You are currently browsing the category archive for the ‘math.CA’ category.

The following situation is very common in modern harmonic analysis: one has a large scale parameter {N} (sometimes written as {N=1/\delta} in the literature for some small scale parameter {\delta}, or as {N=R} for some large radius {R}), which ranges over some unbounded subset of {[1,+\infty)} (e.g. all sufficiently large real numbers {N}, or all powers of two), and one has some positive quantity {D(N)} depending on {N} that is known to be of polynomial size in the sense that

\displaystyle  C^{-1} N^{-C} \leq D(N) \leq C N^C \ \ \ \ \ (1)

for all {N} in the range and some constant {C>0}, and one wishes to obtain a subpolynomial upper bound for {D(N)}, by which we mean an upper bound of the form

\displaystyle  D(N) \leq C_\varepsilon N^\varepsilon \ \ \ \ \ (2)

for all {\varepsilon>0} and all {N} in the range, where {C_\varepsilon>0} can depend on {\varepsilon} but is independent of {N}. In many applications, this bound is nearly tight in the sense that one can easily establish a matching lower bound

\displaystyle  D(N) \geq C_\varepsilon N^{-\varepsilon}

in which case the property of having a subpolynomial upper bound is equivalent to that of being subpolynomial size in the sense that

\displaystyle  C_\varepsilon N^{-\varepsilon} \leq D(N) \leq C_\varepsilon N^\varepsilon \ \ \ \ \ (3)

for all {\varepsilon>0} and all {N} in the range. It would naturally be of interest to tighten these bounds further, for instance to show that {D(N)} is polylogarithmic or even bounded in size, but a subpolynomial bound is already sufficient for many applications.

Let us give some illustrative examples of this type of problem:

Example 1 (Kakeya conjecture) Here {N} ranges over all of {[1,+\infty)}. Let {d \geq 2} be a fixed dimension. For each {N \geq 1}, we pick a maximal {1/N}-separated set of directions {\Omega_N \subset S^{d-1}}. We let {D(N)} be the smallest constant for which one has the Kakeya inequality

\displaystyle  \| \sum_{\omega \in \Omega_N} 1_{T_\omega} \|_{L^{\frac{d}{d-1}}({\bf R}^d)} \leq D(N),

where {T_\omega} is a {1/N \times 1}-tube oriented in the direction {\omega}. The Kakeya maximal function conjecture is then equivalent to the assertion that {D(N)} has a subpolynomial upper bound (or equivalently, is of subpolynomial size). Currently this is only known in dimension {d=2}.

Example 2 (Restriction conjecture for the sphere) Here {N} ranges over all of {[1,+\infty)}. Let {d \geq 2} be a fixed dimension. We let {D(N)} be the smallest constant for which one has the restriction inequality

\displaystyle  \| \widehat{fd\sigma} \|_{L^{\frac{2d}{d-1}}(B(0,N))} \leq D(N) \| f \|_{L^\infty(S^{d-1})}

for all bounded measurable functions {f} on the unit sphere {S^{d-1}} equipped with surface measure {d\sigma}, where {B(0,N)} is the ball of radius {N} centred at the origin. The restriction conjecture of Stein for the sphere is then equivalent to the assertion that {D(N)} has a subpolynomial upper bound (or equivalently, is of subpolynomial size). Currently this is only known in dimension {d=2}.

Example 3 (Multilinear Kakeya inequality) Again {N} ranges over all of {[1,+\infty)}. Let {d \geq 2} be a fixed dimension, and let {S_1,\dots,S_d} be compact subsets of the sphere {S^{d-1}} which are transverse in the sense that there is a uniform lower bound {|\omega_1 \wedge \dots \wedge \omega_d| \geq c > 0} for the wedge product of directions {\omega_i \in S_i} for {i=1,\dots,d} (equivalently, there is no hyperplane through the origin that intersects all of the {S_i}). For each {N \geq 1}, we let {D(N)} be the smallest constant for which one has the multilinear Kakeya inequality

\displaystyle  \| \mathrm{geom} \sum_{T \in {\mathcal T}_i} 1_{T} \|_{L^{\frac{d}{d-1}}(B(0,N))} \leq D(N) \mathrm{geom} \# {\mathcal T}_i,

where for each {i=1,\dots,d}, {{\mathcal T}_i} is a collection of infinite tubes in {{\bf R}^d} of radius {1} oriented in a direction in {S_i}, which are separated in the sense that for any two tubes {T,T'} in {{\mathcal T}_i}, either the directions of {T,T'} differ by an angle of at least {1/N}, or {T,T'} are disjoint; and {\mathrm{geom} = \mathrm{geom}_{1 \leq i \leq d}} is our notation for the geometric mean

\displaystyle  \mathrm{geom} a_i := (a_1 \dots a_d)^{1/d}.

The multilinear Kakeya inequality of Bennett, Carbery, and myself establishes that {D(N)} is of subpolynomial size; a later argument of Guth improves this further by showing that {D(N)} is bounded (and in fact comparable to {1}).

Example 4 (Multilinear restriction theorem) Once again {N} ranges over all of {[1,+\infty)}. Let {d \geq 2} be a fixed dimension, and let {S_1,\dots,S_d} be compact subsets of the sphere {S^{d-1}} which are transverse as in the previous example. For each {N \geq 1}, we let {D(N)} be the smallest constant for which one has the multilinear restriction inequality

\displaystyle  \| \mathrm{geom} \widehat{f_id\sigma} \|_{L^{\frac{2d}{d-1}}(B(0,N))} \leq D(N) \| f \|_{L^2(S^{d-1})}

for all bounded measurable functions {f_i} on {S_i} for {i=1,\dots,d}. Then the multilinear restriction theorem of Bennett, Carbery, and myself establishes that {D(N)} is of subpolynomial size; it is known to be bounded for {d=2} (as can be easily verified from Plancherel’s theorem), but it remains open whether it is bounded for any {d>2}.

Example 5 (Decoupling for the paraboloid) {N} now ranges over the square numbers. Let {d \geq 2}, and subdivide the unit cube {[0,1]^{d-1}} into {N^{(d-1)/2}} cubes {Q} of sidelength {1/N^{1/2}}. For any {g \in L^1([0,1]^{d-1})}, define the extension operators

\displaystyle  E_{[0,1]^{d-1}} g( x', x_d ) := \int_{[0,1]^{d-1}} e^{2\pi i (x' \cdot \xi + x_d |\xi|^2)} g(\xi)\ d\xi


\displaystyle  E_Q g( x', x_d ) := \int_{Q} e^{2\pi i (x' \cdot \xi + x_d |\xi|^2)} g(\xi)\ d\xi

for {x' \in {\bf R}^{d-1}} and {x_d \in {\bf R}}. We also introduce the weight function

\displaystyle  w_{B(0,N)}(x) := (1 + \frac{|x|}{N})^{-100d}.

For any {p}, let {D_p(N)} be the smallest constant for which one has the decoupling inequality

\displaystyle  \| E_{[0,1]^{d-1}} g \|_{L^p(w_{B(0,N)})} \leq D_p(N) (\sum_Q \| E_Q g \|_{L^p(w_{B(0,N)})}^2)^{1/2}.

The decoupling theorem of Bourgain and Demeter asserts that {D_p(N)} is of subpolynomial size for all {p} in the optimal range {2 \leq p \leq \frac{2(d+1)}{d-1}}.

Example 6 (Decoupling for the moment curve) {N} now ranges over the natural numbers. Let {d \geq 2}, and subdivide {[0,1]} into {N} intervals {J} of length {1/N}. For any {g \in L^1([0,1])}, define the extension operators

\displaystyle  E_{[0,1]} g(x_1,\dots,x_d) = \int_{[0,1]} e^{2\pi i ( x_1 \xi + x_2 \xi^2 + \dots + x_d \xi^d} g(\xi)\ d\xi

and more generally

\displaystyle  E_J g(x_1,\dots,x_d) = \int_{[0,1]} e^{2\pi i ( x_1 \xi + x_2 \xi^2 + \dots + x_d \xi^d} g(\xi)\ d\xi

for {(x_1,\dots,x_d) \in {\bf R}^d}. For any {p}, let {D_p(N)} be the smallest constant for which one has the decoupling inequality

\displaystyle  \| E_{[0,1]} g \|_{L^p(w_{B(0,N^d)})} \leq D_p(N) (\sum_J \| E_J g \|_{L^p(w_{B(0,N^d)})}^2)^{1/2}.

It was shown by Bourgain, Demeter, and Guth that {D_p(N)} is of subpolynomial size for all {p} in the optimal range {2 \leq p \leq d(d+1)}, which among other things implies the Vinogradov main conjecture (as discussed in this previous post).

It is convenient to use asymptotic notation to express these estimates. We write {X \lesssim Y}, {X = O(Y)}, or {Y \gtrsim X} to denote the inequality {|X| \leq CY} for some constant {C} independent of the scale parameter {N}, and write {X \sim Y} for {X \lesssim Y \lesssim X}. We write {X = o(Y)} to denote a bound of the form {|X| \leq c(N) Y} where {c(N) \rightarrow 0} as {N \rightarrow \infty} along the given range of {N}. We then write {X \lessapprox Y} for {X \lesssim N^{o(1)} Y}, and {X \approx Y} for {X \lessapprox Y \lessapprox X}. Then the statement that {D(N)} is of polynomial size can be written as

\displaystyle  D(N) \sim N^{O(1)},

while the statement that {D(N)} has a subpolynomial upper bound can be written as

\displaystyle  D(N) \lessapprox 1

and similarly the statement that {D(N)} is of subpolynomial size is simply

\displaystyle  D(N) \approx 1.

Many modern approaches to bounding quantities like {D(N)} in harmonic analysis rely on some sort of induction on scales approach in which {D(N)} is bounded using quantities such as {D(N^\theta)} for some exponents {0 < \theta < 1}. For instance, suppose one is somehow able to establish the inequality

\displaystyle  D(N) \lessapprox D(\sqrt{N}) \ \ \ \ \ (4)

for all {N \geq 1}, and suppose that {D} is also known to be of polynomial size. Then this implies that {D} has a subpolynomial upper bound. Indeed, one can iterate this inequality to show that

\displaystyle  D(N) \lessapprox D(N^{1/2^k})

for any fixed {k}; using the polynomial size hypothesis one thus has

\displaystyle  D(N) \lessapprox N^{C/2^k}

for some constant {C} independent of {k}. As {k} can be arbitrarily large, we conclude that {D(N) \lesssim N^\varepsilon} for any {\varepsilon>0}, and hence {D} is of subpolynomial size. (This sort of iteration is used for instance in my paper with Bennett and Carbery to derive the multilinear restriction theorem from the multilinear Kakeya theorem.)

