You are currently browsing the category archive for the ‘math.AP’ category.

Let be a monic polynomial of degree with complex coefficients. Then by the fundamental theorem of algebra, we can factor as

for some complex zeroes (possibly with repetition).

Now suppose we evolve with respect to time by heat flow, creating a function of two variables with given initial data for which

On the space of polynomials of degree at most , the operator is nilpotent, and one can solve this equation explicitly both forwards and backwards in time by the Taylor series

For instance, if one starts with a quadratic , then the polynomial evolves by the formula

As the polynomial evolves in time, the zeroes evolve also. Assuming for sake of discussion that the zeroes are simple, the inverse function theorem tells us that the zeroes will (locally, at least) evolve smoothly in time. What are the dynamics of this evolution?

For instance, in the quadratic case, the quadratic formula tells us that the zeroes are

and

after arbitrarily choosing a branch of the square root. If are real and the discriminant is initially positive, we see that we start with two real zeroes centred around , which then approach each other until time , at which point the roots collide and then move off from each other in an imaginary direction.

In the general case, we can obtain the equations of motion by implicitly differentiating the defining equation

in time using (2) to obtain

To simplify notation we drop the explicit dependence on time, thus

From (1) and the product rule, we see that

and

(where all indices are understood to range over ) leading to the equations of motion

at least when one avoids those times in which there is a repeated zero. In the case when the zeroes are real, each term represents a (first-order) attraction in the dynamics between and , but the dynamics are more complicated for complex zeroes (e.g. purely imaginary zeroes will experience repulsion rather than attraction, as one already sees in the quadratic example). Curiously, this system resembles that of Dyson brownian motion (except with the brownian motion part removed, and time reversed). I learned of the connection between the ODE (3) and the heat equation from this paper of Csordas, Smith, and Varga, but perhaps it has been mentioned in earlier literature as well.

One interesting consequence of these equations is that if the zeroes are real at some time, then they will stay real as long as the zeroes do not collide. Let us now restrict attention to the case of real simple zeroes, in which case we will rename the zeroes as instead of , and order them as . The evolution

can now be thought of as reverse gradient flow for the “entropy”

(which is also essentially the logarithm of the discriminant of the polynomial) since we have

In particular, we have the monotonicity formula

where is the “energy”

where in the last line we use the antisymmetrisation identity

Among other things, this shows that as one goes backwards in time, the entropy decreases, and so no collisions can occur to the past, only in the future, which is of course consistent with the attractive nature of the dynamics. As is a convex function of the positions , one expects to also evolve in a convex manner in time, that is to say the energy should be increasing. This is indeed the case:

Exercise 1Show that

Symmetric polynomials of the zeroes are polynomial functions of the coefficients and should thus evolve in a polynomial fashion. One can compute this explicitly in simple cases. For instance, the center of mass is an invariant:

The variance decreases linearly:

Exercise 2Establish the virial identity

As the variance (which is proportional to ) cannot become negative, this identity shows that “finite time blowup” must occur – that the zeroes must collide at or before the time .

Exercise 3Show that theStieltjes transformsolves the viscous Burgers equation

either by using the original heat equation (2) and the identity , or else by using the equations of motion (3). This relation between the Burgers equation and the heat equation is known as the Cole-Hopf transformation.

The paper of Csordas, Smith, and Varga mentioned previously gives some other bounds on the lifespan of the dynamics; roughly speaking, they show that if there is one pair of zeroes that are much closer to each other than to the other zeroes then they must collide in a short amount of time (unless there is a collision occuring even earlier at some other location). Their argument extends also to situations where there are an infinite number of zeroes, which they apply to get new results on Newman’s conjecture in analytic number theory. I would be curious to know of further places in the literature where this dynamics has been studied.

I’ve just uploaded to the arXiv my paper “On the universality of the incompressible Euler equation on compact manifolds“, submitted to Discrete and Continuous Dynamical Systems. This is a variant of my recent paper on the universality of potential well dynamics, but instead of trying to embed dynamical systems into a potential well , here we try to embed dynamical systems into the incompressible Euler equations

on a Riemannian manifold . (One is particularly interested in the case of flat manifolds , particularly or , but for the main result of this paper it is essential that one is permitted to consider curved manifolds.) This system, first studied by Ebin and Marsden, is the natural generalisation of the usual incompressible Euler equations to curved space; it can be viewed as the formal geodesic flow equation on the infinite-dimensional manifold of volume-preserving diffeomorphisms on (see this previous post for a discussion of this in the flat space case).

The Euler equations can be viewed as a nonlinear equation in which the nonlinearity is a quadratic function of the velocity field . It is thus natural to compare the Euler equations with quadratic ODE of the form

where is the unknown solution, and is a bilinear map, which we may assume without loss of generality to be symmetric. One can ask whether such an ODE may be linearly embedded into the Euler equations on some Riemannian manifold , which means that there is an injective linear map from to smooth vector fields on , as well as a bilinear map to smooth scalar fields on , such that the map takes solutions to (2) to solutions to (1), or equivalently that

for all .

For simplicity let us restrict to be compact. There is an obvious necessary condition for this embeddability to occur, which comes from energy conservation law for the Euler equations; unpacking everything, this implies that the bilinear form in (2) has to obey a cancellation condition

for some positive definite inner product on . The main result of the paper is the converse to this statement: if is a symmetric bilinear form obeying a cancellation condition (3), then it is possible to embed the equations (2) into the Euler equations (1) on some Riemannian manifold ; the catch is that this manifold will depend on the form and on the dimension (in fact in the construction I have, is given explicitly as , with a funny metric on it that depends on ).

