests how to *prove* the data processing inequality using the existing Shannon inequalities. Firstly, if and are not necessarily disjoint outside of , then a consideration of Venn diagrams gives the more general inequality

and a further inspection of the diagram then reveals the more precise identity

Using the dictionary in the reverse direction, one is then led to conjecture the identity

which (together with non-negativity of conditional mutual information) implies the data processing inequality, and this identity is in turn easily established from the definition of mutual information.

On the other hand, not every assertion about cardinalities of sets generalises to entropies of random variables that are not arising from restricting random boolean functions to sets. For instance, a basic property of sets is that disjointness from a given set is preserved by unions:

Indeed, one has the union bound

Applying the dictionary in the reverse direction, one might now conjecture that if was independent of and was independent of , then should also be independent of , and furthermore that

but these statements are well known to be false (for reasons related to pairwise independence of random variables being strictly weaker than joint independence). For a concrete counterexample, one can take to be independent, uniformly distributed random elements of the finite field of two elements, and take to be the sum of these two field elements. One can easily check that each of and is separately independent of , but the joint variable determines and thus is not independent of .

From the inclusion-exclusion identities

one can check that (1) is equivalent to the trivial lower bound . The basic issue here is that in the dictionary between entropy and combinatorics, there is no satisfactory entropy analogue of the notion of a triple intersection . (Even the double intersection only exists information theoretically in a “virtual” sense; the mutual information allows one to “compute the entropy” of this “intersection”, but does not actually describe this intersection itself as a random variable.)

However, this issue only arises with three or more variables; it is not too difficult to show that the only linear equalities and inequalities that are necessarily obeyed by the information-theoretic quantities associated to just two variables are those that are also necessarily obeyed by their combinatorial analogues . (See for instance the Venn diagram at the Wikipedia page for mutual information for a pictorial summation of this statement.)

One can work with a larger class of special cases of Shannon entropy by working with random *linear* functions rather than random *boolean* functions. Namely, let be some finite-dimensional vector space over a finite field , and let be a random linear functional on , selected uniformly among all such functions. Every subspace of then gives rise to a random variable formed by restricting to . This random variable is also distributed uniformly amongst all linear functions on , and its entropy can be easily computed to be . Given two random variables formed by restricting to respectively, the joint random variable determines the random linear function on the union on the two spaces, and thus by linearity on the Minkowski sum as well; thus is equivalent to the restriction of to . In particular, . This implies that and also , where is the quotient map. After discarding the normalising constant , this leads to the following dictionary between information theoretic quantities and linear algebra quantities, analogous to the previous dictionary:

Random variables | Subspaces |

Entropy | Dimension |

Joint variable | Sum |

Mutual information | Dimension of intersection |

Conditional entropy | Dimension of projection |

Conditional mutual information | |

independent | transverse () |

determined by | a subspace of |

conditionally independent relative to | , transverse. |

The combinatorial dictionary can be regarded as a specialisation of the linear algebra dictionary, by taking to be the vector space over the finite field of two elements, and only considering those subspaces that are coordinate subspaces associated to various subsets of .

As before, every linear inequality or equality that is valid for the information-theoretic quantities discussed above, is automatically valid for the linear algebra counterparts for subspaces of a vector space over a finite field by applying the above specialisation (and dividing out by the normalising factor of ). In fact, the requirement that the field be finite can be removed by applying the compactness theorem from logic (or one of its relatives, such as Los’s theorem on ultraproducts, as done in this previous blog post).

The linear algebra model captures more of the features of Shannon entropy than the combinatorial model. For instance, in contrast to the combinatorial case, it is possible in the linear algebra setting to have subspaces such that and are separately transverse to , but their sum is not; for instance, in a two-dimensional vector space , one can take to be the one-dimensional subspaces spanned by , , and respectively. Note that this is essentially the same counterexample from before (which took to be the field of two elements). Indeed, one can show that any necessarily true linear inequality or equality involving the dimensions of three subspaces (as well as the various other quantities on the above table) will also be necessarily true when applied to the entropies of three discrete random variables (as well as the corresponding quantities on the above table).

However, the linear algebra model does not completely capture the subtleties of Shannon entropy once one works with *four* or more variables (or subspaces). This was first observed by Ingleton, who established the dimensional inequality

for any subspaces . This is easiest to see when the three terms on the right-hand side vanish; then are transverse, which implies that ; similarly . But and are transverse, and this clearly implies that and are themselves transverse. To prove the general case of Ingleton’s inequality, one can define and use (and similarly for instead of ) to reduce to establishing the inequality

which can be rearranged using (and similarly for instead of ) and as

but this is clear since .

Returning to the entropy setting, the analogue

of (3) is true (exercise!), but the analogue

of Ingleton’s inequality is false in general. Again, this is easiest to see when all the terms on the right-hand side vanish; then are conditionally independent relative to , and relative to , and and are independent, and the claim (4) would then be asserting that and are independent. While there is no linear counterexample to this statement, there are simple non-linear ones: for instance, one can take to be independent uniform variables from , and take and to be (say) and respectively (thus are the indicators of the events and respectively). Once one conditions on either or , one of has positive conditional entropy and the other has zero entropy, and so are conditionally independent relative to either or ; also, or are independent of each other. But and are not independent of each other (they cannot be simultaneously equal to ). Somehow, the feature of the linear algebra model that is not present in general is that in the linear algebra setting, every pair of subspaces has a well-defined intersection that is also a subspace, whereas for arbitrary random variables , there does not necessarily exist the analogue of an intersection, namely a “common information” random variable that has the entropy of and is determined either by or by .

I do not know if there is any simpler model of Shannon entropy that captures all the inequalities available for four variables. One significant complication is that there exist some information inequalities in this setting that are not of Shannon type, such as the Zhang-Yeung inequality

One can however still use these simpler models of Shannon entropy to be able to guess arguments that would work for general random variables. An example of this comes from my paper on the logarithmically averaged Chowla conjecture, in which I showed among other things that

whenever was sufficiently large depending on , where is the Liouville function. The information-theoretic part of the proof was as follows. Given some intermediate scale between and , one can form certain random variables . The random variable is a sign pattern of the form where is a random number chosen from to (with logarithmic weighting). The random variable was tuple of reductions of to primes comparable to . Roughly speaking, what was implicitly shown in the paper (after using the multiplicativity of , the circle method, and the Matomaki-Radziwill theorem on short averages of multiplicative functions) is that if the inequality (5) fails, then there was a lower bound

on the mutual information between and . From translation invariance, this also gives the more general lower bound

for any , where denotes the shifted sign pattern . On the other hand, one had the entropy bounds

and from concatenating sign patterns one could see that is equivalent to the joint random variable for any . Applying these facts and using an “entropy decrement” argument, I was able to obtain a contradiction once was allowed to become sufficiently large compared to , but the bound was quite weak (coming ultimately from the unboundedness of as the interval of values of under consideration becomes large), something of the order of ; the quantity needs at various junctures to be less than a small power of , so the relationship between and becomes essentially quadruple exponential in nature, . The basic strategy was to observe that the lower bound (6) causes some slowdown in the growth rate of the mean entropy, in that this quantity decreased by as increased from to , basically by dividing into components , and observing from (6) each of these shares a bit of common information with the same variable . This is relatively clear when one works in a set model, in which is modeled by a set of size , and is modeled by a set of the form

for various sets of size (also there is some translation symmetry that maps to a shift while preserving all of the ).

