You are currently browsing the category archive for the ‘math.AP’ category.

We now approach conformal maps from yet another perspective. Given an open subset of the complex numbers , define a univalent function on to be a holomorphic function that is also injective. We will primarily be studying this concept in the case when is the unit disk .

Clearly, a univalent function on the unit disk is a conformal map from to the image ; in particular, is simply connected, and not all of (since otherwise the inverse map would violate Liouville’s theorem). In the converse direction, the Riemann mapping theorem tells us that every open simply connected proper subset of the complex numbers is the image of a univalent function on . Furthermore, if contains the origin, then the univalent function with this image becomes unique once we normalise and . Thus the Riemann mapping theorem provides a one-to-one correspondence between open simply connected proper subsets of the complex plane containing the origin, and univalent functions with and . We will focus particular attention on the univalent functions with the normalisation and ; such functions will be called schlicht functions.

One basic example of a univalent function on is the Cayley transform , which is a Möbius transformation from to the right half-plane . (The slight variant is also referred to as the Cayley transform, as is the closely related map , which maps to the upper half-plane.) One can square this map to obtain a further univalent function , which now maps to the complex numbers with the negative real axis removed. One can normalise this function to be schlicht to obtain the Koebe function

which now maps to the complex numbers with the half-line removed. A little more generally, for any we have the *rotated Koebe function*

that is a schlicht function that maps to the complex numbers with the half-line removed.

Every schlicht function has a convergent Taylor expansion

for some complex coefficients with . For instance, the Koebe function has the expansion

and similarly the rotated Koebe function has the expansion

Intuitively, the Koebe function and its rotations should be the “largest” schlicht functions available. This is formalised by the famous Bieberbach conjecture, which asserts that for any schlicht function, the coefficients should obey the bound for all . After a large number of partial results, this conjecture was eventually solved by de Branges; see for instance this survey of Korevaar or this survey of Koepf for a history.

It turns out that to resolve these sorts of questions, it is convenient to restrict attention to schlicht functions that are *odd*, thus for all , and the Taylor expansion now reads

for some complex coefficients with . One can transform a general schlicht function to an odd schlicht function by observing that the function , after removing the singularity at zero, is a non-zero function that equals at the origin, and thus (as is simply connected) has a unique holomorphic square root that also equals at the origin. If one then sets

it is not difficult to verify that is an odd schlicht function which additionally obeys the equation

Conversely, given an odd schlicht function , the formula (4) uniquely determines a schlicht function .

For instance, if is the Koebe function (1), becomes

which maps to the complex numbers with two slits removed, and if is the rotated Koebe function (2), becomes

De Branges established the Bieberbach conjecture by first proving an analogous conjecture for odd schlicht functions known as Robertson’s conjecture. More precisely, we have

Theorem 1 (de Branges’ theorem)Let be a natural number.

- (i) (Robertson conjecture) If is an odd schlicht function, then
- (ii) (Bieberbach conjecture) If is a schlicht function, then

It is easy to see that the Robertson conjecture for a given value of implies the Bieberbach conjecture for the same value of . Indeed, if is schlicht, and is the odd schlicht function given by (3), then from extracting the coefficient of (4) we obtain a formula

for the coefficients of in terms of the coefficients of . Applying the Cauchy-Schwarz inequality, we derive the Bieberbach conjecture for this value of from the Robertson conjecture for the same value of . We remark that Littlewood and Paley had conjectured a stronger form of Robertson’s conjecture, but this was disproved for by Fekete and Szegö.

To prove the Robertson and Bieberbach conjectures, one first takes a logarithm and deduces both conjectures from a similar conjecture about the Taylor coefficients of , known as the *Milin conjecture*. Next, one continuously enlarges the image of the schlicht function to cover all of ; done properly, this places the schlicht function as the initial function in a sequence of univalent maps known as a Loewner chain. The functions obey a useful differential equation known as the Loewner equation, that involves an unspecified forcing term (or , in the case that the image is a slit domain) coming from the boundary; this in turn gives useful differential equations for the Taylor coefficients of , , or . After some elementary calculus manipulations to “integrate” this equations, the Bieberbach, Robertson, and Milin conjectures are then reduced to establishing the non-negativity of a certain explicit hypergeometric function, which is non-trivial to prove (and will not be done here, except for small values of ) but for which several proofs exist in the literature.

The theory of Loewner chains subsequently became fundamental to a more recent topic in complex analysis, that of the Schramm-Loewner equation (SLE), which is the focus of the next and final set of notes.