As a consequence, any finite dimensional portion of the usual “dyadic shell models” used as simplified toy models of the Euler equation, can actually be embedded into a genuine Euler equation, albeit on a high-dimensional and curved manifold. This includes portions of the self-similar “machine” I used in a previous paper to establish finite time blowup for an averaged version of the Navier-Stokes (or Euler) equations. Unfortunately, the result in this paper does not apply to infinite-dimensional ODE, so I cannot yet establish finite time blowup for the Euler equations on a (well-chosen) manifold. It does not seem so far beyond the realm of possibility, though, that this could be done in the relatively near future. In particular, the result here suggests that one could construct something resembling a universal Turing machine within an Euler flow on a manifold, which was one ingredient I would need to engineer such a finite time blowup.

The proof of the main theorem proceeds by an “elimination of variables” strategy that was used in some of my previous papers in this area, though in this particular case the Nash embedding theorem (or variants thereof) are not required. The first step is to lessen the dependence on the metric by partially reformulating the Euler equations (1) in terms of the covelocity (which is a -form) instead of the velocity . Using the freedom to modify the dimension of the underlying manifold , one can also decouple the metric from the volume form that is used to obtain the divergence-free condition. At this point the metric can be eliminated, with a certain positive definiteness condition between the velocity and covelocity taking its place. After a substantial amount of trial and error (motivated by some “two-and-a-half-dimensional” reductions of the three-dimensional Euler equations, and also by playing around with a number of variants of the classic “separation of variables” strategy), I eventually found an ansatz for the velocity and covelocity that automatically solved most of the components of the Euler equations (as well as most of the positive definiteness requirements), as long as one could find a number of scalar fields that obeyed a certain nonlinear system of transport equations, and also obeyed a positive definiteness condition. Here I was stuck for a bit because the system I ended up with was overdetermined – more equations than unknowns. After trying a number of special cases I eventually found a solution to the transport system on the sphere, except that the scalar functions sometimes degenerated and so the positive definiteness property I wanted was only obeyed with positive semi-definiteness. I tried for some time to perturb this example into a strictly positive definite solution before eventually working out that this was not possible. Finally I had the brainwave to lift the solution from the sphere to an even more symmetric space, and this quickly led to the final solution of the problem, using the special orthogonal group rather than the sphere as the underlying domain. The solution ended up being rather simple in form, but it is still somewhat miraculous to me that it exists at all; in retrospect, given the overdetermined nature of the problem, relying on a large amount of symmetry to cut down the number of equations was basically the only hope.

I’ve just uploaded to the arXiv my paper “On the universality of potential well dynamics“, submitted to Dynamics of PDE. This is a spinoff from my previous paper on blowup of nonlinear wave equations, inspired by some conversations with Sungjin Oh. Here we focus mainly on the zero-dimensional case of such equations, namely the potential well equation

for a particle trapped in a potential well with potential , with as . This ODE always admits global solutions from arbitrary initial positions and initial velocities , thanks to conservation of the Hamiltonian . As this Hamiltonian is coercive (in that its level sets are compact), solutions to this equation are always almost periodic. On the other hand, as can already be seen using the harmonic oscillator (and direct sums of this system), this equation can generate periodic solutions, as well as quasiperiodic solutions.

All quasiperiodic motions are almost periodic. However, there are many examples of dynamical systems that admit solutions that are almost periodic but not quasiperiodic. So one can pose the question: are the dynamics of potential wells *universal* in the sense that they can capture all almost periodic solutions?

A precise question can be phrased as follows. Let be a compact manifold, and let be a smooth vector field on ; to avoid degeneracies, let us take to be *non-singular* in the sense that it is everywhere non-vanishing. Then the trajectories of the first-order ODE

for are always global and almost periodic. Can we then find a (coercive) potential for some , as well as a smooth embedding , such that every solution to (2) pushes forward under to a solution to (1)? (Actually, for technical reasons it is preferable to map into the phase space , rather than position space , but let us ignore this detail for this discussion.)

It turns out that the answer is no; there is a very specific obstruction. Given a pair as above, define a *strongly adapted -form* to be a -form on such that is pointwise positive, and the Lie derivative is an exact -form. We then have

Theorem 1A smooth compact non-singular dynamics can be embedded smoothly in a potential well system if and only if it admits a strongly adapted -form.

For the “only if” direction, the key point is that potential wells (viewed as a Hamiltonian flow on the phase space ) admit a strongly adapted -form, namely the canonical -form , whose Lie derivative is the derivative of the Lagrangian and is thus exact. The converse “if” direction is mainly a consequence of the Nash embedding theorem, and follows the arguments used in my previous paper.

Interestingly, the same obstruction also works for potential wells in a more general Riemannian manifold than , or for nonlinear wave equations with a potential; combining the two, the obstruction is also present for wave maps with a potential.

It is then natural to ask whether this obstruction is non-trivial, in the sense that there are at least some examples of dynamics that do not support strongly adapted -forms (and hence cannot be modeled smoothly by the dynamics of a potential well, nonlinear wave equation, or wave maps). I posed this question on MathOverflow, and Robert Bryant provided a very nice construction, showing that the vector field on the -torus had no strongly adapted -forms, and hence the dynamics of this vector field cannot be smoothly reproduced by a potential well, nonlinear wave equation, or wave map:

On the other hand, the suspension of any diffeomorphism does support a strongly adapted -form (the derivative of the time coordinate), and using this and the previous theorem I was able to embed a universal Turing machine into a potential well. In particular, there are flows for an explicitly describable potential well whose trajectories have behavior that is undecidable using the usual ZFC axioms of set theory! So potential well dynamics are “effectively” universal, despite the presence of the aforementioned obstruction.