However, on considering the set model recently, I realised that one can be a little more efficient by exploiting the fact (basically the Chinese remainder theorem) that the random variables are basically jointly independent as ranges over dyadic values that are much smaller than , which in the set model corresponds to the all being disjoint. One can then establish a variant

of (6), which in the set model roughly speaking asserts that each claims a portion of the of cardinality that is not claimed by previous choices of . This leads to a more efficient contradiction (relying on the unboundedness of rather than ) that looks like it removes one order of exponential growth, thus the relationship between and is now . Returning to the entropy model, one can use (7) and Shannon inequalities to establish an inequality of the form

for a small constant , which on iterating and using the boundedness of gives the claim. (A modification of this analysis, at least on the level of the back of the envelope calculation, suggests that the Matomaki-Radziwill theorem is needed only for ranges greater than or so, although at this range the theorem is not significantly simpler than the general case).

Let be the divisor function. A classical application of the Dirichlet hyperbola method gives the asymptotic

where denotes the estimate as . Much better error estimates are possible here, but we will not focus on the lower order terms in this discussion. For somewhat idiosyncratic reasons I will interpret this estimate (and the other analytic number theory estimates discussed here) through the probabilistic lens. Namely, if is a random number selected uniformly between and , then the above estimate can be written as

that is to say the random variable has mean approximately . (But, somewhat paradoxically, this is not the median or mode behaviour of this random variable, which instead concentrates near , basically thanks to the Hardy-Ramanujan theorem.)

Now we turn to the pair correlations for a fixed positive integer . There is a classical computation of Ingham that shows that

The error term in (2) has been refined by many subsequent authors, as has the uniformity of the estimates in the aspect, as these topics are related to other questions in analytic number theory, such as fourth moment estimates for the Riemann zeta function; but we will not consider these more subtle features of the estimate here. However, we will look at the next term in the asymptotic expansion for (2) below the fold.

Using our probabilistic lens, the estimate (2) can be written as

From (1) (and the asymptotic negligibility of the shift by ) we see that the random variables and both have a mean of , so the additional factor of represents some arithmetic coupling between the two random variables.

Ingham’s formula can be established in a number of ways. Firstly, one can expand out and use the hyperbola method (splitting into the cases and and removing the overlap). If one does so, one soon arrives at the task of having to estimate sums of the form

for various . For much less than this can be achieved using a further application of the hyperbola method, but for comparable to things get a bit more complicated, necessitating the use of non-trivial estimates on Kloosterman sums in order to obtain satisfactory control on error terms. A more modern approach proceeds using automorphic form methods, as discussed in this previous post. A third approach, which unfortunately is only heuristic at the current level of technology, is to apply the Hardy-Littlewood circle method (discussed in this previous post) to express (2) in terms of exponential sums for various frequencies . The contribution of “major arc” can be computed after a moderately lengthy calculation which yields the right-hand side of (2) (as well as the correct lower order terms that are currently being suppressed), but there does not appear to be an easy way to show directly that the “minor arc” contributions are of lower order, although the methods discussed previously do indirectly show that this is ultimately the case.

Each of the methods outlined above requires a fair amount of calculation, and it is not obvious while performing them that the factor will emerge at the end. One can at least explain the as a normalisation constant needed to balance the factor (at a heuristic level, at least). To see this through our probabilistic lens, introduce an independent copy of , then

using symmetry to order (discarding the diagonal case ) and making the change of variables , we see that (4) is heuristically consistent with (3) as long as the asymptotic mean of in is equal to . (This argument is not rigorous because there was an implicit interchange of limits present, but still gives a good heuristic “sanity check” of Ingham’s formula.) Indeed, if denotes the asymptotic mean in , then we have (heuristically at least)

and we obtain the desired consistency after multiplying by .

This still however does not explain the presence of the factor. Intuitively it is reasonable that if has many prime factors, and has a lot of factors, then will have slightly more factors than average, because any common factor to and will automatically be acquired by . But how to quantify this effect?

One heuristic way to proceed is through analysis of local factors. Observe from the fundamental theorem of arithmetic that we can factor

where the product is over all primes , and is the local version of at (which in this case, is just one plus the –valuation of : ). Note that all but finitely many of the terms in this product will equal , so the infinite product is well-defined. In a similar fashion, we can factor

where

(or in terms of valuations, ). Heuristically, the Chinese remainder theorem suggests that the various factors behave like independent random variables, and so the correlation between and should approximately decouple into the product of correlations between the local factors and . And indeed we do have the following local version of Ingham’s asymptotics:

Proposition 1 (Local Ingham asymptotics)For fixed and integer , we haveand

From the Euler formula

we see that

and so one can “explain” the arithmetic factor in Ingham’s asymptotic as the product of the arithmetic factors in the (much easier) local Ingham asymptotics. Unfortunately we have the usual “local-global” problem in that we do not know how to rigorously derive the global asymptotic from the local ones; this problem is essentially the same issue as the problem of controlling the minor arc contributions in the circle method, but phrased in “physical space” language rather than “frequency space”.

Remark 2The relation between the local means and the global mean can also be seen heuristically through the applicationof Mertens’ theorem, where is Pólya’s magic exponent, which serves as a useful heuristic limiting threshold in situations where the product of local factors is divergent.

Let us now prove this proposition. One could brute-force the computations by observing that for any fixed , the valuation is equal to with probability , and with a little more effort one can also compute the joint distribution of and , at which point the proposition reduces to the calculation of various variants of the geometric series. I however find it cleaner to proceed in a more recursive fashion (similar to how one can prove the geometric series formula by induction); this will also make visible the vague intuition mentioned previously about how common factors of and force to have a factor also.

It is first convenient to get rid of error terms by observing that in the limit , the random variable converges vaguely to a uniform random variable on the profinite integers , or more precisely that the pair converges vaguely to . Because of this (and because of the easily verified uniform integrability properties of and their powers), it suffices to establish the exact formulae

in the profinite setting (this setting will make it easier to set up the recursion).

We begin with (5). Observe that is coprime to with probability , in which case is equal to . Conditioning to the complementary probability event that is divisible by , we can factor where is also uniformly distributed over the profinite integers, in which event we have . We arrive at the identity

As and have the same distribution, the quantities and are equal, and (5) follows by a brief amount of high-school algebra.

We use a similar method to treat (6). First treat the case when is coprime to . Then we see that with probability , and are simultaneously coprime to , in which case . Furthermore, with probability , is divisible by and is not; in which case we can write as before, with and . Finally, in the remaining event with probability , is divisible by and is not; we can then write , so that and . Putting all this together, we obtain

and the claim (6) in this case follows from (5) and a brief computation (noting that in this case).

Now suppose that is divisible by , thus for some integer . Then with probability , and are simultaneously coprime to , in which case . In the remaining event, we can write , and then and . Putting all this together we have

which by (5) (and replacing by ) leads to the recursive relation

and (6) then follows by induction on the number of powers of .

The estimate (2) of Ingham was refined by Estermann, who obtained the more accurate expansion

for certain complicated but explicit coefficients . For instance, is given by the formula

where is the Euler-Mascheroni constant,

The formula for is similar but even more complicated. The error term was improved by Heath-Brown to ; it is conjectured (for instance by Conrey and Gonek) that one in fact has square root cancellation here, but this is well out of reach of current methods.