Exercise 7 If {D} is of polynomial size, and obeys the inequality

\displaystyle  D(N) \lessapprox D(N^{1-\varepsilon}) + N^{O(\varepsilon)}

for any fixed {\varepsilon>0}, where the implied constant in the {O(\varepsilon)} notation is independent of {\varepsilon}, show that {D} has a subpolynomial upper bound. This type of inequality is used to equate various linear estimates in harmonic analysis with their multilinear counterparts; see for instance this paper of myself, Vargas, and Vega for an early example of this method.

In more recent years, more sophisticated induction on scales arguments have emerged in which one or more auxiliary quantities besides {D(N)} also come into play. Here is one example, this time being an abstraction of a short proof of the multilinear Kakeya inequality due to Guth. Let {D(N)} be the quantity in Example 3. We define {D(N,M)} similarly to {D(N)} for any {M \geq 1}, except that we now also require that the diameter of each set {S_i} is at most {1/M}. One can then observe the following estimates:

  • (Triangle inequality) For any {N,M \geq 1}, we have

    \displaystyle  D(N,M) = M^{O(1)} D(N). \ \ \ \ \ (5)

  • (Multiplicativity) For any {N_1,N_2 = N^{O(1)}}, one has

    \displaystyle  D(N_1 N_2, M) \lessapprox D(N_1, M) D(N_2, M). \ \ \ \ \ (6)

  • (Loomis-Whitney inequality) We have

    \displaystyle  D(N,N) \lessapprox 1. \ \ \ \ \ (7)

These inequalities now imply that {D} has a subpolynomial upper bound, as we now demonstrate. Let {k} be a large natural number (independent of {N}) to be chosen later. From many iterations of (6) we have

\displaystyle  D(N, N^{1/k}) \lessapprox D(N^{1/k},N^{1/k})^k

and hence by (7) (with {N} replaced by {N^{1/k}}) and (5)

\displaystyle  D(N) \lessapprox N^{O(1/k)}

where the implied constant in the {O(1/k)} exponent does not depend on {k}. As {k} can be arbitrarily large, the claim follows. We remark that a nearly identical scheme lets one deduce decoupling estimates for the three-dimensional cone from that of the two-dimensional paraboloid; see the final section of this paper of Bourgain and Demeter.

Now we give a slightly more sophisticated example, abstracted from the proof of {L^p} decoupling of the paraboloid by Bourgain and Demeter, as described in this study guide after specialising the dimension to {2} and the exponent {p} to the endpoint {p=6} (the argument is also more or less summarised in this previous post). (In the cited papers, the argument was phrased only for the non-endpoint case {p<6}, but it has been observed independently by many experts that the argument extends with only minor modifications to the endpoint {p=6}.) Here we have a quantity {D_p(N)} that we wish to show is of subpolynomial size. For any {0 < \varepsilon < 1} and {0 \leq u \leq 1}, one can define an auxiliary quantity {A_{p,u,\varepsilon}(N)}. The precise definitions of {D_p(N)} and {A_{p,u,\varepsilon}(N)} are given in the study guide (where they are called {\mathrm{Dec}_2(1/N,p)} and {A_p(u, B(0,N^2), u, g)} respectively, setting {\delta = 1/N} and {\nu = \delta^\varepsilon}) but will not be of importance to us for this discussion. Suffice to say that the following estimates are known:

  • (Crude upper bound for {D_p}) {D_p(N)} is of polynomial size: {D_p(N) \sim N^{O(1)}}.
  • (Bilinear reduction, using parabolic rescaling) For any {0 \leq u \leq 1}, one has

    \displaystyle  D_p(N) \lessapprox D_p(N^{1-\varepsilon}) + N^{O(\varepsilon)+O(u)} A_{p,u,\varepsilon}(N). \ \ \ \ \ (8)

  • (Crude upper bound for {A_{p,u,\varepsilon}(N)}) For any {0 \leq u \leq 1} one has

    \displaystyle  A_{p,u,\varepsilon}(N) \lessapprox N^{O(\varepsilon)+O(u)} D_p(N) \ \ \ \ \ (9)

  • (Application of multilinear Kakeya and {L^2} decoupling) If {\varepsilon, u} are sufficiently small (e.g. both less than {1/4}), then

    \displaystyle  A_{p,u,\varepsilon}(N) \lessapprox N^{O(\varepsilon)} A_{p,2u,\varepsilon}(N)^{1/2} D_p(N^{1-u})^{1/2}. \ \ \ \ \ (10)

In all of these bounds the implied constant exponents such as {O(\varepsilon)} or {O(u)} are independent of {\varepsilon} and {u}, although the implied constants in the {\lessapprox} notation can depend on both {\varepsilon} and {u}. Here we gloss over an annoying technicality in that quantities such as {N^{1-\varepsilon}}, {N^{1-u}}, or {N^u} might not be an integer (and might not divide evenly into {N}), which is needed for the application to decoupling theorems; this can be resolved by restricting the scales involved to powers of two and restricting the values of {\varepsilon, u} to certain rational values, which introduces some complications to the later arguments below which we shall simply ignore as they do not significantly affect the numerology.

It turns out that these estimates imply that {D_p(N)} is of subpolynomial size. We give the argument as follows. As {D_p(N)} is known to be of polynomial size, we have some {\eta>0} for which we have the bound

\displaystyle  D_p(N) \lessapprox N^\eta \ \ \ \ \ (11)

for all {N}. We can pick {\eta} to be the minimal exponent for which this bound is attained: thus

\displaystyle  \eta = \limsup_{N \rightarrow \infty} \frac{\log D_p(N)}{\log N}. \ \ \ \ \ (12)

We will call this the upper exponent of {D_p(N)}. We need to show that {\eta \leq 0}. We assume for contradiction that {\eta > 0}. Let {\varepsilon>0} be a sufficiently small quantity depending on {\eta} to be chosen later. From (10) we then have

\displaystyle  A_{p,u,\varepsilon}(N) \lessapprox N^{O(\varepsilon)} A_{p,2u,\varepsilon}(N)^{1/2} N^{\eta (\frac{1}{2} - \frac{u}{2})}

for any sufficiently small {u}. A routine iteration then gives

\displaystyle  A_{p,u,\varepsilon}(N) \lessapprox N^{O(\varepsilon)} A_{p,2^k u,\varepsilon}(N)^{1/2^k} N^{\eta (1 - \frac{1}{2^k} - k\frac{u}{2})}

for any {k \geq 1} that is independent of {N}, if {u} is sufficiently small depending on {k}. A key point here is that the implied constant in the exponent {O(\varepsilon)} is uniform in {k} (the constant comes from summing a convergent geometric series). We now use the crude bound (9) followed by (11) and conclude that

\displaystyle  A_{p,u,\varepsilon}(N) \lessapprox N^{\eta (1 - k\frac{u}{2}) + O(\varepsilon) + O(u)}.

Applying (8) we then have

\displaystyle  D_p(N) \lessapprox N^{\eta(1-\varepsilon)} + N^{\eta (1 - k\frac{u}{2}) + O(\varepsilon) + O(u)}.

If we choose {k} sufficiently large depending on {\eta} (which was assumed to be positive), then the negative term {-\eta k \frac{u}{2}} will dominate the {O(u)} term. If we then pick {u} sufficiently small depending on {k}, then finally {\varepsilon} sufficiently small depending on all previous quantities, we will obtain {D_p(N) \lessapprox N^{\eta'}} for some {\eta'} strictly less than {\eta}, contradicting the definition of {\eta}. Thus {\eta} cannot be positive, and hence {D_p(N)} has a subpolynomial upper bound as required.

Exercise 8 Show that one still obtains a subpolynomial upper bound if the estimate (10) is replaced with

\displaystyle  A_{p,u,\varepsilon}(N) \lessapprox N^{O(\varepsilon)} A_{p,2u,\varepsilon}(N)^{1-\theta} D_p(N)^{\theta}

for some constant {0 \leq \theta < 1/2}, so long as we also improve (9) to

\displaystyle  A_{p,u,\varepsilon}(N) \lessapprox N^{O(\varepsilon)} D_p(N^{1-u}).

(This variant of the argument lets one handle the non-endpoint cases {2 < p < 6} of the decoupling theorem for the paraboloid.)

To establish decoupling estimates for the moment curve, restricting to the endpoint case {p = d(d+1)} for sake of discussion, an even more sophisticated induction on scales argument was deployed by Bourgain, Demeter, and Guth. The proof is discussed in this previous blog post, but let us just describe an abstract version of the induction on scales argument. To bound the quantity {D_p(N) = D_{d(d+1)}(N)}, some auxiliary quantities {A_{t,q,s,\varepsilon}(N)} are introduced for various exponents {1 \leq t \leq \infty} and {0 \leq q,s \leq 1} and {\varepsilon>0}, with the following bounds:

  • (Crude upper bound for {D}) {D_p(N)} is of polynomial size: {D_p(N) \sim N^{O(1)}}.
  • (Multilinear reduction, using non-isotropic rescaling) For any {0 \leq q,s \leq 1} and {1 \leq t \leq \infty}, one has

    \displaystyle  D_p(N) \lessapprox D_p(N^{1-\varepsilon}) + N^{O(\varepsilon)+O(q)+O(s)} A_{t,q,s,\varepsilon}(N). \ \ \ \ \ (13)

  • (Crude upper bound for {A_{t,q,s,\varepsilon}(N)}) For any {0 \leq q,s \leq 1} and {1 \leq t \leq \infty} one has

    \displaystyle  A_{t,q,s,\varepsilon}(N) \lessapprox N^{O(\varepsilon)+O(q)+O(s)} D_p(N) \ \ \ \ \ (14)

  • (Hölder) For {0 \leq q, s \leq 1} and {1 \leq t_0 \leq t_1 \leq \infty} one has

    \displaystyle  A_{t_0,q,s,\varepsilon}(N) \lessapprox N^{O(\varepsilon)} A_{t_1,q,s,\varepsilon}(N) \ \ \ \ \ (15)

    and also

    \displaystyle  A_{t_\theta,q,s,\varepsilon}(N) \lessapprox N^{O(\varepsilon)} A_{t_0,q,s,\varepsilon}(N)^{1-\theta} A_{t_1,q,s,\varepsilon}(N)^\theta \ \ \ \ \ (16)

    whenever {0 \leq \theta \leq 1}, where {\frac{1}{t_\theta} = \frac{1-\theta}{t_0} + \frac{\theta}{t_1}}.