In my previous work on blowup for Navier-Stokes like equations, I speculated that if one could somehow replicate a universal Turing machine within the Euler equations, one could use this machine to create a “von Neumann machine” that replicated smaller versions of itself, which on iteration would lead to a finite time blowup. Now that such a mechanism is present in nonlinear wave equations, it is tempting to try to make this scheme work in that setting. Of course, in my previous paper I had already demonstrated finite time blowup, at least in a three-dimensional setting, but that was a relatively simple discretely self-similar blowup in which no computation occurred. This more complicated blowup scheme would be significantly more effort to set up, but would be proof-of-concept that the same scheme would in principle be possible for the Navier-Stokes equations, assuming somehow that one can embed a universal Turing machine into the Euler equations. (But I’m still hopelessly stuck on how to accomplish this latter task…)

Fifteen years ago, I wrote a paper entitled Global regularity of wave maps. II. Small energy in two dimensions, in which I established global regularity of wave maps from two spatial dimensions to the unit sphere, assuming that the initial data had small energy. Recently, Hao Jia (personal communication) discovered a small gap in the argument that requires a slightly non-trivial fix. The issue does not really affect the subsequent literature, because the main result has since been reproven and extended by methods that avoid the gap (see in particular this subsequent paper of Tataru), but I have decided to describe the gap and its fix on this blog.

I will assume familiarity with the notation of my paper. In Section 10, some complicated spaces are constructed for each frequency scale , and then a further space is constructed for a given frequency envelope by the formula

where is the Littlewood-Paley projection of to frequency magnitudes . Then, given a spacetime slab , we define the restrictions

where the infimum is taken over all extensions of to the Minkowski spacetime ; similarly one defines

The gap in the paper is as follows: it was implicitly assumed that one could restrict (1) to the slab to obtain the equality

(This equality is implicitly used to establish the bound (36) in the paper.) Unfortunately, (1) only gives the lower bound, not the upper bound, and it is the upper bound which is needed here. The problem is that the extensions of that are optimal for computing are not necessarily the Littlewood-Paley projections of the extensions of that are optimal for computing .

To remedy the problem, one has to prove an upper bound of the form

for all Schwartz (actually we need affinely Schwartz , but one can easily normalise to the Schwartz case). Without loss of generality we may normalise the RHS to be . Thus

for each , and one has to find a single extension of such that

for each . Achieving a that obeys (4) is trivial (just extend by zero), but such extensions do not necessarily obey (5). On the other hand, from (3) we can find extensions of such that

the extension will then obey (5) (here we use Lemma 9 from my paper), but unfortunately is not guaranteed to obey (4) (the norm does control the norm, but a key point about frequency envelopes for the small energy regularity problem is that the coefficients , while bounded, are not necessarily summable).

This can be fixed as follows. For each we introduce a time cutoff supported on that equals on and obeys the usual derivative estimates in between (the time derivative of size for each ). Later we will prove the truncation estimate

Assuming this estimate, then if we set , then using Lemma 9 in my paper and (6), (7) (and the local stability of frequency envelopes) we have the required property (5). (There is a technical issue arising from the fact that is not necessarily Schwartz due to slow decay at temporal infinity, but by considering partial sums in the summation and taking limits we can check that is the strong limit of Schwartz functions, which suffices here; we omit the details for sake of exposition.) So the only issue is to establish (4), that is to say that

for all .

For this is immediate from (2). Now suppose that for some integer (the case when is treated similarly). Then we can split

where

The contribution of the term is acceptable by (6) and estimate (82) from my paper. The term sums to which is acceptable by (2). So it remains to control the norm of . By the triangle inequality and the fundamental theorem of calculus, we can bound

By hypothesis, . Using the first term in (79) of my paper and Bernstein’s inequality followed by (6) we have

and then we are done by summing the geometric series in .

It remains to prove the truncation estimate (7). This estimate is similar in spirit to the algebra estimates already in my paper, but unfortunately does not seem to follow immediately from these estimates as written, and so one has to repeat the somewhat lengthy decompositions and case checkings used to prove these estimates. We do this below the fold.

I’ve just posted to the arXiv my paper “Finite time blowup for Lagrangian modifications of the three-dimensional Euler equation“. This paper is loosely in the spirit of other recent papers of mine in which I explore how close one can get to supercritical PDE of physical interest (such as the Euler and Navier-Stokes equations), while still being able to rigorously demonstrate finite time blowup for at least some choices of initial data. Here, the PDE we are trying to get close to is the incompressible inviscid Euler equations

in three spatial dimensions, where is the velocity vector field and is the pressure field. In vorticity form, and viewing the vorticity as a -form (rather than a vector), we can rewrite this system using the language of differential geometry as

where is the Lie derivative along , is the codifferential (the adjoint of the differential , or equivalently the negative of the divergence operator) that sends -vector fields to -vector fields, is the Hodge Laplacian, and is the identification of -vector fields with -forms induced by the Euclidean metric . The equation can be viewed as the Biot-Savart law recovering velocity from vorticity, expressed in the language of differential geometry.

One can then generalise this system by replacing the operator by a more general operator from -forms to -vector fields, giving rise to what I call the *generalised Euler equations*

For example, the surface quasi-geostrophic (SQG) equations can be written in this form, as discussed in this previous post. One can view (up to Hodge duality) as a vector potential for the velocity , so it is natural to refer to as a vector potential operator.

The generalised Euler equations carry much of the same geometric structure as the true Euler equations. For instance, the transport equation is equivalent to the Kelvin circulation theorem, which in three dimensions also implies the transport of vortex streamlines and the conservation of helicity. If is self-adjoint and positive definite, then the famous Euler-Poincaré interpretation of the true Euler equations as geodesic flow on an infinite dimensional Riemannian manifold of volume preserving diffeomorphisms (as discussed in this previous post) extends to the generalised Euler equations (with the operator determining the new Riemannian metric to place on this manifold). In particular, the generalised Euler equations have a Lagrangian formulation, and so by Noether’s theorem we expect any continuous symmetry of the Lagrangian to lead to conserved quantities. Indeed, we have a conserved Hamiltonian , and any spatial symmetry of leads to a conserved impulse (e.g. translation invariance leads to a conserved momentum, and rotation invariance leads to a conserved angular momentum). If behaves like a pseudodifferential operator of order (as is the case with the true vector potential operator ), then it turns out that one can use energy methods to recover the same sort of classical local existence theory as for the true Euler equations (up to and including the famous Beale-Kato-Majda criterion for blowup).