These lower order terms are traditionally computed either from a Dirichlet series approach (using Perron’s formula) or a circle method approach. It turns out that a refinement of the above heuristics can also predict these lower order terms, thus keeping the calculation purely in physical space as opposed to the “multiplicative frequency space” of the Dirichlet series approach, or the “additive frequency space” of the circle method, although the computations are arguably as messy as the latter computations for the purposes of working out the lower order terms. We illustrate this just for the term below the fold.

*[This blog post was written jointly by Terry Tao and Will Sawin.]*

In the previous blog post, one of us (Terry) implicitly introduced a notion of rank for tensors which is a little different from the usual notion of tensor rank, and which (following BCCGNSU) we will call “slice rank”. This notion of rank could then be used to encode the Croot-Lev-Pach-Ellenberg-Gijswijt argument that uses the polynomial method to control capsets.

Afterwards, several papers have applied the slice rank method to further problems – to control tri-colored sum-free sets in abelian groups (BCCGNSU, KSS) and from there to the triangle removal lemma in vector spaces over finite fields (FL), to control sunflowers (NS), and to bound progression-free sets in -groups (P).

In this post we investigate the notion of slice rank more systematically. In particular, we show how to give lower bounds for the slice rank. In many cases, we can show that the upper bounds on slice rank given in the aforementioned papers are sharp to within a subexponential factor. This still leaves open the possibility of getting a better bound for the original combinatorial problem using the slice rank of some other tensor, but for very long arithmetic progressions (at least eight terms), we show that the slice rank method cannot improve over the trivial bound using any tensor.

It will be convenient to work in a “basis independent” formalism, namely working in the category of abstract finite-dimensional vector spaces over a fixed field . (In the applications to the capset problem one takes to be the finite field of three elements, but most of the discussion here applies to arbitrary fields.) Given such vector spaces , we can form the tensor product , generated by the tensor products with for , subject to the constraint that the tensor product operation is multilinear. For each , we have the smaller tensor products , as well as the tensor product

defined in the obvious fashion. Elements of of the form for some and will be called *rank one functions*, and the *slice rank* (or *rank* for short) of an element of is defined to be the least nonnegative integer such that is a linear combination of rank one functions. If are finite-dimensional, then the rank is always well defined as a non-negative integer (in fact it cannot exceed . It is also clearly subadditive:

For , is when is zero, and otherwise. For , is the usual rank of the -tensor (which can for instance be identified with a linear map from to the dual space ). The usual notion of tensor rank for higher order tensors uses complete tensor products , as the rank one objects, rather than , giving a rank that is greater than or equal to the slice rank studied here.

From basic linear algebra we have the following equivalences:

Lemma 1Let be finite-dimensional vector spaces over a field , let be an element of , and let be a non-negative integer. Then the following are equivalent:

- (i) One has .
- (ii) One has a representation of the form
where are finite sets of total cardinality at most , and for each and , and .

- (iii) One has
where for each , is a subspace of of total dimension at most , and we view as a subspace of in the obvious fashion.

- (iv) (Dual formulation) There exist subspaces of the dual space for , of total dimension at least , such that is orthogonal to , in the sense that one has the vanishing
for all , where is the obvious pairing.

*Proof:* The equivalence of (i) and (ii) is clear from definition. To get from (ii) to (iii) one simply takes to be the span of the , and conversely to get from (iii) to (ii) one takes the to be a basis of the and computes by using a basis for the tensor product consisting entirely of functions of the form for various . To pass from (iii) to (iv) one takes to be the annihilator of , and conversely to pass from (iv) to (iii).

One corollary of the formulation (iv), is that the set of tensors of slice rank at most is Zariski closed (if the field is algebraically closed), and so the slice rank itself is a lower semi-continuous function. This is in contrast to the usual tensor rank, which is not necessarily semicontinuous.

Corollary 2Let be finite-dimensional vector spaces over an algebraically closed field . Let be a nonnegative integer. The set of elements of of slice rank at most is closed in the Zariski topology.

*Proof:* In view of Lemma 1(i and iv), this set is the union over tuples of integers with of the projection from of the set of tuples with orthogonal to , where is the Grassmanian parameterizing -dimensional subspaces of .

One can check directly that the set of tuples with orthogonal to is Zariski closed in using a set of equations of the form locally on . Hence because the Grassmanian is a complete variety, the projection of this set to is also Zariski closed. So the finite union over tuples of these projections is also Zariski closed.

We also have good behaviour with respect to linear transformations:

Lemma 3Let be finite-dimensional vector spaces over a field , let be an element of , and for each , let be a linear transformation, with the tensor product of these maps. Then

Furthermore, if the are all injective, then one has equality in (2).

Thus, for instance, the rank of a tensor is intrinsic in the sense that it is unaffected by any enlargements of the spaces .

*Proof:* The bound (2) is clear from the formulation (ii) of rank in Lemma 1. For equality, apply (2) to the injective , as well as to some arbitrarily chosen left inverses of the .

Computing the rank of a tensor is difficult in general; however, the problem becomes a combinatorial one if one has a suitably sparse representation of that tensor in some basis, where we will measure sparsity by the property of being an antichain.

Proposition 4Let be finite-dimensional vector spaces over a field . For each , let be a linearly independent set in indexed by some finite set . Let be a subset of .

where for each , is a coefficient in . Then one has

where the minimum ranges over all coverings of by sets , and for are the projection maps.

Now suppose that the coefficients are all non-zero, that each of the are equipped with a total ordering , and is the set of maximal elements of , thus there do not exist distinct , such that for all . Then one has

In particular, if is an antichain (i.e. every element is maximal), then equality holds in (4).

*Proof:* By Lemma 3 (or by enlarging the bases ), we may assume without loss of generality that each of the is spanned by the . By relabeling, we can also assume that each is of the form

with the usual ordering, and by Lemma 3 we may take each to be , with the standard basis.

Let denote the rank of . To show (4), it suffices to show the inequality

for any covering of by . By removing repeated elements we may assume that the are disjoint. For each , the tensor

can (after collecting terms) be written as

for some . Summing and using (1), we conclude the inequality (6).

Now assume that the are all non-zero and that is the set of maximal elements of . To conclude the proposition, it suffices to show that the reverse inequality

holds for some covering . By Lemma 1(iv), there exist subspaces of whose dimension sums to

Let . Using Gaussian elimination, one can find a basis of whose representation in the standard dual basis of is in row-echelon form. That is to say, there exist natural numbers

such that for all , is a linear combination of the dual vectors , with the coefficient equal to one.

We now claim that is disjoint from . Suppose for contradiction that this were not the case, thus there exists for each such that

As is the set of maximal elements of , this implies that

for any tuple other than . On the other hand, we know that is a linear combination of , with the coefficient one. We conclude that the tensor product is equal to

plus a linear combination of other tensor products with not in . Taking inner products with (3), we conclude that , contradicting the fact that is orthogonal to . Thus we have disjoint from .

For each , let denote the set of tuples in with not of the form . From the previous discussion we see that the cover , and we clearly have , and hence from (8) we have (7) as claimed.

As an instance of this proposition, we recover the computation of diagonal rank from the previous blog post:

Example 5Let be finite-dimensional vector spaces over a field for some . Let be a natural number, and for , let be a linearly independent set in . Let be non-zero coefficients in . Thenhas rank . Indeed, one applies the proposition with all equal to , with the diagonal in ; this is an antichain if we give one of the the standard ordering, and another of the the opposite ordering (and ordering the remaining arbitrarily). In this case, the are all bijective, and so it is clear that the minimum in (4) is simply .