The Boussinesq equations for inviscid, incompressible two-dimensional fluid flow in the presence of gravity are given by

where is the velocity field, is the pressure field, and is the density field (or, in some physical interpretations, the temperature field). In this post we shall restrict ourselves to formal manipulations, assuming implicitly that all fields are regular enough (or sufficiently decaying at spatial infinity) that the manipulations are justified. Using the material derivative , one can abbreviate these equations as

One can eliminate the role of the pressure by working with the *vorticity* . A standard calculation then leads us to the equivalent “vorticity-stream” formulation

of the Boussinesq equations. The latter two equations can be used to recover the velocity field from the vorticity by the Biot-Savart law

It has long been observed (see e.g. Section 5.4.1 of Bertozzi-Majda) that the Boussinesq equations are very similar, though not quite identical, to the three-dimensional inviscid incompressible Euler equations under the hypothesis of axial symmetry (with swirl). The Euler equations are

where now the velocity field and pressure field are over the three-dimensional domain . If one expresses in polar coordinates then one can write the velocity vector field in these coordinates as

If we make the axial symmetry assumption that these components, as well as , do not depend on the variable, thus

then after some calculation (which we give below the fold) one can eventually reduce the Euler equations to the system

where is the modified material derivative, and is the field . This is almost identical with the Boussinesq equations except for some additional powers of ; thus, the intuition is that the Boussinesq equations are a simplified model for axially symmetric Euler flows when one stays away from the axis and also does not wander off to .

However, this heuristic is not rigorous; the above calculations do not actually give an embedding of the Boussinesq equations into Euler. (The equations do match on the cylinder , but this is a measure zero subset of the domain, and so is not enough to give an embedding on any non-trivial region of space.) Recently, while playing around with trying to embed other equations into the Euler equations, I discovered that it is possible to make such an embedding into a *four*-dimensional Euler equation, albeit on a slightly curved manifold rather than in Euclidean space. More precisely, we use the Ebin-Marsden generalisation

of the Euler equations to an arbitrary Riemannian manifold (ignoring any issues of boundary conditions for this discussion), where is a time-dependent vector field, is a time-dependent scalar field, and is the covariant derivative along using the Levi-Civita connection . In Penrose abstract index notation (using the Levi-Civita connection , and raising and lowering indices using the metric ), the equations of motion become

in coordinates, this becomes

where the Christoffel symbols are given by the formula

where is the inverse to the metric tensor . If the coordinates are chosen so that the volume form is the Euclidean volume form , thus , then on differentiating we have , and hence , and so the divergence-free equation (10) simplifies in this case to . The Ebin-Marsden Euler equations are the natural generalisation of the Euler equations to arbitrary manifolds; for instance, they (formally) conserve the kinetic energy

and can be viewed as the formal geodesic flow equation on the infinite-dimensional manifold of volume-preserving diffeomorphisms on (see this previous post for a discussion of this in the flat space case).

The specific four-dimensional manifold in question is the space with metric

and solutions to the Boussinesq equation on can be transformed into solutions to the Euler equations on this manifold. This is part of a more general family of embeddings into the Euler equations in which passive scalar fields (such as the field appearing in the Boussinesq equations) can be incorporated into the dynamics via fluctuations in the Riemannian metric ). I am writing the details below the fold (partly for my own benefit).

Let be a monic polynomial of degree with complex coefficients. Then by the fundamental theorem of algebra, we can factor as

for some complex zeroes (possibly with repetition).

Now suppose we evolve with respect to time by heat flow, creating a function of two variables with given initial data for which

On the space of polynomials of degree at most , the operator is nilpotent, and one can solve this equation explicitly both forwards and backwards in time by the Taylor series

For instance, if one starts with a quadratic , then the polynomial evolves by the formula

As the polynomial evolves in time, the zeroes evolve also. Assuming for sake of discussion that the zeroes are simple, the inverse function theorem tells us that the zeroes will (locally, at least) evolve smoothly in time. What are the dynamics of this evolution?

For instance, in the quadratic case, the quadratic formula tells us that the zeroes are

and

after arbitrarily choosing a branch of the square root. If are real and the discriminant is initially positive, we see that we start with two real zeroes centred around , which then approach each other until time , at which point the roots collide and then move off from each other in an imaginary direction.