The true Euler equations are suspected of admitting smooth localised solutions which blow up in finite time; there is now substantial numerical evidence for this blowup, but it has not been proven rigorously. The main purpose of this paper is to show that such finite time blowup can at least be established for certain generalised Euler equations that are somewhat close to the true Euler equations. This is similar in spirit to my previous paper on finite time blowup on averaged Navier-Stokes equations, with the main new feature here being that the modified equation continues to have a Lagrangian structure and a vorticity formulation, which was not the case with the averaged Navier-Stokes equation. On the other hand, the arguments here are not able to handle the presence of viscosity (basically because they rely crucially on the Kelvin circulation theorem, which is not available in the viscous case).

In fact, three different blowup constructions are presented (for three different choices of vector potential operator ). The first is a variant of one discussed previously on this blog, in which a “neck pinch” singularity for a vortex tube is created by using a non-self-adjoint vector potential operator, in which the velocity at the neck of the vortex tube is determined by the circulation of the vorticity somewhat further away from that neck, which when combined with conservation of circulation is enough to guarantee finite time blowup. This is a relatively easy construction of finite time blowup, and has the advantage of being rather stable (any initial data flowing through a narrow tube with a large positive circulation will blow up in finite time). On the other hand, it is not so surprising in the non-self-adjoint case that finite blowup can occur, as there is no conserved energy.

The second blowup construction is based on a connection between the two-dimensional SQG equation and the three-dimensional generalised Euler equations, discussed in this previous post. Namely, any solution to the former can be lifted to a “two and a half-dimensional” solution to the latter, in which the velocity and vorticity are translation-invariant in the vertical direction (but the velocity is still allowed to contain vertical components, so the flow is not completely horizontal). The same embedding also works to lift solutions to generalised SQG equations in two dimensions to solutions to generalised Euler equations in three dimensions. Conveniently, even if the vector potential operator for the generalised SQG equation fails to be self-adjoint, one can ensure that the three-dimensional vector potential operator is self-adjoint. Using this trick, together with a two-dimensional version of the first blowup construction, one can then construct a generalised Euler equation in three dimensions with a vector potential that is both self-adjoint and positive definite, and still admits solutions that blow up in finite time, though now the blowup is now a vortex sheet creasing at on a line, rather than a vortex tube pinching at a point.

This eliminates the main defect of the first blowup construction, but introduces two others. Firstly, the blowup is less stable, as it relies crucially on the initial data being translation-invariant in the vertical direction. Secondly, the solution is not spatially localised in the vertical direction (though it can be viewed as a compactly supported solution on the manifold , rather than ). The third and final blowup construction of the paper addresses the final defect, by replacing vertical translation symmetry with axial rotation symmetry around the vertical axis (basically, replacing Cartesian coordinates with cylindrical coordinates). It turns out that there is a more complicated way to embed two-dimensional generalised SQG equations into three-dimensional generalised Euler equations in which the solutions to the latter are now axially symmetric (but are allowed to “swirl” in the sense that the velocity field can have a non-zero angular component), while still keeping the vector potential operator self-adjoint and positive definite; the blowup is now that of a vortex ring creasing on a circle.

As with the previous papers in this series, these blowup constructions do not *directly* imply finite time blowup for the true Euler equations, but they do at least provide a barrier to establishing global regularity for these latter equations, in that one is forced to use some property of the true Euler equations that are not shared by these generalisations. They also suggest some possible blowup mechanisms for the true Euler equations (although unfortunately these mechanisms do not seem compatible with the addition of viscosity, so they do not seem to suggest a viable Navier-Stokes blowup mechanism).

I’ve just uploaded to the arXiv my paper Finite time blowup for high dimensional nonlinear wave systems with bounded smooth nonlinearity, submitted to Comm. PDE. This paper is in the same spirit as (though not directly related to) my previous paper on finite time blowup of supercritical NLW systems, and was inspired by a question posed to me some time ago by Jeffrey Rauch. Here, instead of looking at supercritical equations, we look at an extremely subcritical equation, namely a system of the form

where is the unknown field, and is the nonlinearity, which we assume to have all derivatives bounded. A typical example of such an equation is the higher-dimensional sine-Gordon equation

for a scalar field . Here is the d’Alembertian operator. We restrict attention here to classical (i.e. smooth) solutions to (1).

We do not assume any Hamiltonian structure, so we do not require to be a gradient of a potential . But even without such Hamiltonian structure, the equation (1) is very well behaved, with many *a priori* bounds available. For instance, if the initial position and initial velocity are smooth and compactly supported, then from finite speed of propagation has uniformly bounded compact support for all in a bounded interval. As the nonlinearity is bounded, this immediately places in in any bounded time interval, which by the energy inequality gives an a priori bound on in this time interval. Next, from the chain rule we have

which (from the assumption that is bounded) shows that is in , which by the energy inequality again now gives an a priori bound on .

One might expect that one could keep iterating this and obtain *a priori* bounds on in arbitrarily smooth norms. In low dimensions such as , this is a fairly easy task, since the above estimates and Sobolev embedding already place one in , and the nonlinear map is easily verified to preserve the space for any natural number , from which one obtains a priori bounds in any Sobolev space; from this and standard energy methods, one can then establish global regularity for this equation (that is to say, any smooth choice of initial data generates a global smooth solution). However, one starts running into trouble in higher dimensions, in which no bound is available. The main problem is that even a really nice nonlinearity such as is unbounded in higher Sobolev norms. The estimates

and

ensure that the map is bounded in low regularity spaces like or , but one already runs into trouble with the second derivative

where there is a troublesome lower order term of size which becomes difficult to control in higher dimensions, preventing the map to be bounded in . Ultimately, the issue here is that when is not controlled in , the function can oscillate at a much higher frequency than ; for instance, if is the one-dimensional wave for some and , then oscillates at frequency , but the function more or less oscillates at the larger frequency .