The combinatorial minimisation problem in the above proposition can be solved asymptotically when working with tensor powers, using the notion of the Shannon entropy of a discrete random variable .

Proposition 6Let be finite-dimensional vector spaces over a field . For each , let be a linearly independent set in indexed by some finite set . Let be a non-empty subset of .Let be a tensor of the form (3) for some coefficients . For each natural number , let be the tensor power of copies of , viewed as an element of . Then

and range over the random variables taking values in .

Now suppose that the coefficients are all non-zero and that each of the are equipped with a total ordering . Let be the set of maximal elements of in the product ordering, and let where range over random variables taking values in . Then

as . In particular, if the maximizer in (10) is supported on the maximal elements of (which always holds if is an antichain in the product ordering), then equality holds in (9).

*Proof:*

as , where is the projection map. Then the same thing will apply to and . Then applying Proposition 4, using the lexicographical ordering on and noting that, if are the maximal elements of , then are the maximal elements of , we obtain both (9) and (11).

We first prove the lower bound. By compactness (and the continuity properties of entropy), we can find a random variable taking values in such that

Let be a small positive quantity that goes to zero sufficiently slowly with . Let denote the set of all tuples in that are within of being distributed according to the law of , in the sense that for all , one has

By the asymptotic equipartition property, the cardinality of can be computed to be

if goes to zero slowly enough. Similarly one has

Now let be an arbitrary covering of . By the pigeonhole principle, there exists such that

which by (13) implies that

noting that the factor can be absorbed into the error). This gives the lower bound in (12).

Now we prove the upper bound. We can cover by sets of the form for various choices of random variables taking values in . For each such random variable , we can find such that ; we then place all of in . It is then clear that the cover and that

for all , giving the required upper bound.

It is of interest to compute the quantity in (10). We have the following criterion for when a maximiser occurs:

Proposition 7Let be finite sets, and be non-empty. Let be the quantity in (10). Let be a random variable taking values in , and let denote the essential range of , that is to say the set of tuples such that is non-zero. Then the following are equivalent:

- (i) attains the maximum in (10).
- (ii) There exist weights and a finite quantity , such that whenever , and such that
for all , with equality if . (In particular, must vanish if there exists a with .)

Furthermore, when (i) and (ii) holds, one has

*Proof:* We first show that (i) implies (ii). The function is concave on . As a consequence, if we define to be the set of tuples such that there exists a random variable taking values in with , then is convex. On the other hand, by (10), is disjoint from the orthant . Thus, by the hyperplane separation theorem, we conclude that there exists a half-space

where are reals that are not all zero, and is another real, which contains on its boundary and in its interior, such that avoids the interior of the half-space. Since is also on the boundary of , we see that the are non-negative, and that whenever .

By construction, the quantity

is maximised when . At this point we could use the method of Lagrange multipliers to obtain the required constraints, but because we have some boundary conditions on the (namely, that the probability that they attain a given element of has to be non-negative) we will work things out by hand. Let be an element of , and an element of . For small enough, we can form a random variable taking values in , whose probability distribution is the same as that for except that the probability of attaining is increased by , and the probability of attaining is decreased by . If there is any for which and , then one can check that

for sufficiently small , contradicting the maximality of ; thus we have whenever . Taylor expansion then gives

for small , where

and similarly for . We conclude that for all and , thus there exists a quantity such that for all , and for all . By construction must be nonnegative. Sampling using the distribution of , one has

almost surely; taking expectations we conclude that

The inner sum is , which equals when is non-zero, giving (17).

Now we show conversely that (ii) implies (i). As noted previously, the function is concave on , with derivative . This gives the inequality

for any (note the right-hand side may be infinite when and ). Let be any random variable taking values in , then on applying the above inequality with and , multiplying by , and summing over and gives

By construction, one has

and

so to prove that (which would give (i)), it suffices to show that

or equivalently that the quantity

is maximised when . Since

it suffices to show this claim for the quantity

One can view this quantity as

By (ii), this quantity is bounded by , with equality if is equal to (and is in particular ranging in ), giving the claim.

The second half of the proof of Proposition 7 only uses the marginal distributions and the equation(16), not the actual distribution of , so it can also be used to prove an upper bound on when the exact maximizing distribution is not known, given suitable probability distributions in each variable. The logarithm of the probability distribution here plays the role that the weight functions do in BCCGNSU.

Remark 8Suppose one is in the situation of (i) and (ii) above; assume the nondegeneracy condition that is positive (or equivalently that is positive). We can assign a “degree” to each element by the formula

then every tuple in has total degree at most , and those tuples in have degree exactly . In particular, every tuple in has degree at most , and hence by (17), each such tuple has a -component of degree less than or equal to for some with . On the other hand, we can compute from (19) and the fact that for that . Thus, by asymptotic equipartition, and assuming , the number of “monomials” in of total degree at most is at most ; one can in fact use (19) and (18) to show that this is in fact an equality. This gives a direct way to cover by sets with , which is in the spirit of the Croot-Lev-Pach-Ellenberg-Gijswijt arguments from the previous post.

We can now show that the rank computation for the capset problem is sharp:

Proposition 9Let denote the space of functions from to . Then the function from to , viewed as an element of , has rank as , where is given by the formula

*Proof:* In , we have

Thus, if we let be the space of functions from to (with domain variable denoted respectively), and define the basis functions

of indexed by (with the usual ordering), respectively, and set to be the set

then is a linear combination of the with , and all coefficients non-zero. Then we have . We will show that the quantity of (10) agrees with the quantity of (20), and that the optimizing distribution is supported on , so that by Proposition 6 the rank of is .

To compute the quantity at (10), we use the criterion in Proposition 7. We take to be the random variable taking values in that attains each of the values with a probability of , and each of with a probability of ; then each of the attains the values of with probabilities respectively, so in particular is equal to the quantity in (20). If we now set and

we can verify the condition (16) with equality for all , which from (17) gives as desired.

This statement already follows from the result of Kleinberg-Sawin-Speyer, which gives a “tri-colored sum-free set” in of size , as the slice rank of this tensor is an upper bound for the size of a tri-colored sum-free set. If one were to go over the proofs more carefully to evaluate the subexponential factors, this argument would give a stronger lower bound than KSS, as it does not deal with the substantial loss that comes from Behrend’s construction. However, because it actually constructs a set, the KSS result rules out more possible approaches to give an exponential improvement of the upper bound for capsets. The lower bound on slice rank shows that the bound cannot be improved using only the slice rank of this particular tensor, whereas KSS shows that the bound cannot be improved using any method that does not take advantage of the “single-colored” nature of the problem.

We can also show that the slice rank upper bound in a result of Naslund-Sawin is similarly sharp:

Proposition 10Let denote the space of functions from to . Then the function from , viewed as an element of , has slice rank

*Proof:* Let and be a basis for the space of functions on , itself indexed by . Choose similar bases for and , with and .

Set . Then is a linear combination of the with , and all coefficients non-zero. Order the usual way so that is an antichain. We will show that the quantity of (10) is , so that applying the last statement of Proposition 6, we conclude that the rank of is ,

Let be the random variable taking values in that attains each of the values with a probability of . Then each of the attains the value with probability and with probability , so

Setting and , we can verify the condition (16) with equality for all , which from (17) gives as desired.