In the general case, we can obtain the equations of motion by implicitly differentiating the defining equation

in time using (2) to obtain

To simplify notation we drop the explicit dependence on time, thus

From (1) and the product rule, we see that

and

(where all indices are understood to range over ) leading to the equations of motion

at least when one avoids those times in which there is a repeated zero. In the case when the zeroes are real, each term represents a (first-order) attraction in the dynamics between and , but the dynamics are more complicated for complex zeroes (e.g. purely imaginary zeroes will experience repulsion rather than attraction, as one already sees in the quadratic example). Curiously, this system resembles that of Dyson brownian motion (except with the brownian motion part removed, and time reversed). I learned of the connection between the ODE (3) and the heat equation from this paper of Csordas, Smith, and Varga, but perhaps it has been mentioned in earlier literature as well.

One interesting consequence of these equations is that if the zeroes are real at some time, then they will stay real as long as the zeroes do not collide. Let us now restrict attention to the case of real simple zeroes, in which case we will rename the zeroes as instead of , and order them as . The evolution

can now be thought of as reverse gradient flow for the “entropy”

(which is also essentially the logarithm of the discriminant of the polynomial) since we have

In particular, we have the monotonicity formula

where is the “energy”

where in the last line we use the antisymmetrisation identity

Among other things, this shows that as one goes backwards in time, the entropy decreases, and so no collisions can occur to the past, only in the future, which is of course consistent with the attractive nature of the dynamics. As is a convex function of the positions , one expects to also evolve in a convex manner in time, that is to say the energy should be increasing. This is indeed the case:

Exercise 1Show that

Symmetric polynomials of the zeroes are polynomial functions of the coefficients and should thus evolve in a polynomial fashion. One can compute this explicitly in simple cases. For instance, the center of mass is an invariant:

The variance decreases linearly:

Exercise 2Establish the virial identity

As the variance (which is proportional to ) cannot become negative, this identity shows that “finite time blowup” must occur – that the zeroes must collide at or before the time .

Exercise 3Show that theStieltjes transformsolves the viscous Burgers equation

either by using the original heat equation (2) and the identity , or else by using the equations of motion (3). This relation between the Burgers equation and the heat equation is known as the Cole-Hopf transformation.

The paper of Csordas, Smith, and Varga mentioned previously gives some other bounds on the lifespan of the dynamics; roughly speaking, they show that if there is one pair of zeroes that are much closer to each other than to the other zeroes then they must collide in a short amount of time (unless there is a collision occuring even earlier at some other location). Their argument extends also to situations where there are an infinite number of zeroes, which they apply to get new results on Newman’s conjecture in analytic number theory. I would be curious to know of further places in the literature where this dynamics has been studied.

I’ve just uploaded to the arXiv my paper “On the universality of the incompressible Euler equation on compact manifolds“, submitted to Discrete and Continuous Dynamical Systems. This is a variant of my recent paper on the universality of potential well dynamics, but instead of trying to embed dynamical systems into a potential well , here we try to embed dynamical systems into the incompressible Euler equations

on a Riemannian manifold . (One is particularly interested in the case of flat manifolds , particularly or , but for the main result of this paper it is essential that one is permitted to consider curved manifolds.) This system, first studied by Ebin and Marsden, is the natural generalisation of the usual incompressible Euler equations to curved space; it can be viewed as the formal geodesic flow equation on the infinite-dimensional manifold of volume-preserving diffeomorphisms on (see this previous post for a discussion of this in the flat space case).

The Euler equations can be viewed as a nonlinear equation in which the nonlinearity is a quadratic function of the velocity field . It is thus natural to compare the Euler equations with quadratic ODE of the form

where is the unknown solution, and is a bilinear map, which we may assume without loss of generality to be symmetric. One can ask whether such an ODE may be linearly embedded into the Euler equations on some Riemannian manifold , which means that there is an injective linear map from to smooth vector fields on , as well as a bilinear map to smooth scalar fields on , such that the map takes solutions to (2) to solutions to (1), or equivalently that

for all .

For simplicity let us restrict to be compact. There is an obvious necessary condition for this embeddability to occur, which comes from energy conservation law for the Euler equations; unpacking everything, this implies that the bilinear form in (2) has to obey a cancellation condition

for some positive definite inner product on . The main result of the paper is the converse to this statement: if is a symmetric bilinear form obeying a cancellation condition (3), then it is possible to embed the equations (2) into the Euler equations (1) on some Riemannian manifold ; the catch is that this manifold will depend on the form and on the dimension (in fact in the construction I have, is given explicitly as , with a funny metric on it that depends on ).

