You are currently browsing the category archive for the ‘math.CA’ category.

Suppose is a continuous (but nonlinear) map from one normed vector space to another . The continuity means, roughly speaking, that if are such that is small, then is also small (though the precise notion of “smallness” may depend on or , particularly if is not known to be uniformly continuous). If is known to be differentiable (in, say, the Frechét sense), then we in fact have a linear bound of the form

for some depending on , if is small enough; one can of course make independent of (and drop the smallness condition) if is known instead to be Lipschitz continuous.

In many applications in analysis, one would like more explicit and quantitative bounds that estimate quantities like in terms of quantities like . There are a number of ways to do this. First of all, there is of course the trivial estimate arising from the triangle inequality:

This estimate is usually not very good when and are close together. However, when and are far apart, this estimate can be more or less sharp. For instance, if the magnitude of varies so much from to that is more than (say) twice that of , or vice versa, then (1) is sharp up to a multiplicative constant. Also, if is oscillatory in nature, and the distance between and exceeds the “wavelength” of the oscillation of at (or at ), then one also typically expects (1) to be close to sharp. Conversely, if does not vary much in magnitude from to , and the distance between and is less than the wavelength of any oscillation present in , one expects to be able to improve upon (1).

When is relatively simple in form, one can sometimes proceed simply by substituting . For instance, if is the squaring function in a commutative ring , one has

and thus

or in terms of the original variables one has

If the ring is not commutative, one has to modify this to

Thus, for instance, if are matrices and denotes the operator norm, one sees from the triangle inequality and the sub-multiplicativity of operator norm that

If involves (or various components of ) in several places, one can sometimes get a good estimate by “swapping” with at each of the places in turn, using a telescoping series. For instance, if we again use the squaring function in a non-commutative ring, we have

which for instance leads to a slight improvement of (2):

More generally, for any natural number , one has the identity

in a commutative ring, while in a non-commutative ring one must modify this to

and for matrices one has

Exercise 1If and are unitary matrices, show that the commutator obeys the inequality(

Hint:first control .)

Now suppose (for simplicity) that is a map between Euclidean spaces. If is continuously differentiable, then one can use the fundamental theorem of calculus to write

where is any continuously differentiable path from to . For instance, if one uses the straight line path , one has

In the one-dimensional case , this simplifies to

Among other things, this immediately implies the factor theorem for functions: if is a function for some that vanishes at some point , then factors as the product of and some function . Another basic consequence is that if is uniformly bounded in magnitude by some constant , then is Lipschitz continuous with the same constant .

Applying (4) to the power function , we obtain the identity

which can be compared with (3). Indeed, for and close to , one can use logarithms and Taylor expansion to arrive at the approximation , so (3) behaves a little like a Riemann sum approximation to (5).

Exercise 2For each , let and be random variables taking values in a measurable space , and let be a bounded measurable function.

- (i) (Lindeberg exchange identity) Show that
- (ii) (Knowles-Yin exchange identity) Show that
where is a mixture of and , with uniformly drawn from independently of each other and of the .

- (iii) Discuss the relationship between the identities in parts (i), (ii) with the identities (3), (5).
(The identity in (i) is the starting point for the

Lindeberg exchange methodin probability theory, discussed for instance in this previous post. The identity in (ii) can also be used in the Lindeberg exchange method; the terms in the right-hand side are slightly more symmetric in the indices , which can be a technical advantage in some applications; see this paper of Knowles and Yin for an instance of this.)

Exercise 3If is continuously times differentiable, establish Taylor’s theorem with remainderIf is bounded, conclude that

For real scalar functions , the average value of the continuous real-valued function must be attained at some point in the interval . We thus conclude the mean-value theorem

for some (that can depend on , , and ). This can for instance give a second proof of fact that continuously differentiable functions with bounded derivative are Lipschitz continuous. However it is worth stressing that the mean-value theorem is only available for *real scalar* functions; it is false for instance for complex scalar functions. A basic counterexample is given by the function ; there is no for which . On the other hand, as has magnitude , we still know from (4) that is Lipschitz of constant , and when combined with (1) we obtain the basic bounds

which are already very useful for many applications.

Exercise 4Let be matrices, and let be a non-negative real.

- (i) Establish the Duhamel formula
where denotes the matrix exponential of . (

Hint:Differentiate or in .)- (ii) Establish the
iterated Duhamel formulafor any .

- (iii) Establish the infinitely iterated Duhamel formula
- (iv) If is an matrix depending in a continuously differentiable fashion on , establish the variation formula
where is the adjoint representation applied to , and is the function

(thus for non-zero ), with defined using functional calculus.

We remark that further manipulation of (iv) of the above exercise using the fundamental theorem of calculus eventually leads to the Baker-Campbell-Hausdorff-Dynkin formula, as discussed in this previous blog post.

Exercise 5Let be positive definite matrices, and let be an matrix. Show that there is a unique solution to the Sylvester equationwhich is given by the formula

In the above examples we had applied the fundamental theorem of calculus along linear curves . However, it is sometimes better to use other curves. For instance, the circular arc can be useful, particularly if and are “orthogonal” or “independent” in some sense; a good example of this is the proof by Maurey and Pisier of the gaussian concentration inequality, given in Theorem 8 of this previous blog post. In a similar vein, if one wishes to compare a scalar random variable of mean zero and variance one with a Gaussian random variable of mean zero and variance one, it can be useful to introduce the intermediate random variables (where and are independent); note that these variables have mean zero and variance one, and after coupling them together appropriately they evolve by the Ornstein-Uhlenbeck process, which has many useful properties. For instance, one can use these ideas to establish monotonicity formulae for entropy; see e.g. this paper of Courtade for an example of this and further references. More generally, one can exploit curves that flow according to some geometrically natural ODE or PDE; several examples of this occur famously in Perelman’s proof of the Poincaré conjecture via Ricci flow, discussed for instance in this previous set of lecture notes.