We used a slightly different method in each of the last two results. In the first one, we use the most natural bases for all three vector spaces, and distinguish from its set of maximal elements . In the second one we modify one basis element slightly, with instead of the more obvious choice , which allows us to work with instead of . Because is an antichain, we do not need to distinguish and . Both methods in fact work with either problem, and they are both about equally difficult, but we include both as either might turn out to be substantially more convenient in future work.

Proposition 11Let be a natural number and let be a finite abelian group. Let be any field. Let denote the space of functions from to .Let be any -valued function on that is nonzero only when the elements of form a -term arithmetic progression, and is nonzero on every -term constant progression.

Then the slice rank of is .

*Proof:* We apply Proposition 4, using the standard bases of . Let be the support of . Suppose that we have orderings on such that the constant progressions are maximal elements of and thus all constant progressions lie in . Then for any partition of , can contain at most constant progressions, and as all constant progressions must lie in one of the , we must have . By Proposition 4, this implies that the slice rank of is at least . Since is a tensor, the slice rank is at most , hence exactly .

So it is sufficient to find orderings on such that the constant progressions are maximal element of . We make several simplifying reductions: We may as well assume that consists of all the -term arithmetic progressions, because if the constant progressions are maximal among the set of all progressions then they are maximal among its subset . So we are looking for an ordering in which the constant progressions are maximal among all -term arithmetic progressions. We may as well assume that is cyclic, because if for each cyclic group we have an ordering where constant progressions are maximal, on an arbitrary finite abelian group the lexicographic product of these orderings is an ordering for which the constant progressions are maximal. We may assume , as if we have an -tuple of orderings where constant progressions are maximal, we may add arbitrary orderings and the constant progressions will remain maximal.

So it is sufficient to find orderings on the cyclic group such that the constant progressions are maximal elements of the set of -term progressions in in the -fold product ordering. To do that, let the first, second, third, and fifth orderings be the usual order on and let the fourth, sixth, seventh, and eighth orderings be the reverse of the usual order on .

Then let be a constant progression and for contradiction assume that is a progression greater than in this ordering. We may assume that , because otherwise we may reverse the order of the progression, which has the effect of reversing all eight orderings, and then apply the transformation , which again reverses the eight orderings, bringing us back to the original problem but with .

Take a representative of the residue class in the interval . We will abuse notation and call this . Observe that , and are all contained in the interval modulo . Take a representative of the residue class in the interval . Then is in the interval for some . The distance between any distinct pair of intervals of this type is greater than , but the distance between and is at most , so is in the interval . By the same reasoning, is in the interval . Therefore . But then the distance between and is at most , so by the same reasoning is in the interval . Because is between and , it also lies in the interval . Because is in the interval , and by assumption it is congruent mod to a number in the set greater than or equal to , it must be exactly . Then, remembering that and lie in , we have and , so , hence , thus , which contradicts the assumption that .

In fact, given a -term progressions mod and a constant, we can form a -term binary sequence with a for each step of the progression that is greater than the constant and a for each step that is less. Because a rotation map, viewed as a dynamical system, has zero topological entropy, the number of -term binary sequences that appear grows subexponentially in . Hence there must be, for large enough , at least one sequence that does not appear. In this proof we exploit a sequence that does not appear for .

The twin prime conjecture, still unsolved, asserts that there are infinitely many primes such that is also prime. A more precise form of this conjecture is (a special case) of the Hardy-Littlewood prime tuples conjecture, which asserts that

as , where is the von Mangoldt function and is the twin prime constant

Because is almost entirely supported on the primes, it is not difficult to see that (1) implies the twin prime conjecture.

One can give a heuristic justification of the asymptotic (1) (and hence the twin prime conjecture) via sieve theoretic methods. Recall that the von Mangoldt function can be decomposed as a Dirichlet convolution

where is the Möbius function. Because of this, we can rewrite the left-hand side of (1) as

To compute this double sum, it is thus natural to consider sums such as

or (to simplify things by removing the logarithm)

The prime number theorem in arithmetic progressions suggests that one has an asymptotic of the form

where is the multiplicative function with for even and

for odd. Summing by parts, one then expects

and so we heuristically have

The Dirichlet series

has an Euler product factorisation

for ; comparing this with the Euler product factorisation

for the Riemann zeta function, and recalling that has a simple pole of residue at , we see that

has a simple zero at with first derivative

From this and standard multiplicative number theory manipulations, one can calculate the asymptotic

which concludes the heuristic justification of (1).

What prevents us from making the above heuristic argument rigorous, and thus proving (1) and the twin prime conjecture? Note that the variable in (2) ranges to be as large as . On the other hand, the prime number theorem in arithmetic progressions (3) is not expected to hold for anywhere that large (for instance, the left-hand side of (3) vanishes as soon as exceeds ). The best unconditional result known of the type (3) is the Siegel-Walfisz theorem, which allows to be as large as . Even the powerful generalised Riemann hypothesis (GRH) only lets one prove an estimate of the form (3) for up to about .

However, because of the averaging effect of the summation in in (2), we don’t need the asymptotic (3) to be true for *all* in a particular range; having it true for *almost all* in that range would suffice. Here the situation is much better; the celebrated Bombieri-Vinogradov theorem (sometimes known as “GRH on the average”) implies, roughly speaking, that the approximation (3) is valid for *almost all* for any fixed . While this is not enough to control (2) or (1), the Bombieri-Vinogradov theorem can at least be used to control variants of (1) such as

for various sieve weights whose associated divisor function is supposed to approximate the von Mangoldt function , although that theorem only lets one do this when the weights are supported on the range . This is still enough to obtain some partial results towards (1); for instance, by selecting weights according to the Selberg sieve, one can use the Bombieri-Vinogradov theorem to establish the upper bound

which is off from (1) by a factor of about . See for instance this blog post for details.

It has been difficult to improve upon the Bombieri-Vinogradov theorem in its full generality, although there are various improvements to certain restricted versions of the Bombieri-Vinogradov theorem, for instance in the famous work of Zhang on bounded gaps between primes. Nevertheless, it is believed that the Elliott-Halberstam conjecture (EH) holds, which roughly speaking would mean that (3) now holds for almost all for any fixed . (Unfortunately, the factor cannot be removed, as investigated in a series of papers by Friedlander, Granville, and also Hildebrand and Maier.) This comes tantalisingly close to having enough distribution to control all of (1). Unfortunately, it still falls short. Using this conjecture in place of the Bombieri-Vinogradov theorem leads to various improvements to sieve theoretic bounds; for instance, the factor of in (4) can now be improved to .

In two papers from the 1970s (which can be found online here and here respectively, the latter starting on page 255 of the pdf), Bombieri developed what is now known as the *Bombieri asymptotic sieve* to clarify the situation more precisely. First, he showed that on the Elliott-Halberstam conjecture, while one still could not establish the asymptotic (1), one could prove the generalised asymptotic

for all natural numbers , where the generalised von Mangoldt functions are defined by the formula

These functions behave like the von Mangoldt function, but are concentrated on -almost primes (numbers with at most prime factors) rather than primes. The right-hand side of (5) corresponds to what one would expect if one ran the same heuristics used to justify (1). Sadly, the case of (5), which is just (1), is just barely excluded from Bombieri’s analysis.