  • (Rescaled decoupling hypothesis) For {0 \leq q,s \leq 1}, one has

    \displaystyle  A_{p,q,s,\varepsilon}(N) \lessapprox N^{O(\varepsilon)} D_p(N^{1-q}). \ \ \ \ \ (17)

  • (Lower dimensional decoupling) If {1 \leq k \leq d-1} and {q \leq s/k}, then

    \displaystyle  A_{k(k+1),q,s,\varepsilon}(N) \lessapprox N^{O(\varepsilon)} A_{k(k+1),s/k,s,\varepsilon}(N). \ \ \ \ \ (18)

  • (Multilinear Kakeya) If {1 \leq k \leq d-1} and {0 \leq q \leq 1}, then

    \displaystyle  A_{kp/d,q,kq,\varepsilon}(N) \lessapprox N^{O(\varepsilon)} A_{kp/d,q,(k+1)q,\varepsilon}(N). \ \ \ \ \ (19)

It is now substantially less obvious that these estimates can be combined to demonstrate that {D(N)} is of subpolynomial size; nevertheless this can be done. A somewhat complicated arrangement of the argument (involving some rather unmotivated choices of expressions to induct over) appears in my previous blog post; I give an alternate proof later in this post.

These examples indicate a general strategy to establish that some quantity {D(N)} is of subpolynomial size, by

  • (i) Introducing some family of related auxiliary quantities, often parameterised by several further parameters;
  • (ii) establishing as many bounds between these quantities and the original quantity {D(N)} as possible; and then
  • (iii) appealing to some sort of “induction on scales” to conclude.

The first two steps (i), (ii) depend very much on the harmonic analysis nature of the quantities {D(N)} and the related auxiliary quantities, and the estimates in (ii) will typically be proven from various harmonic analysis inputs such as Hölder’s inequality, rescaling arguments, decoupling estimates, or Kakeya type estimates. The final step (iii) requires no knowledge of where these quantities come from in harmonic analysis, but the iterations involved can become extremely complicated.

In this post I would like to observe that one can clean up and made more systematic this final step (iii) by passing to upper exponents (12) to eliminate the role of the parameter {N} (and also “tropicalising” all the estimates), and then taking similar limit superiors to eliminate some other less important parameters, until one is left with a simple linear programming problem (which, among other things, could be amenable to computer-assisted proving techniques). This method is analogous to that of passing to a simpler asymptotic limit object in many other areas of mathematics (for instance using the Furstenberg correspondence principle to pass from a combinatorial problem to an ergodic theory problem, as discussed in this previous post). We use the limit superior exclusively in this post, but many of the arguments here would also apply with one of the other generalised limit functionals discussed in this previous post, such as ultrafilter limits.

For instance, if {\eta} is the upper exponent of a quantity {D(N)} of polynomial size obeying (4), then a comparison of the upper exponent of both sides of (4) one arrives at the scalar inequality

\displaystyle  \eta \leq \frac{1}{2} \eta

from which it is immediate that {\eta \leq 0}, giving the required subpolynomial upper bound. Notice how the passage to upper exponents converts the {\lessapprox} estimate to a simpler inequality {\leq}.

Exercise 9 Repeat Exercise 7 using this method.

Similarly, given the quantities {D(N,M)} obeying the axioms (5), (6), (7), and assuming that {D(N)} is of polynomial size (which is easily verified for the application at hand), we see that for any real numbers {a, u \geq 0}, the quantity {D(N^a,N^u)} is also of polynomial size and hence has some upper exponent {\eta(a,u)}; meanwhile {D(N)} itself has some upper exponent {\eta}. By reparameterising we have the homogeneity

\displaystyle  \eta(\lambda a, \lambda u) = \lambda \eta(a,u)

for any {\lambda \geq 0}. Also, comparing the upper exponents of both sides of the axioms (5), (6), (7) we arrive at the inequalities

\displaystyle  \eta(1,u) = \eta + O(u)

\displaystyle  \eta(a_1+a_2,u) \leq \eta(a_1,u) + \eta(a_2,u)

\displaystyle  \eta(1,1) \leq 0.

For any natural number {k}, the third inequality combined with homogeneity gives {\eta(1/k,1/k)}, which when combined with the second inequality gives {\eta(1,1/k) \leq k \eta(1/k,1/k) \leq 0}, which on combination with the first estimate gives {\eta \leq O(1/k)}. Sending {k} to infinity we obtain {\eta \leq 0} as required.

Now suppose that {D_p(N)}, {A_{p,u,\varepsilon}(N)} obey the axioms (8), (9), (10). For any fixed {u,\varepsilon}, the quantity {A_{p,u,\varepsilon}(N)} is of polynomial size (thanks to (9) and the polynomial size of {D_6}), and hence has some upper exponent {\eta(u,\varepsilon)}; similarly {D_p(N)} has some upper exponent {\eta}. (Actually, strictly speaking our axioms only give an upper bound on {A_{p,u,\varepsilon}} so we have to temporarily admit the possibility that {\eta(u,\varepsilon)=-\infty}, though this will soon be eliminated anyway.) Taking upper exponents of all the axioms we then conclude that

\displaystyle  \eta \leq \max( (1-\varepsilon) \eta, \eta(u,\varepsilon) + O(\varepsilon) + O(u) ) \ \ \ \ \ (20)

\displaystyle  \eta(u,\varepsilon) \leq \eta + O(\varepsilon) + O(u)

\displaystyle  \eta(u,\varepsilon) \leq \frac{1}{2} \eta(2u,\varepsilon) + \frac{1}{2} \eta (1-u) + O(\varepsilon)

for all {0 \leq u \leq 1} and {0 \leq \varepsilon \leq 1}.

Assume for contradiction that {\eta>0}, then {(1-\varepsilon) \eta < \eta}, and so the statement (20) simplifies to

\displaystyle  \eta \leq \eta(u,\varepsilon) + O(\varepsilon) + O(u).

At this point we can eliminate the role of {\varepsilon} and simplify the system by taking a second limit superior. If we write

\displaystyle  \eta(u) := \limsup_{\varepsilon \rightarrow 0} \eta(u,\varepsilon)

then on taking limit superiors of the previous inequalities we conclude that

\displaystyle  \eta(u) \leq \eta + O(u)

\displaystyle  \eta(u) \leq \frac{1}{2} \eta(2u) + \frac{1}{2} \eta (1-u) \ \ \ \ \ (21)

\displaystyle  \eta \leq \eta(u) + O(u)

for all {u}; in particular {\eta(u) = \eta + O(u)}. We take advantage of this by taking a further limit superior (or “upper derivative”) in the limit {u \rightarrow 0} to eliminate the role of {u} and simplify the system further. If we define

\displaystyle  \alpha := \limsup_{u \rightarrow 0^+} \frac{\eta(u)-\eta}{u},

so that {\alpha} is the best constant for which {\eta(u) \leq \eta + \alpha u + o(u)} as {u \rightarrow 0}, then {\alpha} is finite, and by inserting this “Taylor expansion” into the right-hand side of (21) and conclude that

\displaystyle  \alpha \leq \alpha - \frac{1}{2} \eta.

This leads to a contradiction when {\eta>0}, and hence {\eta \leq 0} as desired.

Exercise 10 Redo Exercise 8 using this method.

The same strategy now clarifies how to proceed with the more complicated system of quantities {A_{t,q,s,\varepsilon}(N)} obeying the axioms (13)(19) with {D_p(N)} of polynomial size. Let {\eta} be the exponent of {D_p(N)}. From (14) we see that for fixed {t,q,s,\varepsilon}, each {A_{t,q,s,\varepsilon}(N)} is also of polynomial size (at least in upper bound) and so has some exponent {a( t,q,s,\varepsilon)} (which for now we can permit to be {-\infty}). Taking upper exponents of all the various axioms we can now eliminate {N} and arrive at the simpler axioms

\displaystyle  \eta \leq \max( (1-\varepsilon) \eta, a(t,q,s,\varepsilon) + O(\varepsilon) + O(q) + O(s) )

\displaystyle  a(t,q,s,\varepsilon) \leq \eta + O(\varepsilon) + O(q) + O(s)

\displaystyle  a(t_0,q,s,\varepsilon) \leq a(t_1,q,s,\varepsilon) + O(\varepsilon)

\displaystyle  a(t_\theta,q,s,\varepsilon) \leq (1-\theta) a(t_0,q,s,\varepsilon) + \theta a(t_1,q,s,\varepsilon) + O(\varepsilon)

\displaystyle  a(d(d+1),q,s,\varepsilon) \leq \eta(1-q) + O(\varepsilon)

for all {0 \leq q,s \leq 1}, {1 \leq t \leq \infty}, {1 \leq t_0 \leq t_1 \leq \infty} and {0 \leq \theta \leq 1}, with the lower dimensional decoupling inequality

\displaystyle  a(k(k+1),q,s,\varepsilon) \leq a(k(k+1),s/k,s,\varepsilon) + O(\varepsilon)

for {1 \leq k \leq d-1} and {q \leq s/k}, and the multilinear Kakeya inequality

\displaystyle  a(k(d+1),q,kq,\varepsilon) \leq a(k(d+1),q,(k+1)q,\varepsilon)

for {1 \leq k \leq d-1} and {0 \leq q \leq 1}.

As before, if we assume for sake of contradiction that {\eta>0} then the first inequality simplifies to

\displaystyle  \eta \leq a(t,q,s,\varepsilon) + O(\varepsilon) + O(q) + O(s).

We can then again eliminate the role of {\varepsilon} by taking a second limit superior as {\varepsilon \rightarrow 0}, introducing

\displaystyle  a(t,q,s) := \limsup_{\varepsilon \rightarrow 0} a(t,q,s,\varepsilon)

and thus getting the simplified axiom system

\displaystyle  a(t,q,s) \leq \eta + O(q) + O(s) \ \ \ \ \ (22)

\displaystyle  a(t_0,q,s) \leq a(t_1,q,s)

\displaystyle  a(t_\theta,q,s) \leq (1-\theta) a(t_0,q,s) + \theta a(t_1,q,s)

\displaystyle  a(d(d+1),q,s) \leq \eta(1-q)

\displaystyle  \eta \leq a(t,q,s) + O(q) + O(s) \ \ \ \ \ (23)

and also

\displaystyle  a(k(k+1),q,s) \leq a(k(k+1),s/k,s)

for {1 \leq k \leq d-1} and {q \leq s/k}, and

\displaystyle  a(k(d+1),q,kq) \leq a(k(d+1),q,(k+1)q)

for {1 \leq k \leq d-1} and {0 \leq q \leq 1}.

In view of the latter two estimates it is natural to restrict attention to the quantities {a(t,q,kq)} for {1 \leq k \leq d+1}. By the axioms (22), these quantities are of the form {\eta + O(q)}. We can then eliminate the role of {q} by taking another limit superior

\displaystyle  \alpha_k(t) := \limsup_{q \rightarrow 0} \frac{a(t,q,kq)-\eta}{q}.