In some cases, it is difficult to compute or the derivative directly, but one can instead proceed by implicit differentiation, or some variant thereof. Consider for instance the matrix inversion map (defined on the open dense subset of matrices consisting of invertible matrices). If one wants to compute for close to , one can write temporarily write , thus

Multiplying both sides on the left by to eliminate the term, and on the right by to eliminate the term, one obtains

and thus on reversing these steps we arrive at the basic identity

For instance, if are matrices, and we consider the resolvents

then we have the *resolvent identity*

as long as does not lie in the spectrum of or (for instance, if , are self-adjoint then one can take to be any strictly complex number). One can iterate this identity to obtain

for any natural number ; in particular, if has operator norm less than one, one has the Neumann series

Similarly, if is a family of invertible matrices that depends in a continuously differentiable fashion on a time variable , then by implicitly differentiating the identity

in using the product rule, we obtain

and hence

(this identity may also be easily derived from (6)). One can then use the fundamental theorem of calculus to obtain variants of (6), for instance by using the curve we arrive at

assuming that the curve stays entirely within the set of invertible matrices. While this identity may seem more complicated than (6), it is more symmetric, which conveys some advantages. For instance, using this identity it is easy to see that if are positive definite with in the sense of positive definite matrices (that is, is positive definite), then . (Try to prove this using (6) instead!)

Exercise 6If is an invertible matrix and are vectors, establish the Sherman-Morrison formulawhenever is a scalar such that is non-zero. (See also this previous blog post for more discussion of these sorts of identities.)

One can use the Cauchy integral formula to extend these identities to other functions of matrices. For instance, if is an entire function, and is a counterclockwise contour that goes around the spectrum of both and , then we have

and similarly

and hence by (7) one has

similarly, if depends on in a continuously differentiable fashion, then

as long as goes around the spectrum of .

Exercise 7If is an matrix depending continuously differentiably on , and is an entire function, establish the tracial chain rule

In a similar vein, given that the logarithm function is the antiderivative of the reciprocal, one can express the matrix logarithm of a positive definite matrix by the fundamental theorem of calculus identity

(with the constant term needed to prevent a logarithmic divergence in the integral). Differentiating, we see that if is a family of positive definite matrices depending continuously on , that

This can be used for instance to show that is a monotone increasing function, in the sense that whenever in the sense of positive definite matrices. One can of course integrate this formula to obtain some formulae for the difference of the logarithm of two positive definite matrices .

To compare the square root of two positive definite matrices is trickier; there are multiple ways to proceed. One approach is to use contour integration as before (but one has to take some care to avoid branch cuts of the square root). Another to express the square root in terms of exponentials via the formula

where is the gamma function; this formula can be verified by first diagonalising to reduce to the scalar case and using the definition of the Gamma function. Then one has

and one can use some of the previous identities to control . This is pretty messy though. A third way to proceed is via implicit differentiation. If for instance is a family of positive definite matrices depending continuously differentiably on , we can differentiate the identity

to obtain

This can for instance be solved using Exercise 5 to obtain

and this can in turn be integrated to obtain a formula for . This is again a rather messy formula, but it does at least demonstrate that the square root is a monotone increasing function on positive definite matrices: implies .

Several of the above identities for matrices can be (carefully) extended to operators on Hilbert spaces provided that they are sufficiently well behaved (in particular, if they have a good functional calculus, and if various spectral hypotheses are obeyed). We will not attempt to do so here, however.

Suppose one has a bounded sequence of real numbers. What kinds of limits can one form from this sequence?

Of course, we have the usual notion of limit , which in this post I will refer to as the *classical limit* to distinguish from the other limits discussed in this post. The classical limit, if it exists, is the unique real number such that for every , one has for all sufficiently large . We say that a sequence is (classically) convergent if its classical limit exists. The classical limit obeys many useful *limit laws* when applied to classically convergent sequences. Firstly, it is linear: if and are classically convergent sequences, then is also classically convergent with

and similarly for any scalar , is classically convergent with

It is also an algebra homomorphism: is also classically convergent with

We also have shift invariance: if is classically convergent, then so is with

and more generally in fact for any injection , is classically convergent with

The classical limit of a sequence is unchanged if one modifies any finite number of elements of the sequence. Finally, we have boundedness: for any classically convergent sequence , one has

One can in fact show without much difficulty that these laws uniquely determine the classical limit functional on convergent sequences.

One would like to extend the classical limit notion to more general bounded sequences; however, when doing so one must give up one or more of the desirable limit laws that were listed above. Consider for instance the sequence . On the one hand, one has for all , so if one wishes to retain the homomorphism property (3), any “limit” of this sequence would have to necessarily square to , that is to say it must equal or . On the other hand, if one wished to retain the shift invariance property (4) as well as the homogeneity property (2), any “limit” of this sequence would have to equal its own negation and thus be zero.