More generally, on the assumption of EH, the Bombieri asymptotic sieve provides the asymptotic

for any fixed and any tuple of natural numbers other than , where

is a further generalisation of the von Mangoldt function (now concentrated on -almost primes). By combining these asymptotics with some elementary identities involving the , together with the Weierstrass approximation theorem, Bombieri was able to control a wide family of sums including (1), except for one undetermined scalar . Namely, he was able to show (again on EH) that for any fixed and any continuous function on the simplex that had suitable vanishing at the boundary, the sum

when was even, where the integral on is with respect to the measure (this is Dirac measure in the case ). In particular, we have

and the twin prime conjecture would be proved if one could show that is bounded away from zero, while (1) is equivalent to the assertion that is equal to . Unfortunately, no additional bound beyond the inequalities provided by the Bombieri asymptotic sieve is known, even if one assumes all other major conjectures in number theory than the prime tuples conjecture and its variants (e.g. GRH, GEH, GUE, abc, Chowla, …).

To put it another way, the Bombieri asymptotic sieve is able (on EH) to compute asymptotics for sums

without needing to know the unknown scalar , when is a function supported on almost primes of the form

for and some fixed , with vanishing elsewhere and for some continuous (symmetric) functions obeying some vanishing at the boundary, so long as the parity condition

is obeyed (informally: gives the same weight to products of an odd number of primes as to products of an even number of primes, or to put it another way, is asymptotically orthogonal to the Möbius function ). But when violates the parity condition, the asymptotic involves the unknown . This scalar thus embodies the “parity problem” for the twin prime conjecture (discussed in these previous blog posts).

Because the obstruction to the parity problem is only one-dimensional (on EH), one can replace any parity-violating weight (such as ) with any other parity-violating weight and obtain a logically equivalent estimate. For instance, to prove the twin prime conjecture on EH, it would suffice to show that

for some fixed , or equivalently that there are solutions to the equation in primes with and . (In some cases, this sort of reduction can also be made using other sieves than the Bombieri asymptotic sieve, as was observed by Ng.) As another example, the Bombieri asymptotic sieve can be used to show that the asymptotic (1) is equivalent to the asymptotic

where is the set of numbers that are *rough* in the sense that they have no prime factors less than for some fixed (the function clearly correlates with and so must violate the parity condition). One can replace with similar sieve weights (e.g. a Selberg sieve) that concentrate on almost primes if desired.

As it turns out, if one is willing to strengthen the assumption of the Elliott-Halberstam (EH) conjecture to the assumption of the *generalised Elliott-Halberstam (GEH) conjecture* (as formulated for instance in Claim 2.6 of the Polymath8b paper), one can also swap the factor in the above asymptotics with other parity-violating weights and obtain a logically equivalent estimate, as the Bombieri asymptotic sieve also applies to weights such as under the assumption of GEH. For instance, on GEH one can use two such applications of the Bombieri asymptotic sieve to show that the twin prime conjecture would follow if one could show that there are solutions to the equation

in primes with and , for some . Similarly, on GEH the asymptotic (1) is equivalent to the asymptotic

for some fixed , and similarly with replaced by other sieves. This form of the quantitative twin primes conjecture is appealingly similar to the (special case)

of the Chowla conjecture, for which there has been some recent progress (discussed for instance in these recent posts). Informally, the Bombieri asymptotic sieve lets us (on GEH) view the twin prime conjecture as a sort of Chowla conjecture restricted to almost primes. Unfortunately, the recent progress on the Chowla conjecture relies heavily on the multiplicativity of at small primes, which is completely destroyed by inserting a weight such as , so this does not yet yield a viable path towards the twin prime conjecture even assuming GEH. Still, the similarity is striking, and one can hope that further ways to attack the Chowla conjecture may emerge that could impact the twin prime conjecture. (Alternatively, if one assumes a sufficiently optimistic version of the GEH, one could perhaps relax the notion of “almost prime” to the extent that one could start usefully using multiplicativity at smallish primes, though this seems rather wishful at present, particularly since the most optimistic versions of GEH are known to be false.)

The Bombieri asymptotic sieve is already well explained in the original two papers of Bombieri; there is also a slightly different treatment of the sieve by Friedlander and Iwaniec, as well as a simplified version in the book of Friedlander and Iwaniec (in which the distribution hypothesis is strengthened in order to shorten the arguments. I’ve decided though to write up my own notes on the sieve below the fold; this is primarily for my own benefit, but may be useful to some readers also. I largely follow the treatment of Bombieri, with the one idiosyncratic twist of replacing the usual “elementary” Selberg sieve with the “analytic” Selberg sieve used in particular in many of the breakthrough works in small gaps between primes; I prefer working with the latter due to its Fourier-analytic flavour.

** — 1. Controlling generalised von Mangoldt sums — **

To prove (5), we shall first generalise it, by replacing the sequence by a more general sequence obeying the following axioms:

- (i) (Non-negativity) One has for all .
- (ii) (Crude size bound) One has for all , where is the divisor function.
- (iii) (Size) We have for some constant .
- (iv) (Elliott-Halberstam type conjecture) For any , one has
where is a multiplicative function with for all primes and .

These axioms are a little bit stronger than what is actually needed to make the Bombieri asymptotic sieve work, but we will not attempt to work with the weakest possible axioms here.

We introduce the function

which is analytic for ; in particular it can be evaluated at to yield

There are two model examples of data to keep in mind. The first, discussed in the introduction, is when , then and is as in the introduction; one of course needs EH to justify axiom (iv) in this case. The other is when , in which case and for all . We will later take advantage of the second example to avoid doing some (routine, but messy) main term computations.

The main result of this section is then

Theorem 1Let be as above. Let be a tuple of natural numbers (independent of ) that is not equal to . Then one has the asymptoticas , where .

Note that this recovers (5) (on EH) as a special case.

We now begin the proof of this theorem. Henceforth we allow implied constants in the or notation to depend on and .

It will be convenient to replace the range by a shorter range by the following standard localisation trick. Let be a large quantity depending on to be chosen later, and let denote the interval . We will show the estimate

from which the original claim follows by a routine summation argument. Observe from axiom (iv) and the triangle inequality that

for any .

Write for the logarithm function , thus for any . Without loss of generality we may assume that ; we then factor , where

This function is just when . When the function is more complicated, but we at least have the following crude bound:

*Proof:* We induct on . The case is obvious, so suppose and the claim has already been proven for . Since , we see from induction hypothesis and the triangle inequality that

Since by Möbius inversion, the claim follows.

We can write

In the region , we have . Thus

for . The contribution of the error term to to (10) is easily seen to be negligible if is large enough, so we may freely replace with with little difficulty.

If we insert this replacement directly into the left-hand side of (10) and rearrange, we get

We can’t quite control this using axiom (iv) because the range of is a bit too big, as explained in the introduction. So let us introduce a truncated function

where is a small quantity to be chosen later, and is a smooth function that equals on and equals on . Suppose one could establish the following two estimates for any fixed :

where is a quantity that depends on but not on . Then on combining the two estimates we would have

One could in principle compute explicitly from the proof of (13), but one can avoid doing so by the following comparison trick. In the special case , standard multiplicative number theory (noting that the Dirichlet series has a pole of order at , with top Laurent coefficient ) gives the asymptotic

which when compared with (14) for (recalling that in this case) gives the formula

Inserting this back into (14) and recalling that can be made arbitrarily small, we obtain (10).

As it turns out, the estimate (13) is easy to establish, but the estimate (12) is not, roughly speaking because the typical number in has too many divisors in the range , each of which gives a contribution to the error term. (In the book of Friedlander and Iwaniec, the estimate (13) is established anyway, but only after assuming a stronger version of (iv), roughly speaking in which is allowed to be as large as .) To resolve this issue, we will insert a preliminary sieve that will remove most of the potential divisors i the range (leaving only about such divisors on the average for typical ), making the analogue of (12) easier to prove (at the cost of making the analogue of (13) more difficult). Namely, if one can find a function for which one has the estimates

for some quantity that depends on but not on , then by repeating the previous arguments we will again be able to establish (10).