As a consequence, any finite dimensional portion of the usual “dyadic shell models” used as simplified toy models of the Euler equation, can actually be embedded into a genuine Euler equation, albeit on a high-dimensional and curved manifold. This includes portions of the self-similar “machine” I used in a previous paper to establish finite time blowup for an averaged version of the Navier-Stokes (or Euler) equations. Unfortunately, the result in this paper does not apply to infinite-dimensional ODE, so I cannot yet establish finite time blowup for the Euler equations on a (well-chosen) manifold. It does not seem so far beyond the realm of possibility, though, that this could be done in the relatively near future. In particular, the result here suggests that one could construct something resembling a universal Turing machine within an Euler flow on a manifold, which was one ingredient I would need to engineer such a finite time blowup.

The proof of the main theorem proceeds by an “elimination of variables” strategy that was used in some of my previous papers in this area, though in this particular case the Nash embedding theorem (or variants thereof) are not required. The first step is to lessen the dependence on the metric by partially reformulating the Euler equations (1) in terms of the covelocity (which is a -form) instead of the velocity . Using the freedom to modify the dimension of the underlying manifold , one can also decouple the metric from the volume form that is used to obtain the divergence-free condition. At this point the metric can be eliminated, with a certain positive definiteness condition between the velocity and covelocity taking its place. After a substantial amount of trial and error (motivated by some “two-and-a-half-dimensional” reductions of the three-dimensional Euler equations, and also by playing around with a number of variants of the classic “separation of variables” strategy), I eventually found an ansatz for the velocity and covelocity that automatically solved most of the components of the Euler equations (as well as most of the positive definiteness requirements), as long as one could find a number of scalar fields that obeyed a certain nonlinear system of transport equations, and also obeyed a positive definiteness condition. Here I was stuck for a bit because the system I ended up with was overdetermined – more equations than unknowns. After trying a number of special cases I eventually found a solution to the transport system on the sphere, except that the scalar functions sometimes degenerated and so the positive definiteness property I wanted was only obeyed with positive semi-definiteness. I tried for some time to perturb this example into a strictly positive definite solution before eventually working out that this was not possible. Finally I had the brainwave to lift the solution from the sphere to an even more symmetric space, and this quickly led to the final solution of the problem, using the special orthogonal group rather than the sphere as the underlying domain. The solution ended up being rather simple in form, but it is still somewhat miraculous to me that it exists at all; in retrospect, given the overdetermined nature of the problem, relying on a large amount of symmetry to cut down the number of equations was basically the only hope.

I’ve just uploaded to the arXiv my paper “On the universality of potential well dynamics“, submitted to Dynamics of PDE. This is a spinoff from my previous paper on blowup of nonlinear wave equations, inspired by some conversations with Sungjin Oh. Here we focus mainly on the zero-dimensional case of such equations, namely the potential well equation

for a particle trapped in a potential well with potential , with as . This ODE always admits global solutions from arbitrary initial positions and initial velocities , thanks to conservation of the Hamiltonian . As this Hamiltonian is coercive (in that its level sets are compact), solutions to this equation are always almost periodic. On the other hand, as can already be seen using the harmonic oscillator (and direct sums of this system), this equation can generate periodic solutions, as well as quasiperiodic solutions.

All quasiperiodic motions are almost periodic. However, there are many examples of dynamical systems that admit solutions that are almost periodic but not quasiperiodic. So one can pose the question: are the dynamics of potential wells *universal* in the sense that they can capture all almost periodic solutions?

A precise question can be phrased as follows. Let be a compact manifold, and let be a smooth vector field on ; to avoid degeneracies, let us take to be *non-singular* in the sense that it is everywhere non-vanishing. Then the trajectories of the first-order ODE

for are always global and almost periodic. Can we then find a (coercive) potential for some , as well as a smooth embedding , such that every solution to (2) pushes forward under to a solution to (1)? (Actually, for technical reasons it is preferable to map into the phase space , rather than position space , but let us ignore this detail for this discussion.)

It turns out that the answer is no; there is a very specific obstruction. Given a pair as above, define a *strongly adapted -form* to be a -form on such that is pointwise positive, and the Lie derivative is an exact -form. We then have

Theorem 1A smooth compact non-singular dynamics can be embedded smoothly in a potential well system if and only if it admits a strongly adapted -form.

For the “only if” direction, the key point is that potential wells (viewed as a Hamiltonian flow on the phase space ) admit a strongly adapted -form, namely the canonical -form , whose Lie derivative is the derivative of the Lagrangian and is thus exact. The converse “if” direction is mainly a consequence of the Nash embedding theorem, and follows the arguments used in my previous paper.