Nevertheless there are a number of useful generalisations and variants of the classical limit concept for non-convergent sequences that obey a significant portion of the above limit laws. For instance, we have the limit superior

and limit inferior

which are well-defined real numbers for any bounded sequence ; they agree with the classical limit when the sequence is convergent, but disagree otherwise. They enjoy the shift-invariance property (4), and the boundedness property (6), but do not in general obey the homomorphism property (3) or the linearity property (1); indeed, we only have the subadditivity property

for the limit superior, and the superadditivity property

for the limit inferior. The homogeneity property (2) is only obeyed by the limits superior and inferior for non-negative ; for negative , one must have the limit inferior on one side of (2) and the limit superior on the other, thus for instance

The limit superior and limit inferior are examples of limit points of the sequence, which can for instance be defined as points that are limits of at least one subsequence of the original sequence. Indeed, the limit superior is always the largest limit point of the sequence, and the limit inferior is always the smallest limit point. However, limit points can be highly non-unique (indeed they are unique if and only if the sequence is classically convergent), and so it is difficult to sensibly interpret most of the usual limit laws in this setting, with the exception of the homogeneity property (2) and the boundedness property (6) that are easy to state for limit points.

Another notion of limit are the Césaro limits

if this limit exists, we say that the sequence is Césaro convergent. If the sequence already has a classical limit, then it also has a Césaro limit that agrees with the classical limit; but there are additional sequences that have a Césaro limit but not a classical one. For instance, the non-classically convergent sequence discussed above is Césaro convergent, with a Césaro limit of . However, there are still bounded sequences that do not have Césaro limit, such as (exercise!). The Césaro limit is linear, bounded, and shift invariant, but not an algebra homomorphism and also does not obey the rearrangement property (5).

Using the Hahn-Banach theorem, one can extend the classical limit functional to *generalised limit functionals* , defined to be bounded linear functionals from the space of bounded real sequences to the real numbers that extend the classical limit functional (defined on the space of convergent sequences) without any increase in the operator norm. (In some of my past writings I made the slight error of referring to these generalised limit functionals as Banach limits, though as discussed below, the latter actually refers to a subclass of generalised limit functionals.) It is not difficult to see that such generalised limit functionals will range between the limit inferior and limit superior. In fact, for any specific sequence and any number lying in the closed interval , there exists at least one generalised limit functional that takes the value when applied to ; for instance, for any number in , there exists a generalised limit functional that assigns that number as the “limit” of the sequence . This claim can be seen by first designing such a limit functional on the vector space spanned by the convergent sequences and by , and then appealing to the Hahn-Banach theorem to extend to all sequences. This observation also gives a necessary and sufficient criterion for a bounded sequence to classically converge to a limit , namely that all generalised limits of this sequence must equal .

Because of the reliance on the Hahn-Banach theorem, the existence of generalised limits requires the axiom of choice (or some weakened version thereof); there are presumably models of set theory without the axiom of choice in which no generalised limits exist, but I do not know of an explicit reference for this.

Generalised limits can obey the shift-invariance property (4) or the algebra homomorphism property (2), but as the above analysis of the sequence shows, they cannot do both. Generalised limits that obey the shift-invariance property (4) are known as Banach limits; one can for instance construct them by applying the Hahn-Banach theorem to the Césaro limit functional; alternatively, if is any generalised limit, then the Césaro-type functional will be a Banach limit. The existence of Banach limits can be viewed as a demonstration of the amenability of the natural numbers (or integers); see this previous blog post for further discussion.

Generalised limits that obey the algebra homomorphism property (2) are known as *ultrafilter limits*. If one is given a generalised limit functional that obeys (2), then for any subset of the natural numbers , the generalised limit must equal its own square (since ) and is thus either or . If one defines to be the collection of all subsets of for which , one can verify that obeys the axioms of a non-principal ultrafilter. Conversely, if is a non-principal ultrafilter, one can define the associated generalised limit of any bounded sequence to be the unique real number such that the sets lie in for all ; one can check that this does indeed give a well-defined generalised limit that obeys (2). Non-principal ultrafilters can be constructed using Zorn’s lemma. In fact, they do not quite need the full strength of the axiom of choice; see the Wikipedia article on the ultrafilter lemma for examples.

We have previously noted that generalised limits of a sequence can converge to any point between the limit inferior and limit superior. The same is not true if one restricts to Banach limits or ultrafilter limits. For instance, by the arguments already given, the only possible Banach limit for the sequence is zero. Meanwhile, an ultrafilter limit must converge to a limit point of the original sequence, but conversely every limit point can be attained by at least one ultrafilter limit; we leave these assertions as an exercise to the interested reader. In particular, a bounded sequence converges classically to a limit if and only if all ultrafilter limits converge to .

There is no generalisation of the classical limit functional to any space that includes non-classically convergent sequences that obeys the subsequence property (5), since any non-classically-convergent sequence will have one subsequence that converges to the limit superior, and another subsequence that converges to the limit inferior, and one of these will have to violate (5) since the limit superior and limit inferior are distinct. So the above limit notions come close to the best generalisations of limit that one can use in practice.

We summarise the above discussion in the following table:

Limit | Always defined | Linear | Shift-invariant | Homomorphism | Constructive |

Classical | No | Yes | Yes | Yes | Yes |

Superior | Yes | No | Yes | No | Yes |

Inferior | Yes | No | Yes | No | Yes |

Césaro | No | Yes | Yes | No | Yes |

Generalised | Yes | Yes | Depends | Depends | No |

Banach | Yes | Yes | Yes | No | No |

Ultrafilter | Yes | Yes | No | Yes | No |

A sequence of complex numbers is said to be quasiperiodic if it is of the form

for some real numbers and continuous function . For instance, linear phases such as (where ) are examples of quasiperiodic sequences; the top order coefficient (modulo ) can be viewed as a “frequency” of the integers, and an element of the Pontryagin dual of the integers. Any periodic sequence is also quasiperiodic (taking and to be the reciprocal of the period). A sequence is said to be almost periodic if it is the uniform limit of quasiperiodic sequences. For instance any Fourier series of the form

with real numbers and an absolutely summable sequence of complex coefficients, will be almost periodic.