In medium dimensions, it is possible to use dispersive estimates for the wave equation (such as the famous Strichartz estimates) to overcome these problems. This line of inquiry was pursued (albeit for slightly different classes of nonlinearity than those considered here) by Heinz-von Wahl, Pecher (in a series of papers), Brenner, and Brenner-von Wahl; to cut a long story short, one of the conclusions of these papers was that one had global regularity for equations such as (1) in dimensions . (I reprove this result using modern Strichartz estimate and Littlewood-Paley techniques in an appendix to my paper. The references given also allow for some growth in the nonlinearity , but we will not detail the precise hypotheses used in these papers here.)

In my paper, I complement these positive results with an almost matching negative result:

Theorem 1If and , then there exists a nonlinearity with all derivatives bounded, and a solution to (1) that is smooth at time zero, but develops a singularity in finite time.

The construction crucially relies on the ability to choose the nonlinearity , and also needs some injectivity properties on the solution (after making a symmetry reduction using an assumption of spherical symmetry to view as a function of variables rather than ) which restricts our counterexample to the case. Thus the model case of the higher-dimensional sine-Gordon equation is not covered by our arguments. Nevertheless (as with previous finite-time blowup results discussed on this blog), one can view this result as a *barrier* to trying to prove regularity for equations such as in eleven and higher dimensions, as any such argument must somehow use a property of that equation that is not applicable to the more general system (1).

Let us first give some back-of-the-envelope calculations suggesting why there could be finite time blowup in eleven and higher dimensions. For sake of this discussion let us restrict attention to the sine-Gordon equation . The blowup ansatz we will use is as follows: for each frequency in a sequence of large quantities going to infinity, there will be a spacetime “cube” on which the solution oscillates with “amplitude” and “frequency” , where is an exponent to be chosen later; this ansatz is of course compatible with the uncertainty principle. Since as , this will create a singularity at the spacetime origin . To make this ansatz plausible, we wish to make the oscillation of on driven primarily by the forcing term at . Thus, by Duhamel’s formula, we expect a relation roughly of the form

on , where is the usual free wave propagator, and is the indicator function of .

On , oscillates with amplitude and frequency , we expect the derivative to be of size about , and so from the principle of stationary phase we expect to oscillate at frequency about . Since the wave propagator preserves frequencies, and is supposed to be of frequency on we are thus led to the requirement

Next, when restricted to frequencies of order , the propagator “behaves like” , where is the spherical averaging operator

where is surface measure on the unit sphere , and is the volume of that sphere. In our setting, is comparable to , and so we have the informal approximation

on .

Since is bounded, is bounded as well. This gives a (non-rigorous) upper bound

which when combined with our ansatz that has ampitude about on , gives the constraint

which on applying (2) gives the further constraint

which can be rearranged as

It is now clear that the optimal choice of is

and this blowup ansatz is only self-consistent when

or equivalently if .

To turn this ansatz into an actual blowup example, we will construct as the sum of various functions that solve the wave equation with forcing term in , and which concentrate in with the amplitude and frequency indicated by the above heuristic analysis. The remaining task is to show that can be written in the form for some with all derivatives bounded. For this one needs some injectivity properties of (after imposing spherical symmetry to impose a dimensional reduction on the domain of from dimensions to ). This requires one to construct some solutions to the free wave equation that have some unusual restrictions on the range (for instance, we will need a solution taking values in the plane that avoid one quadrant of that plane). In order to do this we take advantage of the very explicit nature of the fundamental solution to the wave equation in odd dimensions (such as ), particularly under the assumption of spherical symmetry. Specifically, one can show that in odd dimension , any spherically symmetric function of the form

for an arbitrary smooth function , will solve the free wave equation; this is ultimately due to iterating the “ladder operator” identity

This precise and relatively simple formula for allows one to create “bespoke” solutions that obey various unusual properties, without too much difficulty.

It is not clear to me what to conjecture for . The blowup ansatz given above is a little inefficient, in that the frequency component of the solution is only generated from a portion of the component, namely the portion close to a certain light cone. In particular, the solution does not saturate the Strichartz estimates that are used to establish the positive results for , which helps explain the slight gap between the positive and negative results. It may be that a more complicated ansatz could work to give a negative result in ten dimensions; conversely, it is also possible that one could use more advanced estimates than the Strichartz estimate (that somehow capture the “thinness” of the fundamental solution, and not just its dispersive properties) to stretch the positive results to ten dimensions. Which side the case falls in all come down to some rather delicate numerology.

…

I’ve been meaning to return to fluids for some time now, in order to build upon my construction two years ago of a solution to an averaged Navier-Stokes equation that exhibited finite time blowup. (I recently spoke on this work in the recent conference in Princeton in honour of Sergiu Klainerman; my slides for that talk are here.)

One of the biggest deficiencies with my previous result is the fact that the averaged Navier-Stokes equation does not enjoy any good equation for the vorticity , in contrast to the true Navier-Stokes equations which, when written in vorticity-stream formulation, become

(Throughout this post we will be working in three spatial dimensions .) So one of my main near-term goals in this area is to exhibit an equation resembling Navier-Stokes as much as possible which enjoys a vorticity equation, and for which there is finite time blowup.