The key estimate is (16). As we shall see, when comparing with , the weight will cost us a factor of , but the term in the definitions of and will recover a factor of , which will give the desired bound since we are assuming .

One has some flexibility in how to select the weight : basically any standard sieve that uses divisors of size at most to localise (at least approximately) to numbers that are rough in the sense that they have no (or at least very few) factors less than , will do. We will use the analytic Selberg sieve choice

where is a smooth function supported on that equals on .

It remains to establish the bounds (15), (16), (17). To warm up and introduce the various methods needed, we begin with the standard bound

where denotes the derivative of . Note the loss of that had previously been pointed out. In the arguments that follows I will be a little brief with the details, as they are standard (see e.g. this previous post).

We now prove (19). The left-hand side can be expanded as

where denotes the least common multiple of and . From the support of we see that the summand is only non-vanishing when . We now use axiom (iv) and split the left-hand side into a main term

and an error term that is at most

From axiom (ii) and elementary multiplicative number theory, we have the bound

so from axiom (iv) and Cauchy-Schwarz we see that the error term (20) is acceptable. Thus it will suffice to establish the bound

The summand here is almost, but not quite, multiplicative in . To make it genuinely multiplicative, we perform a (shifted) Fourier expansion

for some rapidly decreasing function (essentially the Fourier transform of ). Thus

and so the left-hand side of (21) can be rearranged using Fubini’s theorem as

We can factorise as an Euler product:

Taking absolute values and using Mertens’ theorem leads to the crude bound

which when combined with the rapid decrease of , allows us to restrict the region of integration in (23) to the square (say) with negligible error. Next, we use the Euler product

for to factorise

where

For with nonnegative real part, one has

and so by the Weierstrass -test, is continuous at . Since

we thus have

Also, since has a pole of order at with residue , we have

and thus

The quantity (23) can thus be written, up to errors of , as

Using the rapid decrease of , we may remove the restriction on , and it will now suffice to prove the identity

But on differentiating and then squaring (22) we have

and the claim follows by integrating in from zero to infinity (noting that vanishes for ).

We have the following variant of (19):

for any . We also have the variant

If in addition has no prime factors less than for some fixed , one has

Roughly speaking, the above estimates assert that is concentrated on those numbers with no prime factors much less than , but factors without such small prime divisors occur with about the same relative density as they do in the integers.

*Proof:* The left-hand side of (24) can be expanded as

If we define

then the previous expression can be written as

while one has

which gives (25) from Axiom (iv). To prove (24), it now suffices to show that

Arguing as before, the left-hand side is

where

From Mertens’ theorem we have

when , so the contribution of the terms where can be absorbed into the error (after increasing that error slightly). For the remaining contributions, we see that

where if does not divide , and

if divides times for some . In the latter case, Taylor expansion gives the bounds

and the claim (28) follows. When and we have

and (27) follows by repeating the previous calculations. Finally, (26) is proven similarly to (24) (using in place of ).

Now we can prove (15), (16), (17). We begin with (15). Using the Leibniz rule applied to the identity and using and Möbius inversion (and the associativity and commutativity of Dirichlet convolution) we see that

Next, by applying the Leibniz rule to for some and using (29) we see that

and hence we have the recursive identity

In particular, from induction we see that is supported on numbers with at most distinct prime factors, and hence is supported on numbers with at most distinct prime factors. In particular, from (18) we see that on the support of . Thus it will suffice to show that

If and , then has at most distinct prime factors , with . If we factor , where is the contribution of those with , and is the contribution of those with , then at least one of the following two statements hold:

- (a) (and hence ) is divisible by a square number of size at least .
- (b) .

The contribution of case (a) is easily seen to be acceptable by axiom (ii). For case (b), we observe from (30) and induction that

and so it will suffice to show that

where ranges over numbers bounded by with at most distinct prime factors, the smallest of which is at most , and consists of those numbers with no prime factor less than or equal to . Applying (26) (with replaced by ) gives the bound

so by (25) it suffices to show that

subject to the same constraints on as before. The contribution of those with distinct prime factors can be bounded by

applying Mertens’ theorem and summing over , one obtains the claim.

Now we show (16). As discussed previously in this section, we can replace by with negligible error. Comparing this with (16) and (11), we see that it suffices to show that

From the support of , the summand on the left-hand side is only non-zero when , which makes , where we use the crucial hypothesis to gain enough powers of to make the argument here work. Applying Lemma 2, we reduce to showing that

We can make the change of variables to flip the sum

and then swap the sums to reduce to showing that

By Lemma 3, it suffices to show that

To prove this, we use the Rankin trick, bounding the implied weight by . We can then bound the left-hand side by the Euler product

which can be bounded by

and the claim follows from Mertens’ theorem.

Finally, we show (17). By (11), the left-hand side expands as

We let be a small constant to be chosen later. We divide the outer sum into two ranges, depending on whether only has prime factors greater than or not. In the former case, we can apply (27) to write this contribution as

plus a negligible error, where the is implicitly restricted to numbers with all prime factors greater than . The main term is messy, but it is of the required form up to an acceptable error, so there is no need to compute it any further. It remains to consider those that have at least one prime factor less than . Here we use (24) instead of (27) as well as Lemma 3 to dominate this contribution by

up to negligible errors, where is now restricted to have at least one prime factor less than . This makes at least one of the factors to be at most . A routine application of Rankin’s trick shows that

and so the total contribution of this case is . Since can be made arbitrarily small, (17) follows.

** — 2. Weierstrass approximation — **

Having proved Theorem 1, we now take linear combinations of this theorem, combined with the Weierstrass approximation theorem, to give the asymptotics (7), (8) described in the introduction.

Let , , , be as in that theorem. It will be convenient to normalise the weights by to make their mean value comparable to . From Theorem 1 and summation by parts we have

whenever does not consist entirely of ones.

We now take a closer look at what happens when does consist entirely of ones. Let denote the -tuple . Convolving the case of (30) with copies of for some and using the Leibniz rule, we see that

and hence

Multiplying by and summing over , and using (31) to control the term, one has

If we define (up to an error of ) by the formula

then an induction then shows that

for odd , and

for even . In particular, after adjusting by if necessary, we have since the left-hand sides are non-negative.

If we now define the comparison sequence , standard multiplicative number theory shows that the above estimates also hold when is replaced by ; thus

for both odd and even . The bound (31) also holds for when does not consist entirely of ones, and hence

for any fixed (which may or may not consist entirely of ones).

Next, from induction (on ), the Leibniz rule, and (30), we see that for any and , , the function

is a finite linear combination of functions of the form for tuples that may possibly consist entirely of ones. We thus have

whenever is one of these functions (32). Specialising to the case , we thus have

where . The contribution of those that are powers of primes can be easily seen to be negligible, leading to

where now . The contribution of the case where two of the primes agree can also be seen to be negligible, as can the error when replacing with , and then by symmetry

By linearity, this implies that

for any polynomial that vanishes on the coordinate hyperplanes . The right-hand side can also be evaluated by Mertens’ theorem as

when is odd and

when is even. Using the Weierstrass approximation theorem, we then have

for any continuous function that is compactly supported in the interior of . Computing the right-hand side using Mertens’ theorem as before, we obtain the claimed asymptotics (7), (8).