These sequences arise in various “complexity one” problems in arithmetic combinatorics and ergodic theory. For instance, if is a measure-preserving system – a probability space equipped with a measure-preserving shift, and are bounded measurable functions, then the correlation sequence

can be shown to be an almost periodic sequence, plus an error term which is “null” in the sense that it has vanishing uniform density:

This can be established in a number of ways, for instance by writing as the Fourier coefficients of the spectral measure of the shift with respect to the functions , and then decomposing that measure into pure point and continuous components.

In the last two decades or so, it has become clear that there are natural higher order versions of these concepts, in which linear polynomials such as are replaced with higher degree counterparts. The most obvious candidates for these counterparts would be the polynomials , but this turns out to not be a complete set of higher degree objects needed for the theory. Instead, the higher order versions of quasiperiodic and almost periodic sequences are now known as *basic nilsequences* and *nilsequences* respectively, while the higher order version of a linear phase is a *nilcharacter*; each nilcharacter then has a *symbol* that is a higher order generalisation of the concept of a frequency (and the collection of all symbols forms a group that can be viewed as a higher order version of the Pontryagin dual of ). The theory of these objects is spread out in the literature across a number of papers; in particular, the theory of nilcharacters is mostly developed in Appendix E of this 116-page paper of Ben Green, Tamar Ziegler, and myself, and is furthermore written using nonstandard analysis and treating the more general setting of higher dimensional sequences. I therefore decided to rewrite some of that material in this blog post, in the simpler context of the qualitative asymptotic theory of one-dimensional nilsequences and nilcharacters rather than the quantitative single-scale theory that is needed for combinatorial applications (and which necessitated the use of nonstandard analysis in the previous paper).

For technical reasons (having to do with the non-trivial topological structure on nilmanifolds), it will be convenient to work with vector-valued sequences, that take values in a finite-dimensional complex vector space rather than in . By doing so, the space of sequences is now, technically, no longer a ring, as the operations of addition and multiplication on vector-valued sequences become ill-defined. However, we can still take complex conjugates of a sequence, and add sequences taking values in the same vector space , and for sequences taking values in different vector spaces , , we may utilise the tensor product , which we will normalise by defining

This product is associative and bilinear, and also commutative up to permutation of the indices. It also interacts well with the Hermitian norm

since we have .

The traditional definition of a basic nilsequence (as defined for instance by Bergelson, Host, and Kra) is as follows:

Definition 1 (Basic nilsequence, first definition)Anilmanifold of step at mostis a quotient , where is a connected, simply connected nilpotent Lie group of step at most (thus, all -fold commutators vanish) and is a discrete cocompact lattice in . Abasic nilsequence of degree at mostis a sequence of the form , where , , and is a continuous function.

For instance, it is not difficult using this definition to show that a sequence is a basic nilsequence of degree at most if and only if it is quasiperiodic. The requirement that be simply connected can be easily removed if desired by passing to a universal cover, but it is technically convenient to assume it (among other things, it allows for a well-defined logarithm map that obeys the Baker-Campbell-Hausdorff formula). When one wishes to perform a more quantitative analysis of nilsequences (particularly when working on a “single scale”. sich as on a single long interval ), it is common to impose additional regularity conditions on the function , such as Lipschitz continuity or smoothness, but ordinary continuity will suffice for the qualitative discussion in this blog post.

Nowadays, and particularly when one needs to understand the “single-scale” equidistribution properties of nilsequences, it is more convenient (as is for instance done in this ICM paper of Green) to use an alternate definition of a nilsequence as follows.

Definition 2Let . Afiltered group of degree at mostis a group together with a sequence of subgroups with and for . Apolynomial sequenceinto a filtered group is a function such that for all and , where is the difference operator. Afiltered nilmanifold of degree at mostis a quotient , where is a filtered group of degree at most such that and all of the subgroups are connected, simply connected nilpotent filtered Lie group, and is a discrete cocompact subgroup of such that is a discrete cocompact subgroup of . Abasic nilsequence of degree at mostis a sequence of the form , where is a polynomial sequence, is a filtered nilmanifold of degree at most , and is a continuous function which is -automorphic, in the sense that for all and .

One can easily identify a -automorphic function on with a function on , but there are some (very minor) advantages to working on the group instead of the quotient , as it becomes slightly easier to modify the automorphy group when needed. (But because the action of on is free, one can pass from -automorphic functions on to functions on with very little difficulty.) The main reason to work with polynomial sequences rather than geometric progressions is that they form a group, a fact essentially established by by Lazard and Leibman; see Corollary B.4 of this paper of Green, Ziegler, and myself for a proof in the filtered group setting.