Heuristically, this task should be easier for the Euler equations (i.e. the zero viscosity case of Navier-Stokes) than the viscous Navier-Stokes equation, as one expects the viscosity to only make it easier for the solution to stay regular. Indeed, morally speaking, the assertion that finite time blowup solutions of Navier-Stokes exist should be roughly equivalent to the assertion that finite time blowup solutions of Euler exist which are “Type I” in the sense that all Navier-Stokes-critical and Navier-Stokes-subcritical norms of this solution go to infinity (which, as explained in the above slides, heuristically means that the effects of viscosity are negligible when compared against the nonlinear components of the equation). In vorticity-stream formulation, the Euler equations can be written as

As discussed in this previous blog post, a natural generalisation of this system of equations is the system

where is a linear operator on divergence-free vector fields that is “zeroth order” in some sense; ideally it should also be invertible, self-adjoint, and positive definite (in order to have a Hamiltonian that is comparable to the kinetic energy ). (In the previous blog post, it was observed that the surface quasi-geostrophic (SQG) equation could be embedded in a system of the form (1).) The system (1) has many features in common with the Euler equations; for instance vortex lines are transported by the velocity field , and Kelvin’s circulation theorem is still valid.

So far, I have not been able to fully achieve this goal. However, I have the following partial result, stated somewhat informally:

Theorem 1There is a “zeroth order” linear operator (which, unfortunately, is not invertible, self-adjoint, or positive definite) for which the system (1) exhibits smooth solutions that blowup in finite time.

The operator constructed is not quite a zeroth-order pseudodifferential operator; it is instead merely in the “forbidden” symbol class , and more precisely it takes the form

for some compactly supported divergence-free of mean zero with

being rescalings of . This operator is still bounded on all spaces , and so is arguably still a zeroth order operator, though not as convincingly as I would like. Another, less significant, issue with the result is that the solution constructed does not have good spatial decay properties, but this is mostly for convenience and it is likely that the construction can be localised to give solutions that have reasonable decay in space. But the biggest drawback of this theorem is the fact that is not invertible, self-adjoint, or positive definite, so in particular there is no non-negative Hamiltonian for this equation. It may be that some modification of the arguments below can fix these issues, but I have so far been unable to do so. Still, the construction does show that the circulation theorem is insufficient by itself to prevent blowup.

We sketch the proof of the above theorem as follows. We use the barrier method, introducing the time-varying hyperboloid domains

for (expressed in cylindrical coordinates ). We will select initial data to be for some non-negative even bump function supported on , normalised so that

in particular is divergence-free supported in , with vortex lines connecting to . Suppose for contradiction that we have a smooth solution to (1) with this initial data; to simplify the discussion we assume that the solution behaves well at spatial infinity (this can be justified with the choice (2) of vorticity-stream operator, but we will not do so here). Since the domains disconnect from at time , there must exist a time which is the first time where the support of touches the boundary of , with supported in .

From (1) we see that the support of is transported by the velocity field . Thus, at the point of contact of the support of with the boundary of , the inward component of the velocity field cannot exceed the inward velocity of . We will construct the functions so that this is not the case, leading to the desired contradiction. (Geometrically, what is going on here is that the operator is pinching the flow to pass through the narrow cylinder , leading to a singularity by time at the latest.)

First we observe from conservation of circulation, and from the fact that is supported in , that the integrals

are constant in both space and time for . From the choice of initial data we thus have

for all and all . On the other hand, if is of the form (2) with for some bump function that only has -components, then is divergence-free with mean zero, and

where . We choose to be supported in the slab for some large constant , and to equal a function depending only on on the cylinder , normalised so that . If , then passes through this cylinder, and we conclude that

Inserting ths into (2), (1) we conclude that

for some coefficients . We will not be able to control these coefficients , but fortunately we only need to understand on the boundary , for which . So, if happens to be supported on an annulus , then vanishes on if is large enough. We then have

on the boundary of .

Let be a function of the form

where is a bump function supported on that equals on . We can perform a dyadic decomposition where

where is a bump function supported on with . If we then set

then one can check that for a function that is divergence-free and mean zero, and supported on the annulus , and

so on (where ) we have

One can manually check that the inward velocity of this vector on exceeds the inward velocity of if is large enough, and the claim follows.

Remark 2The type of blowup suggested by this construction, where a unit amount of circulation is squeezed into a narrow cylinder, is of “Type II” with respect to the Navier-Stokes scaling, because Navier-Stokes-critical norms such (or at least ) look like they stay bounded during this squeezing procedure (the velocity field is of size about in cylinders of radius and length about ). So even if the various issues with are repaired, it does not seem likely that this construction can be directly adapted to obtain a corresponding blowup for a Navier-Stokes type equation. To get a “Type I” blowup that is consistent with Kelvin’s circulation theorem, it seems that one needs to coil the vortex lines around a loop multiple times in order to get increased circulation in a small space. This seems possible to pull off to me – there don’t appear to be any unavoidable obstructions coming from topology, scaling, or conservation laws – but would require a more complicated construction than the one given above.

The Poincaré upper half-plane (with a boundary consisting of the real line together with the point at infinity ) carries an action of the projective special linear group

via fractional linear transformations:

Here and in the rest of the post we will abuse notation by identifying elements of the special linear group with their equivalence class in ; this will occasionally create or remove a factor of two in our formulae, but otherwise has very little effect, though one has to check that various definitions and expressions (such as (1)) are unaffected if one replaces a matrix by its negation . In particular, we recommend that the reader ignore the signs that appear from time to time in the discussion below.

As the action of on is transitive, and any given point in (e.g. ) has a stabiliser isomorphic to the projective rotation group , we can view the Poincaré upper half-plane as a homogeneous space for , and more specifically the quotient space of of a maximal compact subgroup . In fact, we can make the half-plane a symmetric space for , by endowing with the Riemannian metric

(using Cartesian coordinates ), which is invariant with respect to the action. Like any other Riemannian metric, the metric on generates a number of other important geometric objects on , such as the distance function which can be computed to be given by the formula

the volume measure , which can be computed to be

and the Laplace-Beltrami operator, which can be computed to be (here we use the negative definite sign convention for ). As the metric was -invariant, all of these quantities arising from the metric are similarly -invariant in the appropriate sense.