Interestingly, the same obstruction also works for potential wells in a more general Riemannian manifold than , or for nonlinear wave equations with a potential; combining the two, the obstruction is also present for wave maps with a potential.

It is then natural to ask whether this obstruction is non-trivial, in the sense that there are at least some examples of dynamics that do not support strongly adapted -forms (and hence cannot be modeled smoothly by the dynamics of a potential well, nonlinear wave equation, or wave maps). I posed this question on MathOverflow, and Robert Bryant provided a very nice construction, showing that the vector field on the -torus had no strongly adapted -forms, and hence the dynamics of this vector field cannot be smoothly reproduced by a potential well, nonlinear wave equation, or wave map:

On the other hand, the suspension of any diffeomorphism does support a strongly adapted -form (the derivative of the time coordinate), and using this and the previous theorem I was able to embed a universal Turing machine into a potential well. In particular, there are flows for an explicitly describable potential well whose trajectories have behavior that is undecidable using the usual ZFC axioms of set theory! So potential well dynamics are “effectively” universal, despite the presence of the aforementioned obstruction.

In my previous work on blowup for Navier-Stokes like equations, I speculated that if one could somehow replicate a universal Turing machine within the Euler equations, one could use this machine to create a “von Neumann machine” that replicated smaller versions of itself, which on iteration would lead to a finite time blowup. Now that such a mechanism is present in nonlinear wave equations, it is tempting to try to make this scheme work in that setting. Of course, in my previous paper I had already demonstrated finite time blowup, at least in a three-dimensional setting, but that was a relatively simple discretely self-similar blowup in which no computation occurred. This more complicated blowup scheme would be significantly more effort to set up, but would be proof-of-concept that the same scheme would in principle be possible for the Navier-Stokes equations, assuming somehow that one can embed a universal Turing machine into the Euler equations. (But I’m still hopelessly stuck on how to accomplish this latter task…)

Fifteen years ago, I wrote a paper entitled Global regularity of wave maps. II. Small energy in two dimensions, in which I established global regularity of wave maps from two spatial dimensions to the unit sphere, assuming that the initial data had small energy. Recently, Hao Jia (personal communication) discovered a small gap in the argument that requires a slightly non-trivial fix. The issue does not really affect the subsequent literature, because the main result has since been reproven and extended by methods that avoid the gap (see in particular this subsequent paper of Tataru), but I have decided to describe the gap and its fix on this blog.

I will assume familiarity with the notation of my paper. In Section 10, some complicated spaces are constructed for each frequency scale , and then a further space is constructed for a given frequency envelope by the formula

where is the Littlewood-Paley projection of to frequency magnitudes . Then, given a spacetime slab , we define the restrictions

where the infimum is taken over all extensions of to the Minkowski spacetime ; similarly one defines

The gap in the paper is as follows: it was implicitly assumed that one could restrict (1) to the slab to obtain the equality

(This equality is implicitly used to establish the bound (36) in the paper.) Unfortunately, (1) only gives the lower bound, not the upper bound, and it is the upper bound which is needed here. The problem is that the extensions of that are optimal for computing are not necessarily the Littlewood-Paley projections of the extensions of that are optimal for computing .

To remedy the problem, one has to prove an upper bound of the form

for all Schwartz (actually we need affinely Schwartz , but one can easily normalise to the Schwartz case). Without loss of generality we may normalise the RHS to be . Thus

for each , and one has to find a single extension of such that

for each . Achieving a that obeys (4) is trivial (just extend by zero), but such extensions do not necessarily obey (5). On the other hand, from (3) we can find extensions of such that

the extension will then obey (5) (here we use Lemma 9 from my paper), but unfortunately is not guaranteed to obey (4) (the norm does control the norm, but a key point about frequency envelopes for the small energy regularity problem is that the coefficients , while bounded, are not necessarily summable).

This can be fixed as follows. For each we introduce a time cutoff supported on that equals on and obeys the usual derivative estimates in between (the time derivative of size for each ). Later we will prove the truncation estimate

Assuming this estimate, then if we set , then using Lemma 9 in my paper and (6), (7) (and the local stability of frequency envelopes) we have the required property (5). (There is a technical issue arising from the fact that is not necessarily Schwartz due to slow decay at temporal infinity, but by considering partial sums in the summation and taking limits we can check that is the strong limit of Schwartz functions, which suffices here; we omit the details for sake of exposition.) So the only issue is to establish (4), that is to say that

for all .