The axioms now simplify to

\displaystyle  \alpha_k(t) = O(1)

\displaystyle  \alpha_k(t_0) \leq \alpha_k(t_1) \ \ \ \ \ (24)

\displaystyle  \alpha_k(t_\theta) \leq (1-\theta) \alpha_k(t_0) + \theta \alpha_k(t_1) \ \ \ \ \ (25)

\displaystyle  \alpha_k(d(d+1)) \leq -\eta \ \ \ \ \ (26)


\displaystyle  \alpha_j(k(k+1)) \leq \frac{j}{k} \alpha_k(k(k+1)) \ \ \ \ \ (27)

for {1 \leq k \leq d-1} and {k \leq j \leq d}, and

\displaystyle  \alpha_k(k(d+1)) \leq \alpha_{k+1}(k(d+1)) \ \ \ \ \ (28)

for {1 \leq k \leq d-1}.

It turns out that the inequality (27) is strongest when {j=k+1}, thus

\displaystyle  \alpha_{k+1}(k(k+1)) \leq \frac{k+1}{k} \alpha_k(k(k+1)) \ \ \ \ \ (29)

for {1 \leq k \leq d-1}.

From the last two inequalities (28), (29) we see that a special role is likely to be played by the exponents

\displaystyle  \beta_k := \alpha_k(k(k-1))

for {2 \leq k \leq d} and

\displaystyle \gamma_k := \alpha_k(k(d+1))

for {1 \leq k \leq d}. From the convexity (25) and a brief calculation we have

\displaystyle  \alpha_{k+1}(k(d+1)) \leq \frac{1}{d-k+1} \alpha_{k+1}(k(k+1))

\displaystyle + \frac{d-k}{d-k+1} \alpha_{k+1}((k+1)(d+1)),

for {1 \leq k \leq d-1}, hence from (28) we have

\displaystyle  \gamma_k \leq \frac{1}{d-k+1} \beta_{k+1} + \frac{d-k}{d-k+1} \gamma_{k+1}. \ \ \ \ \ (30)

Similarly, from (25) and a brief calculation we have

\displaystyle  \alpha_k(k(k+1)) \leq \frac{(d-k)(k-1)}{(k+1)(d-k+2)} \alpha_k( k(k-1))

\displaystyle  + \frac{2(d+1)}{(k+1)(d-k+2)} \alpha_k(k(d+1))

for {2 \leq k \leq d-1}; the same bound holds for {k=1} if we drop the term with the {(k-1)} factor, thanks to (24). Thus from (29) we have

\displaystyle  \beta_{k+1} \leq \frac{(d-k)(k-1)}{k(d-k+2)} \beta_k + \frac{2(d+1)}{k(d-k+2)} \gamma_k, \ \ \ \ \ (31)

for {1 \leq k \leq d-1}, again with the understanding that we omit the first term on the right-hand side when {k=1}. Finally, (26) gives

\displaystyle  \gamma_d \leq -\eta.

Let us write out the system of equations we have obtained in full:

\displaystyle  \beta_2 \leq 2 \gamma_1 \ \ \ \ \ (32)

\displaystyle  \gamma_1 \leq \frac{1}{d} \beta_2 + \frac{d-1}{d} \gamma_2 \ \ \ \ \ (33)

\displaystyle  \beta_3 \leq \frac{d-2}{2d} \beta_2 + \frac{2(d+1)}{2d} \gamma_2 \ \ \ \ \ (34)

\displaystyle  \gamma_2 \leq \frac{1}{d-1} \beta_3 + \frac{d-2}{d-1} \gamma_3 \ \ \ \ \ (35)

\displaystyle  \beta_4 \leq \frac{2(d-3)}{3(d-1)} \beta_3 + \frac{2(d+1)}{3(d-1)} \gamma_3

\displaystyle  \gamma_3 \leq \frac{1}{d-2} \beta_4 + \frac{d-3}{d-2} \gamma_4

\displaystyle  ...

\displaystyle  \beta_d \leq \frac{d-2}{(d-1) 3} \beta_{d-1} + \frac{2(d+1)}{(d-1) 3} \gamma_{d-1}

\displaystyle  \gamma_{d-1} \leq \frac{1}{2} \beta_d + \frac{1}{2} \gamma_d \ \ \ \ \ (36)

\displaystyle  \gamma_d \leq -\eta. \ \ \ \ \ (37)

We can then eliminate the variables one by one. Inserting (33) into (32) we obtain

\displaystyle  \beta_2 \leq \frac{2}{d} \beta_2 + \frac{2(d-1)}{d} \gamma_2

which simplifies to

\displaystyle  \beta_2 \leq \frac{2(d-1)}{d-2} \gamma_2.

Inserting this into (34) gives

\displaystyle  \beta_3 \leq 2 \gamma_2

which when combined with (35) gives

\displaystyle  \beta_3 \leq \frac{2}{d-1} \beta_3 + \frac{2(d-2)}{d-1} \gamma_3

which simplifies to

\displaystyle  \beta_3 \leq \frac{2(d-2)}{d-3} \gamma_3.

Iterating this we get

\displaystyle  \beta_{k+1} \leq 2 \gamma_k

for all {1 \leq k \leq d-1} and

\displaystyle  \beta_k \leq \frac{2(d-k+1)}{d-k} \gamma_k

for all {2 \leq k \leq d-1}. In particular

\displaystyle  \beta_d \leq 2 \gamma_{d-1}

which on insertion into (36), (37) gives

\displaystyle  \beta_d \leq \beta_d - \eta

which is absurd if {\eta>0}. Thus {\eta \leq 0} and so {D_p(N)} must be of subpolynomial growth.

Remark 11 (This observation is essentially due to Heath-Brown.) If we let {x} denote the column vector with entries {\beta_2,\dots,\beta_d,\gamma_1,\dots,\gamma_{d-1}} (arranged in whatever order one pleases), then the above system of inequalities (32)(36) (using (37) to handle the appearance of {\gamma_d} in (36)) reads

\displaystyle  x \leq Px + \eta v \ \ \ \ \ (38)

for some explicit square matrix {P} with non-negative coefficients, where the inequality denotes pointwise domination, and {v} is an explicit vector with non-positive coefficients that reflects the effect of (37). It is possible to show (using (24), (26)) that all the coefficients of {x} are negative (assuming the counterfactual situation {\eta>0} of course). Then we can iterate this to obtain

\displaystyle  x \leq P^k x + \eta \sum_{j=0}^{k-1} P^j v

for any natural number {k}. This would lead to an immediate contradiction if the Perron-Frobenius eigenvalue of {P} exceeds {1} because {P^k x} would now grow exponentially; this is typically the situation for “non-endpoint” applications such as proving decoupling inequalities away from the endpoint. In the endpoint situation discussed above, the Perron-Frobenius eigenvalue is {1}, with {v} having a non-trivial projection to this eigenspace, so the sum {\sum_{j=0}^{k-1} \eta P^j v} now grows at least linearly, which still gives the required contradiction for any {\eta>0}. So it is important to gather “enough” inequalities so that the relevant matrix {P} has a Perron-Frobenius eigenvalue greater than or equal to {1} (and in the latter case one needs non-trivial injection of an induction hypothesis into an eigenspace corresponding to an eigenvalue {1}). More specifically, if {\rho} is the spectral radius of {P} and {w^T} is a left Perron-Frobenius eigenvector, that is to say a non-negative vector, not identically zero, such that {w^T P = \rho w^T}, then by taking inner products of (38) with {w} we obtain

\displaystyle  w^T x \leq \rho w^T x + \eta w^T v.

If {\rho > 1} this leads to a contradiction since {w^T x} is negative and {w^T v} is non-positive. When {\rho = 1} one still gets a contradiction as long as {w^T v} is strictly negative.

Remark 12 (This calculation is essentially due to Guo and Zorin-Kranich.) Here is a concrete application of the Perron-Frobenius strategy outlined above to the system of inequalities (32)(37). Consider the weighted sum

\displaystyle  W := \sum_{k=2}^d (k-1) \beta_k + \sum_{k=1}^{d-1} 2k \gamma_k;

I had secretly calculated the weights {k-1}, {2k} as coming from the left Perron-Frobenius eigenvector of the matrix {P} described in the previous remark, but for this calculation the precise provenance of the weights is not relevant. Applying the inequalities (31), (30) we see that {W} is bounded by

\displaystyle  \sum_{k=2}^d (k-1) (\frac{(d-k+1)(k-2)}{(k-1)(d-k+3)} \beta_{k-1} + \frac{2(d+1)}{(k-1)(d-k+3)} \gamma_{k-1})

\displaystyle  + \sum_{k=1}^{d-1} 2k(\frac{1}{d-k+1} \beta_{k+1} + \frac{d-k}{d-k+1} \gamma_{k+1})

(with the convention that the {\beta_1} term is absent); this simplifies after some calculation to the bound

\displaystyle  W \leq W + \frac{1}{2} \gamma_d

and this and (37) then leads to the required contradiction.

Exercise 13

  • (i) Extend the above analysis to also cover the non-endpoint case {d^2 < p < d(d+1)}. (One will need to establish the claim {\alpha_k(t) \leq -\eta} for {t \leq p}.)
  • (ii) Modify the argument to deal with the remaining cases {2 < p \leq d^2} by dropping some of the steps.

While talking mathematics with a postdoc here at UCLA (March Boedihardjo) we came across the following matrix problem which we managed to solve, but the proof was cute and the process of discovering it was fun, so I thought I would present the problem here as a puzzle without revealing the solution for now.

The problem involves word maps on a matrix group, which for sake of discussion we will take to be the special orthogonal group SO(3) of real 3 \times 3 matrices (one of the smallest matrix groups that contains a copy of the free group, which incidentally is the key observation powering the Banach-Tarski paradox).  Given any abstract word w of two generators x,y and their inverses (i.e., an element of the free group {\bf F}_2), one can define the word map w: SO(3) \times SO(3) \to SO(3) simply by substituting a pair of matrices in SO(3) into these generators.  For instance, if one has the word w = x y x^{-2} y^2 x, then the corresponding word map w: SO(3) \times SO(3) \to SO(3) is given by

\displaystyle w(A,B) := ABA^{-2} B^2 A

for A,B \in SO(3).  Because SO(3) contains a copy of the free group, we see the word map is non-trivial (not equal to the identity) if and only if the word itself is nontrivial.

Anyway, here is the problem:

Problem. Does there exist a sequence w_1, w_2, \dots of non-trivial word maps w_n: SO(3) \times SO(3) \to SO(3) that converge uniformly to the identity map?

To put it another way, given any \varepsilon > 0, does there exist a non-trivial word w such that \|w(A,B) - 1 \| \leq \varepsilon for all A,B \in SO(3), where \| \| denotes (say) the operator norm, and 1 denotes the identity matrix in SO(3)?