The Gauss curvature of the Poincaré half-plane can be computed to be the constant , thus is a model for two-dimensional hyperbolic geometry, in much the same way that the unit sphere in is a model for two-dimensional spherical geometry (or is a model for two-dimensional Euclidean geometry). (Indeed, is isomorphic (via projection to a null hyperplane) to the upper unit hyperboloid in the Minkowski spacetime , which is the direct analogue of the unit sphere in Euclidean spacetime or the plane in Galilean spacetime .)

One can inject arithmetic into this geometric structure by passing from the Lie group to the full modular group

or congruence subgroups such as

for natural number , or to the discrete stabiliser of the point at infinity:

These are discrete subgroups of , nested by the subgroup inclusions

There are many further discrete subgroups of (known collectively as Fuchsian groups) that one could consider, but we will focus attention on these three groups in this post.

Any discrete subgroup of generates a quotient space , which in general will be a non-compact two-dimensional orbifold. One can understand such a quotient space by working with a fundamental domain – a set consisting of a single representative of each of the orbits of in . This fundamental domain is by no means uniquely defined, but if the fundamental domain is chosen with some reasonable amount of regularity, one can view as the fundamental domain with the boundaries glued together in an appropriate sense. Among other things, fundamental domains can be used to induce a volume measure on from the volume measure on (restricted to a fundamental domain). By abuse of notation we will refer to both measures simply as when there is no chance of confusion.

For instance, a fundamental domain for is given (up to null sets) by the strip , with identifiable with the cylinder formed by gluing together the two sides of the strip. A fundamental domain for is famously given (again up to null sets) by an upper portion , with the left and right sides again glued to each other, and the left and right halves of the circular boundary glued to itself. A fundamental domain for can be formed by gluing together

copies of a fundamental domain for in a rather complicated but interesting fashion.

While fundamental domains can be a convenient choice of coordinates to work with for some computations (as well as for drawing appropriate pictures), it is geometrically more natural to avoid working explicitly on such domains, and instead work directly on the quotient spaces . In order to analyse functions on such orbifolds, it is convenient to lift such functions back up to and identify them with functions which are *-automorphic* in the sense that for all and . Such functions will be referred to as -automorphic forms, or *automorphic forms* for short (we always implicitly assume all such functions to be measurable). (Strictly speaking, these are the automorphic forms with trivial factor of automorphy; one can certainly consider other factors of automorphy, particularly when working with holomorphic modular forms, which corresponds to sections of a more non-trivial line bundle over than the trivial bundle that is implicitly present when analysing scalar functions . However, we will not discuss this (important) more general situation here.)

An important way to create a -automorphic form is to start with a non-automorphic function obeying suitable decay conditions (e.g. bounded with compact support will suffice) and form the Poincaré series defined by

which is clearly -automorphic. (One could equivalently write in place of here; there are good argument for both conventions, but I have ultimately decided to use the convention, which makes explicit computations a little neater at the cost of making the group actions work in the opposite order.) Thus we naturally see sums over associated with -automorphic forms. A little more generally, given a subgroup of and a -automorphic function of suitable decay, we can form a relative Poincaré series by

where is any fundamental domain for , that is to say a subset of consisting of exactly one representative for each right coset of . As is -automorphic, we see (if has suitable decay) that does not depend on the precise choice of fundamental domain, and is -automorphic. These operations are all compatible with each other, for instance . A key example of Poincaré series are the Eisenstein series, although there are of course many other Poincaré series one can consider by varying the test function .

For future reference we record the basic but fundamental *unfolding identities*

for any function with sufficient decay, and any -automorphic function of reasonable growth (e.g. bounded and compact support, and bounded, will suffice). Note that is viewed as a function on on the left-hand side, and as a -automorphic function on on the right-hand side. More generally, one has

whenever are discrete subgroups of , is a -automorphic function with sufficient decay on , and is a -automorphic (and thus also -automorphic) function of reasonable growth. These identities will allow us to move fairly freely between the three domains , , and in our analysis.

When computing various statistics of a Poincaré series , such as its values at special points , or the quantity , expressions of interest to analytic number theory naturally emerge. We list three basic examples of this below, discussed somewhat informally in order to highlight the main ideas rather than the technical details.

The first example we will give concerns the problem of estimating the sum

where is the divisor function. This can be rewritten (by factoring and ) as

which is basically a sum over the full modular group . At this point we will “cheat” a little by moving to the related, but different, sum

This sum is not exactly the same as (8), but will be a little easier to handle, and it is plausible that the methods used to handle this sum can be modified to handle (8). Observe from (2) and some calculation that the distance between and is given by the formula

and so one can express the above sum as

(the factor of coming from the quotient by in the projective special linear group); one can express this as , where and is the indicator function of the ball . Thus we see that expressions such as (7) are related to evaluations of Poincaré series. (In practice, it is much better to use smoothed out versions of indicator functions in order to obtain good control on sums such as (7) or (9), but we gloss over this technical detail here.)

The second example concerns the relative

of the sum (7). Note from multiplicativity that (7) can be written as , which is superficially very similar to (10), but with the key difference that the polynomial is irreducible over the integers.

As with (7), we may expand (10) as

At first glance this does not look like a sum over a modular group, but one can manipulate this expression into such a form in one of two (closely related) ways. First, observe that any factorisation of into Gaussian integers gives rise (upon taking norms) to an identity of the form , where and . Conversely, by using the unique factorisation of the Gaussian integers, every identity of the form gives rise to a factorisation of the form , essentially uniquely up to units. Now note that is of the form if and only if , in which case . Thus we can essentially write the above sum as something like

and one the modular group is now manifest. An equivalent way to see these manipulations is as follows. A triple of natural numbers with gives rise to a positive quadratic form of normalised discriminant equal to with integer coefficients (it is natural here to allow to take integer values rather than just natural number values by essentially doubling the sum). The group acts on the space of such quadratic forms in a natural fashion (by composing the quadratic form with the inverse of an element of ). Because the discriminant has class number one (this fact is equivalent to the unique factorisation of the gaussian integers, as discussed in this previous post), every form in this space is equivalent (under the action of some element of ) with the standard quadratic form . In other words, one has

which (up to a harmless sign) is exactly the representation , , introduced earlier, and leads to the same reformulation of the sum (10) in terms of expressions like (11). Similar considerations also apply if the quadratic polynomial is replaced by another quadratic, although one has to account for the fact that the class number may now exceed one (so that unique factorisation in the associated quadratic ring of integers breaks down), and in the positive discriminant case the fact that the group of units might be infinite presents another significant technical problem.