For this is immediate from (2). Now suppose that for some integer (the case when is treated similarly). Then we can split

where

The contribution of the term is acceptable by (6) and estimate (82) from my paper. The term sums to which is acceptable by (2). So it remains to control the norm of . By the triangle inequality and the fundamental theorem of calculus, we can bound

By hypothesis, . Using the first term in (79) of my paper and Bernstein’s inequality followed by (6) we have

and then we are done by summing the geometric series in .

It remains to prove the truncation estimate (7). This estimate is similar in spirit to the algebra estimates already in my paper, but unfortunately does not seem to follow immediately from these estimates as written, and so one has to repeat the somewhat lengthy decompositions and case checkings used to prove these estimates. We do this below the fold.

I’ve just posted to the arXiv my paper “Finite time blowup for Lagrangian modifications of the three-dimensional Euler equation“. This paper is loosely in the spirit of other recent papers of mine in which I explore how close one can get to supercritical PDE of physical interest (such as the Euler and Navier-Stokes equations), while still being able to rigorously demonstrate finite time blowup for at least some choices of initial data. Here, the PDE we are trying to get close to is the incompressible inviscid Euler equations

in three spatial dimensions, where is the velocity vector field and is the pressure field. In vorticity form, and viewing the vorticity as a -form (rather than a vector), we can rewrite this system using the language of differential geometry as

where is the Lie derivative along , is the codifferential (the adjoint of the differential , or equivalently the negative of the divergence operator) that sends -vector fields to -vector fields, is the Hodge Laplacian, and is the identification of -vector fields with -forms induced by the Euclidean metric . The equation can be viewed as the Biot-Savart law recovering velocity from vorticity, expressed in the language of differential geometry.

One can then generalise this system by replacing the operator by a more general operator from -forms to -vector fields, giving rise to what I call the *generalised Euler equations*

For example, the surface quasi-geostrophic (SQG) equations can be written in this form, as discussed in this previous post. One can view (up to Hodge duality) as a vector potential for the velocity , so it is natural to refer to as a vector potential operator.

The generalised Euler equations carry much of the same geometric structure as the true Euler equations. For instance, the transport equation is equivalent to the Kelvin circulation theorem, which in three dimensions also implies the transport of vortex streamlines and the conservation of helicity. If is self-adjoint and positive definite, then the famous Euler-Poincaré interpretation of the true Euler equations as geodesic flow on an infinite dimensional Riemannian manifold of volume preserving diffeomorphisms (as discussed in this previous post) extends to the generalised Euler equations (with the operator determining the new Riemannian metric to place on this manifold). In particular, the generalised Euler equations have a Lagrangian formulation, and so by Noether’s theorem we expect any continuous symmetry of the Lagrangian to lead to conserved quantities. Indeed, we have a conserved Hamiltonian , and any spatial symmetry of leads to a conserved impulse (e.g. translation invariance leads to a conserved momentum, and rotation invariance leads to a conserved angular momentum). If behaves like a pseudodifferential operator of order (as is the case with the true vector potential operator ), then it turns out that one can use energy methods to recover the same sort of classical local existence theory as for the true Euler equations (up to and including the famous Beale-Kato-Majda criterion for blowup).

The true Euler equations are suspected of admitting smooth localised solutions which blow up in finite time; there is now substantial numerical evidence for this blowup, but it has not been proven rigorously. The main purpose of this paper is to show that such finite time blowup can at least be established for certain generalised Euler equations that are somewhat close to the true Euler equations. This is similar in spirit to my previous paper on finite time blowup on averaged Navier-Stokes equations, with the main new feature here being that the modified equation continues to have a Lagrangian structure and a vorticity formulation, which was not the case with the averaged Navier-Stokes equation. On the other hand, the arguments here are not able to handle the presence of viscosity (basically because they rely crucially on the Kelvin circulation theorem, which is not available in the viscous case).

In fact, three different blowup constructions are presented (for three different choices of vector potential operator ). The first is a variant of one discussed previously on this blog, in which a “neck pinch” singularity for a vortex tube is created by using a non-self-adjoint vector potential operator, in which the velocity at the neck of the vortex tube is determined by the circulation of the vorticity somewhat further away from that neck, which when combined with conservation of circulation is enough to guarantee finite time blowup. This is a relatively easy construction of finite time blowup, and has the advantage of being rather stable (any initial data flowing through a narrow tube with a large positive circulation will blow up in finite time). On the other hand, it is not so surprising in the non-self-adjoint case that finite blowup can occur, as there is no conserved energy.