It is easy to see that any sequence that is a basic nilsequence of degree at most in the sense of the first definition, is also a basic nilsequence of degree at most in the second definition, since a nilmanifold of degree at most can be filtered using the lower central series, and any linear sequence will be a polynomial sequence with respect to that filtration. The converse implication is a little trickier, but still not too hard to show: see Appendix C of this paper of Ben Green, Tamar Ziegler, and myself. There are two key examples of basic nilsequences to keep in mind. The first are the polynomially quasiperiodic sequences

where are polynomials of degree at most , and is a -automorphic (i.e., -periodic) continuous function. The map defined by is a polynomial map of degree at most , if one filters by defining to equal when , and for . The torus then becomes a filtered nilmanifold of degree at most , and is thus a basic nilsequence of degree at most as per the second definition. It is also possible explicitly describe as a basic nilsequence of degree at most as per the first definition, for instance (in the case) by taking to be the space of upper triangular unipotent real matrices, and the subgroup with integer coefficients; we leave the details to the interested reader.

The other key example is a sequence of the form

where are real numbers, denotes the fractional part of , and and is a -automorphic continuous function that vanishes in a neighbourhood of . To describe this as a nilsequence, we use the nilpotent connected, simply connected degree , Heisenberg group

with the lower central series filtration , , and for , to be the discrete compact subgroup

to be the polynomial sequence

and to be the -automorphic function

one easily verifies that this function is indeed -automorphic, and it is continuous thanks to the vanishing properties of . Also we have , so is a basic nilsequence of degree at most . One can concoct similar examples with replaced by other “bracket polynomials” of ; for instance

will be a basic nilsequence if now vanishes in a neighbourhood of rather than . See this paper of Bergelson and Leibman for more discussion of bracket polynomials (also known as generalised polynomials) and their relationship to nilsequences.

A *nilsequence of degree at most * is defined to be a sequence that is the uniform limit of basic nilsequences of degree at most . Thus for instance a sequence is a nilsequence of degree at most if and only if it is almost periodic, while a sequence is a nilsequence of degree at most if and only if it is constant. Such objects arise in higher order recurrence: for instance, if are integers, is a measure-preserving system, and , then it was shown by Leibman that the sequence

is equal to a nilsequence of degree at most , plus a null sequence. (The special case when the measure-preserving system was ergodic and for was previously established by Bergelson, Host, and Kra.) Nilsequences also arise in the inverse theory of the Gowers uniformity norms, as discussed for instance in this previous post.

It is easy to see that a sequence is a basic nilsequence of degree at most if and only if each of its components are. The scalar basic nilsequences of degree are easily seen to form a -algebra (that is to say, they are a complex vector space closed under pointwise multiplication and complex conjugation), which implies similarly that vector-valued basic nilsequences of degree at most form a complex vector space closed under complex conjugation for each , and that the tensor product of any two basic nilsequences of degree at most is another basic nilsequence of degree at most . Similarly with “basic nilsequence” replaced by “nilsequence” throughout.

Now we turn to the notion of a nilcharacter, as defined in this paper of Ben Green, Tamar Ziegler, and myself:

Definition 3 (Nilcharacters)Let . Asub-nilcharacter of degreeis a basic nilsequence of degree at most , such that obeys the additional modulation propertyfor all and , where is a continuous homomorphism . (Note from (1) and -automorphy that unless vanishes identically, must map to , thus without loss of generality one can view as an element of the Pontryagial dual of the torus .) If in addition one has for all , we call a

nilcharacterof degree .

In the degree one case , the only sub-nilcharacters are of the form for some vector and , and this is a nilcharacter if is a unit vector. Similarly, in higher degree, any sequence of the form , where is a vector and is a polynomial of degree at most , is a sub-nilcharacter of degree , and a character if is a unit vector. A nilsequence of degree at most is automatically a sub-nilcharacter of degree , and a nilcharacter if it is of magnitude . A further example of a nilcharacter is provided by the two-dimensional sequence defined by

where are continuous, -automorphic functions that vanish on a neighbourhood of and respectively, and which form a partition of unity in the sense that

for all . Note that one needs both and to be not identically zero in order for all these conditions to be satisfied; it turns out (for topological reasons) that there is no scalar nilcharacter that is “equivalent” to this nilcharacter in a sense to be defined shortly. In some literature, one works exclusively with sub-nilcharacters rather than nilcharacters, however the former space contains zero-divisors, which is a little annoying technically. Nevertheless, both nilcharacters and sub-nilcharacters generate the same set of “symbols” as we shall see later.

We claim that every degree sub-nilcharacter can be expressed in the form , where is a degree nilcharacter, and is a linear transformation. Indeed, by scaling we may assume where uniformly. Using partitions of unity, one can find further functions also obeying (1) for the same character such that is non-zero; by dividing out the by the square root of this quantity, and then multiplying by , we may assume that

and then

becomes a degree nilcharacter that contains amongst its components, giving the claim.

As we shall show below, nilsequences can be approximated uniformly by linear combinations of nilcharacters, in much the same way that quasiperiodic or almost periodic sequences can be approximated uniformly by linear combinations of linear phases. In particular, nilcharacters can be used as “obstructions to uniformity” in the sense of the inverse theory of the Gowers uniformity norms.

The space of degree nilcharacters forms a semigroup under tensor product, with the constant sequence as the identity. One can upgrade this semigroup to an abelian group by quotienting nilcharacters out by equivalence:

Definition 4Let . We say that two degree nilcharacters , areequivalentif is equal (as a sequence) to a basic nilsequence of degree at most . (We will later show that this is indeed an equivalence relation.) The equivalence class of such a nilcharacter will be called thesymbolof that nilcharacter (in analogy to the symbol of a differential or pseudodifferential operator), and the collection of such symbols will be denoted .