As I said, I don’t want to spoil the fun of working out this problem, so I will leave it as a challenge. Readers are welcome to share their thoughts, partial solutions, or full solutions in the comments below.

Note: this post is not required reading for this course, or for the sequel course in the winter quarter.

In a Notes 2, we reviewed the classical construction of Leray of global weak solutions to the Navier-Stokes equations. We did not quite follow Leray’s original proof, in that the notes relied more heavily on the machinery of Littlewood-Paley projections, which have become increasingly common tools in modern PDE. On the other hand, we did use the same “exploiting compactness to pass to weakly convergent subsequence” strategy that is the standard one in the PDE literature used to construct weak solutions.

As I discussed in a previous post, the manipulation of sequences and their limits is analogous to a “cheap” version of nonstandard analysis in which one uses the Fréchet filter rather than an ultrafilter to construct the nonstandard universe. (The manipulation of generalised functions of Columbeau-type can also be comfortably interpreted within this sort of cheap nonstandard analysis.) Augmenting the manipulation of sequences with the right to pass to subsequences whenever convenient is then analogous to a sort of “lazy” nonstandard analysis, in which the implied ultrafilter is never actually constructed as a “completed object“, but is instead lazily evaluated, in the sense that whenever membership of a given subsequence of the natural numbers in the ultrafilter needs to be determined, one either passes to that subsequence (thus placing it in the ultrafilter) or the complement of the sequence (placing it out of the ultrafilter). This process can be viewed as the initial portion of the transfinite induction that one usually uses to construct ultrafilters (as discussed using a voting metaphor in this post), except that there is generally no need in any given application to perform the induction for any uncountable ordinal (or indeed for most of the countable ordinals also).

On the other hand, it is also possible to work directly in the orthodox framework of nonstandard analysis when constructing weak solutions. This leads to an approach to the subject which is largely equivalent to the usual subsequence-based approach, though there are some minor technical differences (for instance, the subsequence approach occasionally requires one to work with separable function spaces, whereas in the ultrafilter approach the reliance on separability is largely eliminated, particularly if one imposes a strong notion of saturation on the nonstandard universe). The subject acquires a more “algebraic” flavour, as the quintessential analysis operation of taking a limit is replaced with the “standard part” operation, which is an algebra homomorphism. The notion of a sequence is replaced by the distinction between standard and nonstandard objects, and the need to pass to subsequences disappears entirely. Also, the distinction between “bounded sequences” and “convergent sequences” is largely eradicated, particularly when the space that the sequences ranged in enjoys some compactness properties on bounded sets. Also, in this framework, the notorious non-uniqueness features of weak solutions can be “blamed” on the non-uniqueness of the nonstandard extension of the standard universe (as well as on the multiple possible ways to construct nonstandard mollifications of the original standard PDE). However, many of these changes are largely cosmetic; switching from a subsequence-based theory to a nonstandard analysis-based theory does not seem to bring one significantly closer for instance to the global regularity problem for Navier-Stokes, but it could have been an alternate path for the historical development and presentation of the subject.

In any case, I would like to present below the fold this nonstandard analysis perspective, quickly translating the relevant components of real analysis, functional analysis, and distributional theory that we need to this perspective, and then use it to re-prove Leray’s theorem on existence of global weak solutions to Navier-Stokes.

Read the rest of this entry »

The celebrated decomposition theorem of Fefferman and Stein shows that every function {f \in \mathrm{BMO}({\bf R}^n)} of bounded mean oscillation can be decomposed in the form

\displaystyle f = f_0 + \sum_{i=1}^n R_i f_i \ \ \ \ \ (1)


modulo constants, for some {f_0,f_1,\dots,f_n \in L^\infty({\bf R}^n)}, where {R_i := |\nabla|^{-1} \partial_i} are the Riesz transforms. A technical note here a function in BMO is defined only up to constants (as well as up to the usual almost everywhere equivalence); related to this, if {f_i} is an {L^\infty({\bf R}^n)} function, then the Riesz transform {R_i f_i} is well defined as an element of {\mathrm{BMO}({\bf R}^n)}, but is also only defined up to constants and almost everywhere equivalence.

The original proof of Fefferman and Stein was indirect (relying for instance on the Hahn-Banach theorem). A constructive proof was later given by Uchiyama, and was in fact the topic of the second post on this blog. A notable feature of Uchiyama’s argument is that the construction is quite nonlinear; the vector-valued function {(f_0,f_1,\dots,f_n)} is defined to take values on a sphere, and the iterative construction to build these functions from {f} involves repeatedly projecting a potential approximant to this function to the sphere (also, the high-frequency components of this approximant are constructed in a manner that depends nonlinearly on the low-frequency components, which is a type of technique that has become increasingly common in analysis and PDE in recent years).

It is natural to ask whether the Fefferman-Stein decomposition (1) can be made linear in {f}, in the sense that each of the {f_i, i=0,\dots,n} depend linearly on {f}. Strictly speaking this is easily accomplished using the axiom of choice: take a Hamel basis of {\mathrm{BMO}({\bf R}^n)}, choose a decomposition (1) for each element of this basis, and then extend linearly to all finite linear combinations of these basis functions, which then cover {\mathrm{BMO}({\bf R}^n)} by definition of Hamel basis. But these linear operations have no reason to be continuous as a map from {\mathrm{BMO}({\bf R}^n)} to {L^\infty({\bf R}^n)}. So the correct question is whether the decomposition can be made continuously linear (or equivalently, boundedly linear) in {f}, that is to say whether there exist continuous linear transformations {T_i: \mathrm{BMO}({\bf R}^n) \rightarrow L^\infty({\bf R}^n)} such that

\displaystyle f = T_0 f + \sum_{i=1}^n R_i T_i f \ \ \ \ \ (2)


modulo constants for all {f \in \mathrm{BMO}({\bf R}^n)}. Note from the open mapping theorem that one can choose the functions {f_0,\dots,f_n} to depend in a bounded fashion on {f} (thus {\|f_i\|_{L^\infty} \leq C \|f\|_{BMO}} for some constant {C}, however the open mapping theorem does not guarantee linearity. Using a result of Bartle and Graves one can also make the {f_i} depend continuously on {f}, but again the dependence is not guaranteed to be linear.

It is generally accepted folklore that continuous linear dependence is known to be impossible, but I had difficulty recently tracking down an explicit proof of this assertion in the literature (if anyone knows of a reference, I would be glad to know of it). The closest I found was a proof of a similar statement in this paper of Bourgain and Brezis, which I was able to adapt to establish the current claim. The basic idea is to average over the symmetries of the decomposition, which in the case of (1) are translation invariance, rotation invariance, and dilation invariance. This effectively makes the operators {T_0,T_1,\dots,T_n} invariant under all these symmetries, which forces them to themselves be linear combinations of the identity and Riesz transform operators; however, no such non-trivial linear combination maps {\mathrm{BMO}} to {L^\infty}, and the claim follows. Formal details of this argument (which we phrase in a dual form in order to avoid some technicalities) appear below the fold.

Read the rest of this entry »

In the previous set of notes we developed a theory of “strong” solutions to the Navier-Stokes equations. This theory, based around viewing the Navier-Stokes equations as a perturbation of the linear heat equation, has many attractive features: solutions exist locally, are unique, depend continuously on the initial data, have a high degree of regularity, can be continued in time as long as a sufficiently high regularity norm is under control, and tend to enjoy the same sort of conservation laws that classical solutions do. However, it is a major open problem as to whether these solutions can be extended to be (forward) global in time, because the norms that we know how to control globally in time do not have high enough regularity to be useful for continuing the solution. Also, the theory becomes degenerate in the inviscid limit {\nu \rightarrow 0}.

However, it is possible to construct “weak” solutions which lack many of the desirable features of strong solutions (notably, uniqueness, propagation of regularity, and conservation laws) but can often be constructed globally in time even when one us unable to do so for strong solutions. Broadly speaking, one usually constructs weak solutions by some sort of “compactness method”, which can generally be described as follows.

  1. Construct a sequence of “approximate solutions” to the desired equation, for instance by developing a well-posedness theory for some “regularised” approximation to the original equation. (This theory often follows similar lines to those in the previous set of notes, for instance using such tools as the contraction mapping theorem to construct the approximate solutions.)
  2. Establish some uniform bounds (over appropriate time intervals) on these approximate solutions, even in the limit as an approximation parameter is sent to zero. (Uniformity is key; non-uniform bounds are often easy to obtain if one puts enough “mollification”, “hyper-dissipation”, or “discretisation” in the approximating equation.)
  3. Use some sort of “weak compactness” (e.g., the Banach-Alaoglu theorem, the Arzela-Ascoli theorem, or the Rellich compactness theorem) to extract a subsequence of approximate solutions that converge (in a topology weaker than that associated to the available uniform bounds) to a limit. (Note that there is no reason a priori to expect such limit points to be unique, or to have any regularity properties beyond that implied by the available uniform bounds..)
  4. Show that this limit solves the original equation in a suitable weak sense.

The quality of these weak solutions is very much determined by the type of uniform bounds one can obtain on the approximate solution; the stronger these bounds are, the more properties one can obtain on these weak solutions. For instance, if the approximate solutions enjoy an energy identity leading to uniform energy bounds, then (by using tools such as Fatou’s lemma) one tends to obtain energy inequalities for the resulting weak solution; but if one somehow is able to obtain uniform bounds in a higher regularity norm than the energy then one can often recover the full energy identity. If the uniform bounds are at the regularity level needed to obtain well-posedness, then one generally expects to upgrade the weak solution to a strong solution. (This phenomenon is often formalised through weak-strong uniqueness theorems, which we will discuss later in these notes.) Thus we see that as far as attacking global regularity is concerned, both the theory of strong solutions and the theory of weak solutions encounter essentially the same obstacle, namely the inability to obtain uniform bounds on (exact or approximate) solutions at high regularities (and at arbitrary times).

For simplicity, we will focus our discussion in this notes on finite energy weak solutions on {{\bf R}^d}. There is a completely analogous theory for periodic weak solutions on {{\bf R}^d} (or equivalently, weak solutions on the torus {({\bf R}^d/{\bf Z}^d)} which we will leave to the interested reader.

In recent years, a completely different way to construct weak solutions to the Navier-Stokes or Euler equations has been developed that are not based on the above compactness methods, but instead based on techniques of convex integration. These will be discussed in a later set of notes.