The second blowup construction is based on a connection between the two-dimensional SQG equation and the three-dimensional generalised Euler equations, discussed in this previous post. Namely, any solution to the former can be lifted to a “two and a half-dimensional” solution to the latter, in which the velocity and vorticity are translation-invariant in the vertical direction (but the velocity is still allowed to contain vertical components, so the flow is not completely horizontal). The same embedding also works to lift solutions to generalised SQG equations in two dimensions to solutions to generalised Euler equations in three dimensions. Conveniently, even if the vector potential operator for the generalised SQG equation fails to be self-adjoint, one can ensure that the three-dimensional vector potential operator is self-adjoint. Using this trick, together with a two-dimensional version of the first blowup construction, one can then construct a generalised Euler equation in three dimensions with a vector potential that is both self-adjoint and positive definite, and still admits solutions that blow up in finite time, though now the blowup is now a vortex sheet creasing at on a line, rather than a vortex tube pinching at a point.

This eliminates the main defect of the first blowup construction, but introduces two others. Firstly, the blowup is less stable, as it relies crucially on the initial data being translation-invariant in the vertical direction. Secondly, the solution is not spatially localised in the vertical direction (though it can be viewed as a compactly supported solution on the manifold , rather than ). The third and final blowup construction of the paper addresses the final defect, by replacing vertical translation symmetry with axial rotation symmetry around the vertical axis (basically, replacing Cartesian coordinates with cylindrical coordinates). It turns out that there is a more complicated way to embed two-dimensional generalised SQG equations into three-dimensional generalised Euler equations in which the solutions to the latter are now axially symmetric (but are allowed to “swirl” in the sense that the velocity field can have a non-zero angular component), while still keeping the vector potential operator self-adjoint and positive definite; the blowup is now that of a vortex ring creasing on a circle.

As with the previous papers in this series, these blowup constructions do not *directly* imply finite time blowup for the true Euler equations, but they do at least provide a barrier to establishing global regularity for these latter equations, in that one is forced to use some property of the true Euler equations that are not shared by these generalisations. They also suggest some possible blowup mechanisms for the true Euler equations (although unfortunately these mechanisms do not seem compatible with the addition of viscosity, so they do not seem to suggest a viable Navier-Stokes blowup mechanism).

I’ve just uploaded to the arXiv my paper Finite time blowup for high dimensional nonlinear wave systems with bounded smooth nonlinearity, submitted to Comm. PDE. This paper is in the same spirit as (though not directly related to) my previous paper on finite time blowup of supercritical NLW systems, and was inspired by a question posed to me some time ago by Jeffrey Rauch. Here, instead of looking at supercritical equations, we look at an extremely subcritical equation, namely a system of the form

where is the unknown field, and is the nonlinearity, which we assume to have all derivatives bounded. A typical example of such an equation is the higher-dimensional sine-Gordon equation

for a scalar field . Here is the d’Alembertian operator. We restrict attention here to classical (i.e. smooth) solutions to (1).

We do not assume any Hamiltonian structure, so we do not require to be a gradient of a potential . But even without such Hamiltonian structure, the equation (1) is very well behaved, with many *a priori* bounds available. For instance, if the initial position and initial velocity are smooth and compactly supported, then from finite speed of propagation has uniformly bounded compact support for all in a bounded interval. As the nonlinearity is bounded, this immediately places in in any bounded time interval, which by the energy inequality gives an a priori bound on in this time interval. Next, from the chain rule we have

which (from the assumption that is bounded) shows that is in , which by the energy inequality again now gives an a priori bound on .

One might expect that one could keep iterating this and obtain *a priori* bounds on in arbitrarily smooth norms. In low dimensions such as , this is a fairly easy task, since the above estimates and Sobolev embedding already place one in , and the nonlinear map is easily verified to preserve the space for any natural number , from which one obtains a priori bounds in any Sobolev space; from this and standard energy methods, one can then establish global regularity for this equation (that is to say, any smooth choice of initial data generates a global smooth solution). However, one starts running into trouble in higher dimensions, in which no bound is available. The main problem is that even a really nice nonlinearity such as is unbounded in higher Sobolev norms. The estimates

and

ensure that the map is bounded in low regularity spaces like or , but one already runs into trouble with the second derivative

where there is a troublesome lower order term of size which becomes difficult to control in higher dimensions, preventing the map to be bounded in . Ultimately, the issue here is that when is not controlled in , the function can oscillate at a much higher frequency than ; for instance, if is the one-dimensional wave for some and , then oscillates at frequency , but the function more or less oscillates at the larger frequency .