As we shall see below the fold, has the structure of an abelian group, and enjoys some nice “symbol calculus” properties; also, one can view symbols as precisely describing the obstruction to equidistribution for nilsequences. For , the group is isomorphic to the Ponytragin dual of the integers, and for should be viewed as higher order generalisations of this Pontryagin dual. In principle, this group can be explicitly described for all , but the theory rapidly gets complicated as increases (much as the classification of nilpotent Lie groups or Lie algebras of step rapidly gets complicated even for medium-sized such as or ). We will give an explicit description of the case here. There is however one nice (and non-trivial) feature of for – it is not just an abelian group, but is in fact a vector space over the rationals !

Just a short post to note that Norwegian Academy of Science and Letters has just announced that the 2017 Abel prize has been awarded to Yves Meyer, “for his pivotal role in the development of the mathematical theory of wavelets”. The actual prize ceremony will be at Oslo in May.

I am actually in Oslo myself currently, having just presented Meyer’s work at the announcement ceremony (and also having written a brief description of some of his work). The Abel prize has a somewhat unintuitive (and occasionally misunderstood) arrangement in which the presenter of the work of the prize is selected independently of the winner of the prize (I think in part so that the choice of presenter gives no clues as to the identity of the laureate). In particular, like other presenters before me (which in recent years have included Timothy Gowers, Jordan Ellenberg, and Alex Bellos), I agreed to present the laureate’s work before knowing who the laureate was! But in this case the task was very easy, because Meyer’s areas of (both pure and applied) harmonic analysis and PDE fell rather squarely within my own area of expertise. (I had previously written about some other work of Meyer in this blog post.) Indeed I had learned about Meyer’s wavelet constructions as a graduate student while taking a course from Ingrid Daubechies. Daubechies also made extremely important contributions to the theory of wavelets, but due to a conflict of interest (as per the guidelines for the prize committee) arising from Daubechies’ presidency of the International Mathematical Union (which nominates the majority of the members of the Abel prize committee, who then serve for two years) from 2011 to 2014 (and her continuing service *ex officio* on the IMU executive committee from 2015 to 2018), she will not be eligible for the prize until 2021 at the earliest, and so I do not think this prize should be necessarily construed as a judgement on the relative contributions of Meyer and Daubechies to this field. (In any case I fully agree with the Abel prize committee’s citation of Meyer’s pivotal role in the development of the theory of wavelets.)

*[Update, Mar 28: link to prize committee guidelines and clarification of the extent of Daubechies’ conflict of interest added. -T]*

In the previous set of notes we saw that functions that were holomorphic on an open set enjoyed a large number of useful properties, particularly if the domain was simply connected. In many situations, though, we need to consider functions that are only holomorphic (or even well-defined) on *most* of a domain , thus they are actually functions outside of some small *singular set* inside . (In this set of notes we only consider *interior* singularities; one can also discuss singular behaviour at the boundary of , but this is a whole separate topic and will not be pursued here.) Since we have only defined the notion of holomorphicity on open sets, we will require the singular sets to be closed, so that the domain on which remains holomorphic is still open. A typical class of examples are the functions of the form that were already encountered in the Cauchy integral formula; if is holomorphic and , such a function would be holomorphic save for a singularity at . Another basic class of examples are the rational functions , which are holomorphic outside of the zeroes of the denominator .

Singularities come in varying levels of “badness” in complex analysis. The least harmful type of singularity is the removable singularity – a point which is an isolated singularity (i.e., an isolated point of the singular set ) where the function is undefined, but for which one can extend the function across the singularity in such a fashion that the function becomes holomorphic in a neighbourhood of the singularity. A typical example is that of the complex sinc function , which has a removable singularity at the origin , which can be removed by declaring the sinc function to equal at . The detection of isolated removable singularities can be accomplished by Riemann’s theorem on removable singularities (Exercise 35 from Notes 3): if a holomorphic function is bounded near an isolated singularity , then the singularity at may be removed.

After removable singularities, the mildest form of singularity one can encounter is that of a pole – an isolated singularity such that can be factored as for some (known as the *order* of the pole), where has a removable singularity at (and is non-zero at once the singularity is removed). Such functions have already made a frequent appearance in previous notes, particularly the case of *simple poles* when . The behaviour near of function with a pole of order is well understood: for instance, goes to infinity as approaches (at a rate comparable to ). These singularities are not, strictly speaking, removable; but if one compactifies the range of the holomorphic function to a slightly larger space known as the Riemann sphere, then the singularity can be removed. In particular, functions which only have isolated singularities that are either poles or removable can be extended to holomorphic functions to the Riemann sphere. Such functions are known as meromorphic functions, and are nearly as well-behaved as holomorphic functions in many ways. In fact, in one key respect, the family of meromorphic functions is better: the meromorphic functions on turn out to form a field, in particular the quotient of two meromorphic functions is again meromorphic (if the denominator is not identically zero).

Unfortunately, there are isolated singularities that are neither removable or poles, and are known as essential singularities. A typical example is the function , which turns out to have an essential singularity at . The behaviour of such essential singularities is quite wild; we will show here the Casorati-Weierstrass theorem, which shows that the image of near the essential singularity is dense in the complex plane, as well as the more difficult great Picard theorem which asserts that in fact the image can omit at most one point in the complex plane. Nevertheless, around any isolated singularity (even the essential ones) , it is possible to expand as a variant of a Taylor series known as a Laurent series . The coefficient of this series is particularly important for contour integration purposes, and is known as the residue of at the isolated singularity . These residues play a central role in a common generalisation of Cauchy’s theorem and the Cauchy integral formula known as the residue theorem, which is a particularly useful tool for computing (or at least transforming) contour integrals of meromorphic functions, and has proven to be a particularly popular technique to use in analytic number theory. Within complex analysis, one important consequence of the residue theorem is the argument principle, which gives a topological (and analytical) way to control the zeroes and poles of a meromorphic function.