Read the rest of this entry »

This is a sequel to this previous blog post, in which we discussed the effect of the heat flow evolution

\displaystyle  \partial_t P(t,z) = \partial_{zz} P(t,z)

on the zeroes of a time-dependent family of polynomials {z \mapsto P(t,z)}, with a particular focus on the case when the polynomials {z \mapsto P(t,z)} had real zeroes. Here (inspired by some discussions I had during a recent conference on the Riemann hypothesis in Bristol) we record the analogous theory in which the polynomials instead have zeroes on a circle {\{ z: |z| = \sqrt{q} \}}, with the heat flow slightly adjusted to compensate for this. As we shall discuss shortly, a key example of this situation arises when {P} is the numerator of the zeta function of a curve.

More precisely, let {g} be a natural number. We will say that a polynomial

\displaystyle  P(z) = \sum_{j=0}^{2g} a_j z^j

of degree {2g} (so that {a_{2g} \neq 0}) obeys the functional equation if the {a_j} are all real and

\displaystyle  a_j = q^{g-j} a_{2g-j}

for all {j=0,\dots,2g}, thus

\displaystyle  P(\overline{z}) = \overline{P(z)}


\displaystyle  P(q/z) = q^g z^{-2g} P(z)

for all non-zero {z}. This means that the {2g} zeroes {\alpha_1,\dots,\alpha_{2g}} of {P(z)} (counting multiplicity) lie in {{\bf C} \backslash \{0\}} and are symmetric with respect to complex conjugation {z \mapsto \overline{z}} and inversion {z \mapsto q/z} across the circle {\{ |z| = \sqrt{q}\}}. We say that this polynomial obeys the Riemann hypothesis if all of its zeroes actually lie on the circle {\{ z = \sqrt{q}\}}. For instance, in the {g=1} case, the polynomial {z^2 - a_1 z + q} obeys the Riemann hypothesis if and only if {|a_1| \leq 2\sqrt{q}}.

Such polynomials arise in number theory as follows: if {C} is a projective curve of genus {g} over a finite field {\mathbf{F}_q}, then, as famously proven by Weil, the associated local zeta function {\zeta_{C,q}(z)} (as defined for instance in this previous blog post) is known to take the form

\displaystyle  \zeta_{C,q}(z) = \frac{P(z)}{(1-z)(1-qz)}

where {P} is a degree {2g} polynomial obeying both the functional equation and the Riemann hypothesis. In the case that {C} is an elliptic curve, then {g=1} and {P} takes the form {P(z) = z^2 - a_1 z + q}, where {a_1} is the number of {{\bf F}_q}-points of {C} minus {q+1}. The Riemann hypothesis in this case is a famous result of Hasse.

Another key example of such polynomials arise from rescaled characteristic polynomials

\displaystyle  P(z) := \det( 1 - \sqrt{q} F ) \ \ \ \ \ (1)

of {2g \times 2g} matrices {F} in the compact symplectic group {Sp(g)}. These polynomials obey both the functional equation and the Riemann hypothesis. The Sato-Tate conjecture (in higher genus) asserts, roughly speaking, that “typical” polyomials {P} arising from the number theoretic situation above are distributed like the rescaled characteristic polynomials (1), where {F} is drawn uniformly from {Sp(g)} with Haar measure.

Given a polynomial {z \mapsto P(0,z)} of degree {2g} with coefficients

\displaystyle  P(0,z) = \sum_{j=0}^{2g} a_j(0) z^j,

we can evolve it in time by the formula

\displaystyle  P(t,z) = \sum_{j=0}^{2g} \exp( t(j-g)^2 ) a_j(0) z^j,

thus {a_j(t) = \exp(t(j-g)) a_j(0)} for {t \in {\bf R}}. Informally, as one increases {t}, this evolution accentuates the effect of the extreme monomials, particularly, {z^0} and {z^{2g}} at the expense of the intermediate monomials such as {z^g}, and conversely as one decreases {t}. This family of polynomials obeys the heat-type equation

\displaystyle  \partial_t P(t,z) = (z \partial_z - g)^2 P(t,z). \ \ \ \ \ (2)

In view of the results of Marcus, Spielman, and Srivastava, it is also very likely that one can interpret this flow in terms of expected characteristic polynomials involving conjugation over the compact symplectic group {Sp(n)}, and should also be tied to some sort of “{\beta=\infty}” version of Brownian motion on this group, but we have not attempted to work this connection out in detail.

It is clear that if {z \mapsto P(0,z)} obeys the functional equation, then so does {z \mapsto P(t,z)} for any other time {t}. Now we investigate the evolution of the zeroes. Suppose at some time {t_0} that the zeroes {\alpha_1(t_0),\dots,\alpha_{2g}(t_0)} of {z \mapsto P(t_0,z)} are distinct, then

\displaystyle  P(t_0,z) = a_{2g}(0) \exp( t_0g^2 ) \prod_{j=1}^{2g} (z - \alpha_j(t_0) ).

From the inverse function theorem we see that for times {t} sufficiently close to {t_0}, the zeroes {\alpha_1(t),\dots,\alpha_{2g}(t)} of {z \mapsto P(t,z)} continue to be distinct (and vary smoothly in {t}), with

\displaystyle  P(t,z) = a_{2g}(0) \exp( t g^2 ) \prod_{j=1}^{2g} (z - \alpha_j(t) ).

Differentiating this at any {z} not equal to any of the {\alpha_j(t)}, we obtain

\displaystyle  \partial_t P(t,z) = P(t,z) ( g^2 - \sum_{j=1}^{2g} \frac{\alpha'_j(t)}{z - \alpha_j(t)})


\displaystyle  \partial_z P(t,z) = P(t,z) ( \sum_{j=1}^{2g} \frac{1}{z - \alpha_j(t)})


\displaystyle  \partial_{zz} P(t,z) = P(t,z) ( \sum_{1 \leq j,k \leq 2g: j \neq k} \frac{1}{(z - \alpha_j(t))(z - \alpha_k(t))}).

Inserting these formulae into (2) (expanding {(z \partial_z - g)^2} as {z^2 \partial_{zz} - (2g-1) z \partial_z + g^2}) and canceling some terms, we conclude that

\displaystyle  - \sum_{j=1}^{2g} \frac{\alpha'_j(t)}{z - \alpha_j(t)} = z^2 \sum_{1 \leq j,k \leq 2g: j \neq k} \frac{1}{(z - \alpha_j(t))(z - \alpha_k(t))}

\displaystyle  - (2g-1) z \sum_{j=1}^{2g} \frac{1}{z - \alpha_j(t)}

for {t} sufficiently close to {t_0}, and {z} not equal to {\alpha_1(t),\dots,\alpha_{2g}(t)}. Extracting the residue at {z = \alpha_j(t)}, we conclude that

\displaystyle  - \alpha'_j(t) = 2 \alpha_j(t)^2 \sum_{1 \leq k \leq 2g: k \neq j} \frac{1}{\alpha_j(t) - \alpha_k(t)} - (2g-1) \alpha_j(t)

which we can rearrange as

\displaystyle  \frac{\alpha'_j(t)}{\alpha_j(t)} = - \sum_{1 \leq k \leq 2g: k \neq j} \frac{\alpha_j(t)+\alpha_k(t)}{\alpha_j(t)-\alpha_k(t)}.

If we make the change of variables {\alpha_j(t) = \sqrt{q} e^{i\theta_j(t)}} (noting that one can make {\theta_j} depend smoothly on {t} for {t} sufficiently close to {t_0}), this becomes

\displaystyle  \partial_t \theta_j(t) = \sum_{1 \leq k \leq 2g: k \neq j} \cot \frac{\theta_j(t) - \theta_k(t)}{2}. \ \ \ \ \ (3)

Intuitively, this equation asserts that the phases {\theta_j} repel each other if they are real (and attract each other if their difference is imaginary). If {z \mapsto P(t_0,z)} obeys the Riemann hypothesis, then the {\theta_j} are all real at time {t_0}, then the Picard uniqueness theorem (applied to {\theta_j(t)} and its complex conjugate) then shows that the {\theta_j} are also real for {t} sufficiently close to {t_0}. If we then define the entropy functional

\displaystyle  H(\theta_1,\dots,\theta_{2g}) := \sum_{1 \leq j < k \leq 2g} \log \frac{1}{|\sin \frac{\theta_j-\theta_k}{2}| }

then the above equation becomes a gradient flow

\displaystyle  \partial_t \theta_j(t) = - 2 \frac{\partial H}{\partial \theta_j}( \theta_1(t),\dots,\theta_{2g}(t) )

which implies in particular that {H(\theta_1(t),\dots,\theta_{2g}(t))} is non-increasing in time. This shows that as one evolves time forward from {t_0}, there is a uniform lower bound on the separation between the phases {\theta_1(t),\dots,\theta_{2g}(t)}, and hence the equation can be solved indefinitely; in particular, {z \mapsto P(t,z)} obeys the Riemann hypothesis for all {t > t_0} if it does so at time {t_0}. Our argument here assumed that the zeroes of {z \mapsto P(t_0,z)} were simple, but this assumption can be removed by the usual limiting argument.

For any polynomial {z \mapsto P(0,z)} obeying the functional equation, the rescaled polynomials {z \mapsto e^{-g^2 t} P(t,z)} converge locally uniformly to {a_{2g}(0) (z^{2g} + q^g)} as {t \rightarrow +\infty}. By Rouche’s theorem, we conclude that the zeroes of {z \mapsto P(t,z)} converge to the equally spaced points {\{ e^{2\pi i(j+1/2)/2g}: j=1,\dots,2g\}} on the circle {\{ |z| = \sqrt{q}\}}. Together with the symmetry properties of the zeroes, this implies in particular that {z \mapsto P(t,z)} obeys the Riemann hypothesis for all sufficiently large positive {t}. In the opposite direction, when {t \rightarrow -\infty}, the polynomials {z \mapsto P(t,z)} converge locally uniformly to {a_g(0) z^g}, so if {a_g(0) \neq 0}, {g} of the zeroes converge to the origin and the other {g} converge to infinity. In particular, {z \mapsto P(t,z)} fails the Riemann hypothesis for sufficiently large negative {t}. Thus (if {a_g(0) \neq 0}), there must exist a real number {\Lambda}, which we call the de Bruijn-Newman constant of the original polynomial {z \mapsto P(0,z)}, such that {z \mapsto P(t,z)} obeys the Riemann hypothesis for {t \geq \Lambda} and fails the Riemann hypothesis for {t < \Lambda}. The situation is a bit more complicated if {a_g(0)} vanishes; if {k} is the first natural number such that {a_{g+k}(0)} (or equivalently, {a_{g-j}(0)}) does not vanish, then by the above arguments one finds in the limit {t \rightarrow -\infty} that {g-k} of the zeroes go to the origin, {g-k} go to infinity, and the remaining {2k} zeroes converge to the equally spaced points {\{ e^{2\pi i(j+1/2)/2k}: j=1,\dots,2k\}}. In this case the de Bruijn-Newman constant remains finite except in the degenerate case {k=g}, in which case {\Lambda = -\infty}.