In medium dimensions, it is possible to use dispersive estimates for the wave equation (such as the famous Strichartz estimates) to overcome these problems. This line of inquiry was pursued (albeit for slightly different classes of nonlinearity than those considered here) by Heinz-von Wahl, Pecher (in a series of papers), Brenner, and Brenner-von Wahl; to cut a long story short, one of the conclusions of these papers was that one had global regularity for equations such as (1) in dimensions . (I reprove this result using modern Strichartz estimate and Littlewood-Paley techniques in an appendix to my paper. The references given also allow for some growth in the nonlinearity , but we will not detail the precise hypotheses used in these papers here.)

In my paper, I complement these positive results with an almost matching negative result:

Theorem 1If and , then there exists a nonlinearity with all derivatives bounded, and a solution to (1) that is smooth at time zero, but develops a singularity in finite time.

The construction crucially relies on the ability to choose the nonlinearity , and also needs some injectivity properties on the solution (after making a symmetry reduction using an assumption of spherical symmetry to view as a function of variables rather than ) which restricts our counterexample to the case. Thus the model case of the higher-dimensional sine-Gordon equation is not covered by our arguments. Nevertheless (as with previous finite-time blowup results discussed on this blog), one can view this result as a *barrier* to trying to prove regularity for equations such as in eleven and higher dimensions, as any such argument must somehow use a property of that equation that is not applicable to the more general system (1).

Let us first give some back-of-the-envelope calculations suggesting why there could be finite time blowup in eleven and higher dimensions. For sake of this discussion let us restrict attention to the sine-Gordon equation . The blowup ansatz we will use is as follows: for each frequency in a sequence of large quantities going to infinity, there will be a spacetime “cube” on which the solution oscillates with “amplitude” and “frequency” , where is an exponent to be chosen later; this ansatz is of course compatible with the uncertainty principle. Since as , this will create a singularity at the spacetime origin . To make this ansatz plausible, we wish to make the oscillation of on driven primarily by the forcing term at . Thus, by Duhamel’s formula, we expect a relation roughly of the form

on , where is the usual free wave propagator, and is the indicator function of .

On , oscillates with amplitude and frequency , we expect the derivative to be of size about , and so from the principle of stationary phase we expect to oscillate at frequency about . Since the wave propagator preserves frequencies, and is supposed to be of frequency on we are thus led to the requirement

Next, when restricted to frequencies of order , the propagator “behaves like” , where is the spherical averaging operator

where is surface measure on the unit sphere , and is the volume of that sphere. In our setting, is comparable to , and so we have the informal approximation

on .

Since is bounded, is bounded as well. This gives a (non-rigorous) upper bound

which when combined with our ansatz that has ampitude about on , gives the constraint

which on applying (2) gives the further constraint

which can be rearranged as

It is now clear that the optimal choice of is

and this blowup ansatz is only self-consistent when

or equivalently if .

To turn this ansatz into an actual blowup example, we will construct as the sum of various functions that solve the wave equation with forcing term in , and which concentrate in with the amplitude and frequency indicated by the above heuristic analysis. The remaining task is to show that can be written in the form for some with all derivatives bounded. For this one needs some injectivity properties of (after imposing spherical symmetry to impose a dimensional reduction on the domain of from dimensions to ). This requires one to construct some solutions to the free wave equation that have some unusual restrictions on the range (for instance, we will need a solution taking values in the plane that avoid one quadrant of that plane). In order to do this we take advantage of the very explicit nature of the fundamental solution to the wave equation in odd dimensions (such as ), particularly under the assumption of spherical symmetry. Specifically, one can show that in odd dimension , any spherically symmetric function of the form

for an arbitrary smooth function , will solve the free wave equation; this is ultimately due to iterating the “ladder operator” identity

This precise and relatively simple formula for allows one to create “bespoke” solutions that obey various unusual properties, without too much difficulty.

It is not clear to me what to conjecture for . The blowup ansatz given above is a little inefficient, in that the frequency component of the solution is only generated from a portion of the component, namely the portion close to a certain light cone. In particular, the solution does not saturate the Strichartz estimates that are used to establish the positive results for , which helps explain the slight gap between the positive and negative results. It may be that a more complicated ansatz could work to give a negative result in ten dimensions; conversely, it is also possible that one could use more advanced estimates than the Strichartz estimate (that somehow capture the “thinness” of the fundamental solution, and not just its dispersive properties) to stretch the positive results to ten dimensions. Which side the case falls in all come down to some rather delicate numerology.

…

## Recent Comments