Finally, there are the non-isolated singularities. Little can be said about these singularities in general (for instance, the residue theorem does not directly apply in the presence of such singularities), but certain types of non-isolated singularities are still relatively easy to understand. One particularly common example of such non-isolated singularity arises when trying to invert a non-injective function, such as the complex exponential or a power function , leading to branches of multivalued functions such as the complex logarithm or the root function respectively. Such branches will typically have a non-isolated singularity along a branch cut; this branch cut can be moved around the complex domain by switching from one branch to another, but usually cannot be eliminated entirely, unless one is willing to lift up the domain to a more general type of domain known as a Riemann surface. As such, one can view branch cuts as being an “artificial” form of singularity, being an artefact of a choice of local coordinates of a Riemann surface, rather than reflecting any intrinsic singularity of the function itself. The further study of Riemann surfaces is an important topic in complex analysis (as well as the related fields of complex geometry and algebraic geometry), but unfortunately this topic will probably be postponed to the next course in this sequence (which I will not be teaching).

At the core of almost any undergraduate real analysis course are the concepts of differentiation and integration, with these two basic operations being tied together by the fundamental theorem of calculus (and its higher dimensional generalisations, such as Stokes’ theorem). Similarly, the notion of the complex derivative and the complex line integral (that is to say, the contour integral) lie at the core of any introductory complex analysis course. Once again, they are tied to each other by the fundamental theorem of calculus; but in the complex case there is a further variant of the fundamental theorem, namely Cauchy’s theorem, which endows complex differentiable functions with many important and surprising properties that are often not shared by their real differentiable counterparts. We will give complex differentiable functions another name to emphasise this extra structure, by referring to such functions as holomorphic functions. (This term is also useful to distinguish these functions from the slightly less well-behaved meromorphic functions, which we will discuss in later notes.)

In this set of notes we will focus solely on the concept of complex differentiation, deferring the discussion of contour integration to the next set of notes. To begin with, the theory of complex differentiation will greatly resemble the theory of real differentiation; the definitions look almost identical, and well known laws of differential calculus such as the product rule, quotient rule, and chain rule carry over *verbatim* to the complex setting, and the theory of complex power series is similarly almost identical to the theory of real power series. However, when one compares the “one-dimensional” differentiation theory of the complex numbers with the “two-dimensional” differentiation theory of two real variables, we find that the dimensional discrepancy forces complex differentiable functions to obey a real-variable constraint, namely the Cauchy-Riemann equations. These equations make complex differentiable functions substantially more “rigid” than their real-variable counterparts; they imply for instance that the imaginary part of a complex differentiable function is essentially determined (up to constants) by the real part, and vice versa. Furthermore, even when considered separately, the real and imaginary components of complex differentiable functions are forced to obey the strong constraint of being *harmonic*. In later notes we will see these constraints manifest themselves in integral form, particularly through Cauchy’s theorem and the closely related Cauchy integral formula.

Despite all the constraints that holomorphic functions have to obey, a surprisingly large number of the functions of a complex variable that one actually encounters in applications turn out to be holomorphic. For instance, any polynomial with complex coefficients will be holomorphic, as will the complex exponential . From this and the laws of differential calculus one can then generate many further holomorphic functions. Also, as we will show presently, complex power series will automatically be holomorphic inside their disk of convergence. On the other hand, there are certainly basic complex functions of interest that are *not* holomorphic, such as the complex conjugation function , the absolute value function , or the real and imaginary part functions . We will also encounter functions that are only holomorphic at some portions of the complex plane, but not on others; for instance, rational functions will be holomorphic except at those few points where the denominator vanishes, and are prime examples of the *meromorphic* functions mentioned previously. Later on we will also consider functions such as branches of the logarithm or square root, which will be holomorphic outside of a *branch cut* corresponding to the choice of branch. It is a basic but important skill in complex analysis to be able to quickly recognise which functions are holomorphic and which ones are not, as many of useful theorems available to the former (such as Cauchy’s theorem) break down spectacularly for the latter. Indeed, in my experience, one of the most common “rookie errors” that beginning complex analysis students make is the error of attempting to apply a theorem about holomorphic functions to a function that is not at all holomorphic. This stands in contrast to the situation in real analysis, in which one can often obtain correct conclusions by formally applying the laws of differential or integral calculus to functions that might not actually be differentiable or integrable in a classical sense. (This latter phenomenon, by the way, can be largely explained using the theory of distributions, as covered for instance in this previous post, but this is beyond the scope of the current course.)

Remark 1In this set of notes it will be convenient to impose some unnecessarily generous regularity hypotheses (e.g. continuous second differentiability) on the holomorphic functions one is studying in order to make the proofs simpler. In later notes, we will discover that these hypotheses are in fact redundant, due to the phenomenon ofelliptic regularitythat ensures that holomorphic functions are automatically smooth.

In this blog post, I would like to specialise the arguments of Bourgain, Demeter, and Guth from the previous post to the two-dimensional case of the Vinogradov main conjecture, namely

Theorem 1 (Two-dimensional Vinogradov main conjecture)One hasas .