For instance, consider the case when {g=1} and {P(0,z) = z^2 - a_1 z + q} for some real {a_1} with {|a_1| \leq 2\sqrt{q}}. Then the quadratic polynomial

\displaystyle  P(t,z) = e^t z^2 - a_1 z + e^t q

has zeroes

\displaystyle  \frac{a_1 \pm \sqrt{a_1^2 - 4 e^{2t} q}}{2e^t}

and one easily checks that these zeroes lie on the circle {\{ |z|=\sqrt{q}\}} when {t \geq \log \frac{|a_1|}{2\sqrt{q}}}, and are on the real axis otherwise. Thus in this case we have {\Lambda = \log \frac{|a_1|}{2\sqrt{q}}} (with {\Lambda=-\infty} if {a_1=0}). Note how as {t} increases to {+\infty}, the zeroes repel each other and eventually converge to {\pm i \sqrt{q}}, while as {t} decreases to {-\infty}, the zeroes collide and then separate on the real axis, with one zero going to the origin and the other to infinity.

The arguments in my paper with Brad Rodgers (discussed in this previous post) indicate that for a “typical” polynomial {P} of degree {g} that obeys the Riemann hypothesis, the expected time to relaxation to equilibrium (in which the zeroes are equally spaced) should be comparable to {1/g}, basically because the average spacing is {1/g} and hence by (3) the typical velocity of the zeroes should be comparable to {g}, and the diameter of the unit circle is comparable to {1}, thus requiring time comparable to {1/g} to reach equilibrium. Taking contrapositives, this suggests that the de Bruijn-Newman constant {\Lambda} should typically take on values comparable to {-1/g} (since typically one would not expect the initial configuration of zeroes to be close to evenly spaced). I have not attempted to formalise or prove this claim, but presumably one could do some numerics (perhaps using some of the examples of {P} given previously) to explore this further.

We now approach conformal maps from yet another perspective. Given an open subset {U} of the complex numbers {{\bf C}}, define a univalent function on {U} to be a holomorphic function {f: U \rightarrow {\bf C}} that is also injective. We will primarily be studying this concept in the case when {U} is the unit disk {D(0,1) := \{ z \in {\bf C}: |z| < 1 \}}.

Clearly, a univalent function {f: D(0,1) \rightarrow {\bf C}} on the unit disk is a conformal map from {D(0,1)} to the image {f(D(0,1))}; in particular, {f(D(0,1))} is simply connected, and not all of {{\bf C}} (since otherwise the inverse map {f^{-1}: {\bf C} \rightarrow D(0,1)} would violate Liouville’s theorem). In the converse direction, the Riemann mapping theorem tells us that every open simply connected proper subset {V \subsetneq {\bf C}} of the complex numbers is the image of a univalent function on {D(0,1)}. Furthermore, if {V} contains the origin, then the univalent function {f: D(0,1) \rightarrow {\bf C}} with this image becomes unique once we normalise {f(0) = 0} and {f'(0) > 0}. Thus the Riemann mapping theorem provides a one-to-one correspondence between open simply connected proper subsets of the complex plane containing the origin, and univalent functions {f: D(0,1) \rightarrow {\bf C}} with {f(0)=0} and {f'(0)>0}. We will focus particular attention on the univalent functions {f: D(0,1) \rightarrow {\bf C}} with the normalisation {f(0)=0} and {f'(0)=1}; such functions will be called schlicht functions.

One basic example of a univalent function on {D(0,1)} is the Cayley transform {z \mapsto \frac{1+z}{1-z}}, which is a Möbius transformation from {D(0,1)} to the right half-plane {\{ \mathrm{Re}(z) > 0 \}}. (The slight variant {z \mapsto \frac{1-z}{1+z}} is also referred to as the Cayley transform, as is the closely related map {z \mapsto \frac{z-i}{z+i}}, which maps {D(0,1)} to the upper half-plane.) One can square this map to obtain a further univalent function {z \mapsto \left( \frac{1+z}{1-z} \right)^2}, which now maps {D(0,1)} to the complex numbers with the negative real axis {(-\infty,0]} removed. One can normalise this function to be schlicht to obtain the Koebe function

\displaystyle  f(z) := \frac{1}{4}\left( \left( \frac{1+z}{1-z} \right)^2 - 1\right) = \frac{z}{(1-z)^2}, \ \ \ \ \ (1)

which now maps {D(0,1)} to the complex numbers with the half-line {(-\infty,-1/4]} removed. A little more generally, for any {\theta \in {\bf R}} we have the rotated Koebe function

\displaystyle  f(z) := \frac{z}{(1 - e^{i\theta} z)^2} \ \ \ \ \ (2)

that is a schlicht function that maps {D(0,1)} to the complex numbers with the half-line {\{ -re^{-i\theta}: r \geq 1/4\}} removed.

Every schlicht function {f: D(0,1) \rightarrow {\bf C}} has a convergent Taylor expansion

\displaystyle  f(z) = a_1 z + a_2 z^2 + a_3 z^3 + \dots

for some complex coefficients {a_1,a_2,\dots} with {a_1=1}. For instance, the Koebe function has the expansion

\displaystyle  f(z) = z + 2 z^2 + 3 z^3 + \dots = \sum_{n=1}^\infty n z^n

and similarly the rotated Koebe function has the expansion

\displaystyle  f(z) = z + 2 e^{i\theta} z^2 + 3 e^{2i\theta} z^3 + \dots = \sum_{n=1}^\infty n e^{(n-1)\theta} z^n.

Intuitively, the Koebe function and its rotations should be the “largest” schlicht functions available. This is formalised by the famous Bieberbach conjecture, which asserts that for any schlicht function, the coefficients {a_n} should obey the bound {|a_n| \leq n} for all {n}. After a large number of partial results, this conjecture was eventually solved by de Branges; see for instance this survey of Korevaar or this survey of Koepf for a history.

It turns out that to resolve these sorts of questions, it is convenient to restrict attention to schlicht functions {g: D(0,1) \rightarrow {\bf C}} that are odd, thus {g(-z)=-g(z)} for all {z}, and the Taylor expansion now reads

\displaystyle  g(z) = b_1 z + b_3 z^3 + b_5 z^5 + \dots

for some complex coefficients {b_1,b_3,\dots} with {b_1=1}. One can transform a general schlicht function {f: D(0,1) \rightarrow {\bf C}} to an odd schlicht function {g: D(0,1) \rightarrow {\bf C}} by observing that the function {f(z^2)/z^2: D(0,1) \rightarrow {\bf C}}, after removing the singularity at zero, is a non-zero function that equals {1} at the origin, and thus (as {D(0,1)} is simply connected) has a unique holomorphic square root {(f(z^2)/z^2)^{1/2}} that also equals {1} at the origin. If one then sets

\displaystyle  g(z) := z (f(z^2)/z^2)^{1/2} \ \ \ \ \ (3)

it is not difficult to verify that {g} is an odd schlicht function which additionally obeys the equation

\displaystyle  f(z^2) = g(z)^2. \ \ \ \ \ (4)

Conversely, given an odd schlicht function {g}, the formula (4) uniquely determines a schlicht function {f}.

For instance, if {f} is the Koebe function (1), {g} becomes

\displaystyle  g(z) = \frac{z}{1-z^2} = z + z^3 + z^5 + \dots, \ \ \ \ \ (5)

which maps {D(0,1)} to the complex numbers with two slits {\{ \pm iy: y > 1/2 \}} removed, and if {f} is the rotated Koebe function (2), {g} becomes

\displaystyle  g(z) = \frac{z}{1- e^{i\theta} z^2} = z + e^{i\theta} z^3 + e^{2i\theta} z^5 + \dots. \ \ \ \ \ (6)

De Branges established the Bieberbach conjecture by first proving an analogous conjecture for odd schlicht functions known as Robertson’s conjecture. More precisely, we have

Theorem 1 (de Branges’ theorem) Let {n \geq 1} be a natural number.

  • (i) (Robertson conjecture) If {g(z) = b_1 z + b_3 z^3 + b_5 z^5 + \dots} is an odd schlicht function, then

    \displaystyle  \sum_{k=1}^n |b_{2k-1}|^2 \leq n.

  • (ii) (Bieberbach conjecture) If {f(z) = a_1 z + a_2 z^2 + a_3 z^3 + \dots} is a schlicht function, then

    \displaystyle  |a_n| \leq n.

It is easy to see that the Robertson conjecture for a given value of {n} implies the Bieberbach conjecture for the same value of {n}. Indeed, if {f(z) = a_1 z + a_2 z^2 + a_3 z^3 + \dots} is schlicht, and {g(z) = b_1 z + b_3 z^3 + b_5 z^5 + \dots} is the odd schlicht function given by (3), then from extracting the {z^{2n}} coefficient of (4) we obtain a formula

\displaystyle  a_n = \sum_{j=1}^n b_{2j-1} b_{2(n+1-j)-1}

for the coefficients of {f} in terms of the coefficients of {g}. Applying the Cauchy-Schwarz inequality, we derive the Bieberbach conjecture for this value of {n} from the Robertson conjecture for the same value of {n}. We remark that Littlewood and Paley had conjectured a stronger form {|b_{2k-1}| \leq 1} of Robertson’s conjecture, but this was disproved for {k=3} by Fekete and Szegö.

To prove the Robertson and Bieberbach conjectures, one first takes a logarithm and deduces both conjectures from a similar conjecture about the Taylor coefficients of {\log \frac{f(z)}{z}}, known as the Milin conjecture. Next, one continuously enlarges the image {f(D(0,1))} of the schlicht function to cover all of {{\bf C}}; done properly, this places the schlicht function {f} as the initial function {f = f_0} in a sequence {(f_t)_{t \geq 0}} of univalent maps {f_t: D(0,1) \rightarrow {\bf C}} known as a Loewner chain. The functions {f_t} obey a useful differential equation known as the Loewner equation, that involves an unspecified forcing term {\mu_t} (or {\theta(t)}, in the case that the image is a slit domain) coming from the boundary; this in turn gives useful differential equations for the Taylor coefficients of {f(z)}, {g(z)}, or {\log \frac{f(z)}{z}}. After some elementary calculus manipulations to “integrate” this equations, the Bieberbach, Robertson, and Milin conjectures are then reduced to establishing the non-negativity of a certain explicit hypergeometric function, which is non-trivial to prove (and will not be done here, except for small values of {n}) but for which several proofs exist in the literature.

The theory of Loewner chains subsequently became fundamental to a more recent topic in complex analysis, that of the Schramm-Loewner equation (SLE), which is the focus of the next and final set of notes.