Remark 4The Bombieri asymptotic sieve has to use the full power of EH (or GEH); there are constructions due to Ford that show that if one only has a distributional hypothesis up to for some fixed constant , then the asymptotics of sums such as (5), or more generally (9), are not determined by a single scalar parameter , but can also vary in other ways as well. Thus the Bombieri asymptotic sieve really is asymptotic; in order to get type error terms one needs the level of distribution to be asymptotically equal to as . Related to this, the quantitative decay of the error terms in the Bombieri asymptotic sieve are extremely poor; in particular, they depend on the dependence of implied constant in axiom (iv) on the parameters , for which there is no consensus on what one should conjecturally expect.

A *capset* in the vector space over the finite field of three elements is a subset of that does not contain any lines , where and . A basic problem in additive combinatorics (discussed in one of the very first posts on this blog) is to obtain good upper and lower bounds for the maximal size of a capset in .

Trivially, one has . Using Fourier methods (and the density increment argument of Roth), the bound of was obtained by Meshulam, and improved only as late as 2012 to for some absolute constant by Bateman and Katz. But in a very recent breakthrough, Ellenberg (and independently Gijswijt) obtained the exponentially superior bound , using a version of the polynomial method recently introduced by Croot, Lev, and Pach. (In the converse direction, a construction of Edel gives capsets as large as .) Given the success of the polynomial method in superficially similar problems such as the finite field Kakeya problem (discussed in this previous post), it was natural to wonder that this method could be applicable to the cap set problem (see for instance this MathOverflow comment of mine on this from 2010), but it took a surprisingly long time before Croot, Lev, and Pach were able to identify the precise variant of the polynomial method that would actually work here.

The proof of the capset bound is very short (Ellenberg’s and Gijswijt’s preprints are both 3 pages long, and Croot-Lev-Pach is 6 pages), but I thought I would present a slight reformulation of the argument which treats the three points on a line in symmetrically (as opposed to treating the third point differently from the first two, as is done in the Ellenberg and Gijswijt papers; Croot-Lev-Pach also treat the middle point of a three-term arithmetic progression differently from the two endpoints, although this is a very natural thing to do in their context of ). The basic starting point is this: if is a capset, then one has the identity

for all , where is the Kronecker delta function, which we view as taking values in . Indeed, (1) reflects the fact that the equation has solutions precisely when are either all equal, or form a line, and the latter is ruled out precisely when is a capset.

To exploit (1), we will show that the left-hand side of (1) is “low rank” in some sense, while the right-hand side is “high rank”. Recall that a function taking values in a field is of *rank one* if it is non-zero and of the form for some , and that the rank of a general function is the least number of rank one functions needed to express as a linear combination. More generally, if , we define the *rank* of a function to be the least number of “rank one” functions of the form

for some and some functions , , that are needed to generate as a linear combination. For instance, when , the rank one functions take the form , , , and linear combinations of such rank one functions will give a function of rank at most .

It is a standard fact in linear algebra that the rank of a diagonal matrix is equal to the number of non-zero entries. This phenomenon extends to higher dimensions:

Lemma 1 (Rank of diagonal hypermatrices)Let , let be a finite set, let be a field, and for each , let be a coefficient. Then the rank of the function

*Proof:* We induct on . As mentioned above, the case follows from standard linear algebra, so suppose now that and the claim has already been proven for .

It is clear that the function (2) has rank at most equal to the number of non-zero (since the summands on the right-hand side are rank one functions), so it suffices to establish the lower bound. By deleting from those elements with (which cannot increase the rank), we may assume without loss of generality that all the are non-zero. Now suppose for contradiction that (2) has rank at most , then we obtain a representation

for some sets of cardinalities adding up to at most , and some functions and .

Consider the space of functions that are orthogonal to all the , in the sense that

for all . This space is a vector space whose dimension is at least . A basis of this space generates a coordinate matrix of full rank, which implies that there is at least one non-singular minor. This implies that there exists a function in this space which is nowhere vanishing on some subset of of cardinality at least .

If we multiply (3) by and sum in , we conclude that

where

The right-hand side has rank at most , since the summands are rank one functions. On the other hand, from induction hypothesis the left-hand side has rank at least , giving the required contradiction.

On the other hand, we have the following (symmetrised version of a) beautifully simple observation of Croot, Lev, and Pach:

*Proof:* Using the identity for , we have

The right-hand side is clearly a polynomial of degree in , which is then a linear combination of monomials

with with

In particular, from the pigeonhole principle, at least one of is at most .

Consider the contribution of the monomials for which . We can regroup this contribution as

where ranges over those with , is the monomial

and is some explicitly computable function whose exact form will not be of relevance to our argument. The number of such is equal to , so this contribution has rank at most . The remaining contributions arising from the cases and similarly have rank at most (grouping the monomials so that each monomial is only counted once), so the claim follows.

Upon restricting from to , the rank of is still at most . The two lemmas then combine to give the Ellenberg-Gijswijt bound

All that remains is to compute the asymptotic behaviour of . This can be done using the general tool of Cramer’s theorem, but can also be derived from Stirling’s formula (discussed in this previous post). Indeed, if , , for some summing to , Stirling’s formula gives

where is the entropy function

We then have

where is the maximum entropy subject to the constraints

A routine Lagrange multiplier computation shows that the maximum occurs when

and is approximately , giving rise to the claimed bound of .

Remark 3As noted in the Ellenberg and Gijswijt papers, the above argument extends readily to other fields than to control the maximal size of subset of that has no non-trivial solutions to the equation , where are non-zero constants that sum to zero. Of course one replaces the function in Lemma 2 by in this case.

Remark 4This symmetrised formulation suggests that one possible way to improve slightly on the numerical quantity by finding a more efficient way to decompose into rank one functions, however I was not able to do so (though such improvements are reminiscent of the Strassen type algorithms for fast matrix multiplication).

Remark 5It is tempting to see if this method can get non-trivial upper bounds for sets with no length progressions, in (say) . One can run the above arguments, replacing the functionwith

this leads to the bound where

Unfortunately, is asymptotic to and so this bound is in fact slightly worse than the trivial bound ! However, there is a slim chance that there is a more efficient way to decompose into rank one functions that would give a non-trivial bound on . I experimented with a few possible such decompositions but unfortunately without success.

Remark 6Return now to the capset problem. Since Lemma 1 is valid for any field , one could perhaps hope to get better bounds by viewing the Kronecker delta function as taking values in another field than , such as the complex numbers . However, as soon as one works in a field of characteristic other than , one can adjoin a cube root of unity, and one now has the Fourier decompositionMoving to the Fourier basis, we conclude from Lemma 1 that the function on now has rank exactly , and so one cannot improve upon the trivial bound of by this method using fields of characteristic other than three as the range field. So it seems one has to stick with (or the algebraic completion thereof).

Thanks to Jordan Ellenberg and Ben Green for helpful discussions.

When teaching mathematics, the traditional method of lecturing in front of a blackboard is still hard to improve upon, despite all the advances in modern technology. However, there are some nice things one can do in an electronic medium, such as this blog. Here, I would like to experiment with the ability to animate images, which I think can convey some mathematical concepts in ways that cannot be easily replicated by traditional static text and images. Given that many readers may find these animations annoying, I am placing the rest of the post below the fold.

## Recent Comments