Note that has real part and imaginary part . Thus (11) is (up to a factor of two) the Poincaré series as in the preceding example, except that is now the indicator of the sector .

Sums involving subgroups of the full modular group, such as , often arise when imposing congruence conditions on sums such as (10), for instance when trying to estimate the expression when and are large. As before, one then soon arrives at the problem of evaluating a Poincaré series at one or more special points, where the series is now over rather than .

The third and final example concerns averages of Kloosterman sums

where and is the inverse of in the multiplicative group . It turns out that the norms of Poincaré series or are closely tied to such averages. Consider for instance the quantity

where is a natural number and is a -automorphic form that is of the form

for some integer and some test function , which for sake of discussion we will take to be smooth and compactly supported. Using the unfolding formula (6), we may rewrite (13) as

To compute this, we use the double coset decomposition

where for each , are arbitrarily chosen integers such that . To see this decomposition, observe that every element in outside of can be assumed to have by applying a sign , and then using the row and column operations coming from left and right multiplication by (that is, shifting the top row by an integer multiple of the bottom row, and shifting the right column by an integer multiple of the left column) one can place in the interval and to be any specified integer pair with . From this we see that

and so from further use of the unfolding formula (5) we may expand (13) as

The first integral is just . The second expression is more interesting. We have

so we can write

as

which on shifting by simplifies a little to

and then on scaling by simplifies a little further to

Note that as , we have modulo . Comparing the above calculations with (12), we can thus write (13) as

is a certain integral involving and a parameter , but which does not depend explicitly on parameters such as . Thus we have indeed expressed the expression (13) in terms of Kloosterman sums. It is possible to invert this analysis and express varius weighted sums of Kloosterman sums in terms of expressions (possibly involving inner products instead of norms) of Poincaré series, but we will not do so here; see Chapter 16 of Iwaniec and Kowalski for further details.

Traditionally, automorphic forms have been analysed using the spectral theory of the Laplace-Beltrami operator on spaces such as or , so that a Poincaré series such as might be expanded out using inner products of (or, by the unfolding identities, ) with various generalised eigenfunctions of (such as cuspidal eigenforms, or Eisenstein series). With this approach, special functions, and specifically the modified Bessel functions of the second kind, play a prominent role, basically because the -automorphic functions

for and non-zero are generalised eigenfunctions of (with eigenvalue ), and are almost square-integrable on (the norm diverges only logarithmically at one end of the cylinder , while decaying exponentially fast at the other end ).

However, as discussed in this previous post, the spectral theory of an essentially self-adjoint operator such as is basically equivalent to the theory of various solution operators associated to partial differential equations involving that operator, such as the Helmholtz equation , the heat equation , the Schrödinger equation , or the wave equation . Thus, one can hope to rephrase many arguments that involve spectral data of into arguments that instead involve resolvents , heat kernels , Schrödinger propagators , or wave propagators , or involve the PDE more directly (e.g. applying integration by parts and energy methods to solutions of such PDE). This is certainly done to some extent in the existing literature; resolvents and heat kernels, for instance, are often utilised. In this post, I would like to explore the possibility of reformulating spectral arguments instead using the inhomogeneous wave equation

Actually it will be a bit more convenient to normalise the Laplacian by , and look instead at the *automorphic wave equation*

This equation somewhat resembles a “Klein-Gordon” type equation, except that the mass is imaginary! This would lead to pathological behaviour were it not for the negative curvature, which in principle creates a spectral gap of that cancels out this factor.

The point is that the wave equation approach gives access to some nice PDE techniques, such as energy methods, Sobolev inequalities and finite speed of propagation, which are somewhat submerged in the spectral framework. The wave equation also interacts well with Poincaré series; if for instance and are -automorphic solutions to (15) obeying suitable decay conditions, then their Poincaré series and will be -automorphic solutions to the same equation (15), basically because the Laplace-Beltrami operator commutes with translations. Because of these facts, it is possible to replicate several standard spectral theory arguments in the wave equation framework, without having to deal directly with things like the asymptotics of modified Bessel functions. The wave equation approach to automorphic theory was introduced by Faddeev and Pavlov (using the Lax-Phillips scattering theory), and developed further by by Lax and Phillips, to recover many spectral facts about the Laplacian on modular curves, such as the Weyl law and the Selberg trace formula. Here, I will illustrate this by deriving three basic applications of automorphic methods in a wave equation framework, namely

- Using the Weil bound on Kloosterman sums to derive Selberg’s 3/16 theorem on the least non-trivial eigenvalue for on (discussed previously here);
- Conversely, showing that Selberg’s eigenvalue conjecture (improving Selberg’s bound to the optimal ) implies an optimal bound on (smoothed) sums of Kloosterman sums; and
- Using the same bound to obtain pointwise bounds on Poincaré series similar to the ones discussed above. (Actually, the argument here does not use the wave equation, instead it just uses the Sobolev inequality.)

This post originated from an attempt to finally learn this part of analytic number theory properly, and to see if I could use a PDE-based perspective to understand it better. Ultimately, this is not that dramatic a depature from the standard approach to this subject, but I found it useful to think of things in this fashion, probably due to my existing background in PDE.

I thank Bill Duke and Ben Green for helpful discussions. My primary reference for this theory was Chapters 15, 16, and 21 of Iwaniec and Kowalski.

## Recent Comments