Read the rest of this entry »

This is the seventh “research” thread of the Polymath15 project to upper bound the de Bruijn-Newman constant {\Lambda}, continuing this post. Discussion of the project of a non-research nature can continue for now in the existing proposal thread. Progress will be summarised at this Polymath wiki page.

The most recent news is that we appear to have completed the verification that {H_t(x+iy)} is free of zeroes when {t=0.4} and {y \geq 0.4}, which implies that {\Lambda \leq 0.48}. For very large {x} (for instance when the quantity {N := \lfloor \sqrt{\frac{x}{4\pi} + \frac{t}{16}} \rfloor} is at least {300}) this can be done analytically; for medium values of {x} (say when {N} is between {11} and {300}) this can be done by numerically evaluating a fast approximation {A^{eff} + B^{eff}} to {H_t} and using the argument principle in a rectangle; and most recently it appears that we can also handle small values of {x}, in part due to some new, and significantly faster, numerical ways to evaluate {H_t} in this range.

One obvious thing to do now is to experiment with lowering the parameters {t} and {y} and see what happens. However there are two other potential ways to bound {\Lambda} which may also be numerically feasible. One approach is based on trying to exclude zeroes of {H_t(x+iy)=0} in a region of the form {0 \leq t \leq t_0}, {X \leq x \leq X+1} and {y \geq y_0} for some moderately large {X} (this acts as a “barrier” to prevent zeroes from flowing into the region {\{ 0 \leq x \leq X, y \geq y_0 \}} at time {t_0}, assuming that they were not already there at time {0}). This require significantly less numerical verification in the {x} aspect, but more numerical verification in the {t} aspect, so it is not yet clear whether this is a net win.

Another, rather different approach, is to study the evolution of statistics such as {S(t) = \sum_{H_t(x+iy)=0: x,y>0} y e^{-x/X}} over time. One has fairly good control on such quantities at time zero, and their time derivative looks somewhat manageable, so one may be able to still have good control on this quantity at later times {t_0>0}. However for this approach to work, one needs an effective version of the Riemann-von Mangoldt formula for {H_t}, which at present is only available asymptotically (or at time {t=0}). This approach may be able to avoid almost all numerical computation, except for numerical verification of the Riemann hypothesis, for which we can appeal to existing literature.

Participants are also welcome to add any further summaries of the situation in the comments below.

This is the sixth “research” thread of the Polymath15 project to upper bound the de Bruijn-Newman constant {\Lambda}, continuing this post. Discussion of the project of a non-research nature can continue for now in the existing proposal thread. Progress will be summarised at this Polymath wiki page.

The last two threads have been focused primarily on the test problem of showing that {H_t(x+iy) \neq 0} whenever {t = y = 0.4}. We have been able to prove this for most regimes of {x}, or equivalently for most regimes of the natural number parameter {N := \lfloor \sqrt{\frac{x}{4\pi} + \frac{t}{16}} \rfloor}. In many of these regimes, a certain explicit approximation {A^{eff}+B^{eff}} to {H_t} was used, together with a non-zero normalising factor {B^{eff}_0}; see the wiki for definitions. The explicit upper bound

\displaystyle  |H_t - A^{eff} - B^{eff}| \leq E_1 + E_2 + E_3

has been proven for certain explicit expressions {E_1, E_2, E_3} (see here) depending on {x}. In particular, if {x} satisfies the inequality

\displaystyle  |\frac{A^{eff}+B^{eff}}{B^{eff}_0}| > \frac{E_1}{|B^{eff}_0|} + \frac{E_2}{|B^{eff}_0|} + \frac{E_3}{|B^{eff}_0|}

then {H_t(x+iy)} is non-vanishing thanks to the triangle inequality. (In principle we have an even more accurate approximation {A^{eff}+B^{eff}-C^{eff}} available, but it is looking like we will not need it for this test problem at least.)

We have explicit upper bounds on {\frac{E_1}{|B^{eff}_0|}}, {\frac{E_2}{|B^{eff}_0|}}, {\frac{E_3}{|B^{eff}_0|}}; see this wiki page for details. They are tabulated in the range {3 \leq N \leq 2000} here. For {N \geq 2000}, the upper bound {\frac{E_3^*}{|B^{eff}_0|}} for {\frac{E_3}{|B^{eff}_0|}} is monotone decreasing, and is in particular bounded by {1.53 \times 10^{-5}}, while {\frac{E_2}{|B^{eff}_0|}} and {\frac{E_1}{|B^{eff}_0|}} are known to be bounded by {2.9 \times 10^{-7}} and {2.8 \times 10^{-8}} respectively (see here).

Meanwhile, the quantity {|\frac{A^{eff}+B^{eff}}{B^{eff}_0}|} can be lower bounded by

\displaystyle  |\sum_{n=1}^N \frac{b_n}{n^s}| - |\sum_{n=1}^N \frac{a_n}{n^s}|

for certain explicit coefficients {a_n,b_n} and an explicit complex number {s = \sigma + i\tau}. Using the triangle inequality to lower bound this by

\displaystyle  |b_1| - \sum_{n=2}^N \frac{|b_n|}{n^\sigma} - \sum_{n=1}^N \frac{|a_n|}{n^\sigma}

we can obtain a lower bound of {0.18} for {N \geq 2000}, which settles the test problem in this regime. One can get more efficient lower bounds by multiplying both Dirichlet series by a suitable Euler product mollifier; we have found {\prod_{p \leq P} (1 - \frac{b_p}{p^s})} for {P=2,3,5,7} to be good choices to get a variety of further lower bounds depending only on {N}, see this table and this wiki page. Comparing this against our tabulated upper bounds for the error terms we can handle the range {300 \leq N \leq 2000}.

In the range {11 \leq N \leq 300}, we have been able to obtain a suitable lower bound {|\frac{A^{eff}+B^{eff}}{B^{eff}_0}| \geq c} (where {c} exceeds the upper bound for {\frac{E_1}{|B^{eff}_0|} + \frac{E_2}{|B^{eff}_0|} + \frac{E_3}{|B^{eff}_0|}}) by numerically evaluating {|\frac{A^{eff}+B^{eff}}{B^{eff}_0}|} at a mesh of points for each choice of {N}, with the mesh spacing being adaptive and determined by {c} and an upper bound for the derivative of {|\frac{A^{eff}+B^{eff}}{B^{eff}_0}|}; the data is available here.

This leaves the final range {N \leq 10} (roughly corresponding to {x \leq 1600}). Here we can numerically evaluate {H_t(x+iy)} to high accuracy at a fine mesh (see the data here), but to fill in the mesh we need good upper bounds on {H'_t(x+iy)}. It seems that we can get reasonable estimates using some contour shifting from the original definition of {H_t} (see here). We are close to finishing off this remaining region and thus solving the toy problem.

Beyond this, we need to figure out how to show that {H_t(x+iy) \neq 0} for {y > 0.4} as well. General theory lets one do this for {y \geq \sqrt{1-2t} = 0.447\dots}, leaving the region {0.4 < y < 0.448}. The analytic theory that handles {N \geq 2000} and {300 \leq N \leq 2000} should also handle this region; for {N \leq 300} presumably the argument principle will become relevant.

The full argument also needs to be streamlined and organised; right now it sprawls over many wiki pages and github code files. (A very preliminary writeup attempt has begun here). We should also see if there is much hope of extending the methods to push much beyond the bound of {\Lambda \leq 0.48} that we would get from the above calculations. This would also be a good time to start discussing whether to move to the writing phase of the project, or whether there are still fruitful research directions for the project to explore.

Participants are also welcome to add any further summaries of the situation in the comments below.

This is the fifth “research” thread of the Polymath15 project to upper bound the de Bruijn-Newman constant {\Lambda}, continuing this post. Discussion of the project of a non-research nature can continue for now in the existing proposal thread. Progress will be summarised at this Polymath wiki page.

We have almost finished off the test problem of showing that {H_t(x+iy) \neq 0} whenever {t = y = 0.4}. We have two useful approximations for {H_t}, which we have denoted {A^{eff}+B^{eff}} and {A^{eff}+B^{eff}-C^{eff}}, and a normalising quantity {B^{eff}_0} that is asymptotically equal to the above expressions; see the wiki page for definitions. In practice, the {A^{eff}+B^{eff}} approximation seems to be accurate within about one or two significant figures, whilst the {A^{eff}+B^{eff}-C^{eff}} approximation is accurate to about three or four. We have an effective upper bound

\displaystyle  |H_t - A^{eff} - B^{eff}| \leq E_1 + E_2 + E_3^*

where the expressions {E_1,E_2,E_3^*} are quite small in practice ({E_3^*} is typically about two orders of magnitude smaller than the main term {B^{eff}_0} once {x} is moderately large, and the error terms {E_1,E_2} are even smaller). See this page for details. In principle we could also obtain an effective upper bound for {|H_t - (A^{eff} + B^{eff} - C^{eff})|} (the {E_3^*} term would be replaced by something smaller).

The ratio {\frac{A^{eff}+B^{eff}}{B^{eff}_0}} takes the form of a difference {\sum_{n=1}^N \frac{b_n}{n^s} - e^{i\theta} \sum_{n=1}^N \frac{a_n}{n^s}} of two Dirichlet series, where {e^{i\theta}} is a phase whose value is explicit but perhaps not terribly important, and the coefficients {b_n, a_n} are explicit and relatively simple ({b_n} is {\exp( \frac{t}{4} \log^2 n)}, and {a_n} is approximately {(n/N)^y b_n}). To bound this away from zero, we have found it advantageous to mollify this difference by multiplying by an Euler product {\prod_{p \leq P} (1 - \frac{b_p}{p^s})} to cancel much of the initial oscillation; also one can take advantage of the fact that the {b_n} are real and the {a_n} are (approximately) real. See this page for details. The upshot is that we seem to be getting good lower bounds for the size of this difference of Dirichlet series starting from about {x \geq 5 \times 10^5} or so. The error terms {E_1,E_2,E_3^*} are already quite small by this stage, so we should soon be able to rigorously keep {H_t} from vanishing at this point. We also have a scheme for lower bounding the difference of Dirichlet series below this range, though it is not clear at present how far we can continue this before the error terms {E_1,E_2,E_3^*} become unmanageable. For very small {x} we may have to explore some faster ways to compute the expression {H_t}, which is still difficult to compute directly with high accuracy. One will also need to bound the somewhat unwieldy expressions {E_1,E_2} by something more manageable. For instance, right now these quantities depend on the continuous variable {x}; it would be preferable to have a quantity that depends only on the parameter {N = \lfloor \sqrt{ \frac{x}{4\pi} + \frac{t}{16} }\rfloor}, as this could be computed numerically for all {x} in the remaining range of interest quite quickly.

As before, any other mathematical discussion related to the project is also welcome here, for instance any summaries of previous discussion that was not covered in this post.