This particular case of the main conjecture has a classical proof using some elementary number theory. Indeed, the left-hand side can be viewed as the number of solutions to the system of equations

with . These two equations can combine (using the algebraic identity applied to ) to imply the further equation

which, when combined with the divisor bound, shows that each is associated to choices of excluding diagonal cases when two of the collide, and this easily yields Theorem 1. However, the Bourgain-Demeter-Guth argument (which, in the two dimensional case, is essentially contained in a previous paper of Bourgain and Demeter) does not require the divisor bound, and extends for instance to the the more general case where ranges in a -separated set of reals between to .

In this special case, the Bourgain-Demeter argument simplifies, as the lower dimensional inductive hypothesis becomes a simple almost orthogonality claim, and the multilinear Kakeya estimate needed is also easy (collapsing to just Fubini’s theorem). Also one can work entirely in the context of the Vinogradov main conjecture, and not turn to the increased generality of decoupling inequalities (though this additional generality is convenient in higher dimensions). As such, I am presenting this special case as an introduction to the Bourgain-Demeter-Guth machinery.

We now give the specialisation of the Bourgain-Demeter argument to Theorem 1. It will suffice to establish the bound

for all , (where we keep fixed and send to infinity), as the bound then follows by combining the above bound with the trivial bound . Accordingly, for any and , we let denote the claim that

as . Clearly, for any fixed , holds for some large , and it will suffice to establish

Proposition 2Let , and let be such that holds. Then there exists (depending continuously on ) such that holds.

Indeed, this proposition shows that for , the infimum of the for which holds is zero.

We prove the proposition below the fold, using a simplified form of the methods discussed in the previous blog post. To simplify the exposition we will be a bit cavalier with the uncertainty principle, for instance by essentially ignoring the tails of rapidly decreasing functions.

Given any finite collection of elements in some Banach space , the triangle inequality tells us that

However, when the all “oscillate in different ways”, one expects to improve substantially upon the triangle inequality. For instance, if is a Hilbert space and the are mutually orthogonal, we have the Pythagorean theorem

For sake of comparison, from the triangle inequality and Cauchy-Schwarz one has the general inequality

for any finite collection in any Banach space , where denotes the cardinality of . Thus orthogonality in a Hilbert space yields “square root cancellation”, saving a factor of or so over the trivial bound coming from the triangle inequality.

More generally, let us somewhat informally say that a collection exhibits *decoupling in * if one has the Pythagorean-like inequality

for any , thus one obtains almost the full square root cancellation in the norm. The theory of *almost orthogonality* can then be viewed as the theory of decoupling in Hilbert spaces such as . In spaces for one usually does not expect this sort of decoupling; for instance, if the are disjointly supported one has

and the right-hand side can be much larger than when . At the opposite extreme, one usually does not expect to get decoupling in , since one could conceivably align the to all attain a maximum magnitude at the same location with the same phase, at which point the triangle inequality in becomes sharp.

However, in some cases one can get decoupling for certain . For instance, suppose we are in , and that are *bi-orthogonal* in the sense that the products for are pairwise orthogonal in . Then we have

giving decoupling in . (Similarly if each of the is orthogonal to all but of the other .) A similar argument also gives decoupling when one has tri-orthogonality (with the mostly orthogonal to each other), and so forth. As a slight variant, Khintchine’s inequality also indicates that decoupling should occur for any fixed if one multiplies each of the by an independent random sign .

In recent years, Bourgain and Demeter have been establishing *decoupling theorems* in spaces for various key exponents of , in the “restriction theory” setting in which the are Fourier transforms of measures supported on different portions of a given surface or curve; this builds upon the earlier decoupling theorems of Wolff. In a recent paper with Guth, they established the following decoupling theorem for the curve parameterised by the polynomial curve

For any ball in , let denote the weight

which should be viewed as a smoothed out version of the indicator function of . In particular, the space can be viewed as a smoothed out version of the space . For future reference we observe a fundamental self-similarity of the curve : any arc in this curve, with a compact interval, is affinely equivalent to the standard arc .

Theorem 1 (Decoupling theorem)Let . Subdivide the unit interval into equal subintervals of length , and for each such , let be the Fourier transformof a finite Borel measure on the arc , where . Then the exhibit decoupling in for any ball of radius .

Orthogonality gives the case of this theorem. The bi-orthogonality type arguments sketched earlier only give decoupling in up to the range ; the point here is that we can now get a much larger value of . The case of this theorem was previously established by Bourgain and Demeter (who obtained in fact an analogous theorem for any curved hypersurface). The exponent (and the radius ) is best possible, as can be seen by the following basic example. If

where is a bump function adapted to , then standard Fourier-analytic computations show that will be comparable to on a rectangular box of dimensions (and thus volume ) centred at the origin, and exhibit decay away from this box, with comparable to

On the other hand, is comparable to on a ball of radius comparable to centred at the origin, so is , which is just barely consistent with decoupling. This calculation shows that decoupling will fail if is replaced by any larger exponent, and also if the radius of the ball is reduced to be significantly smaller than .

This theorem has the following consequence of importance in analytic number theory:

Corollary 2 (Vinogradov main conjecture)Let be integers, and let . Then

*Proof:* By the Hölder inequality (and the trivial bound of for the exponential sum), it suffices to treat the critical case , that is to say to show that

We can rescale this as

As the integrand is periodic along the lattice , this is equivalent to

The left-hand side may be bounded by , where and . Since

the claim now follows from the decoupling theorem and a brief calculation.

Using the Plancherel formula, one may equivalently (when is an integer) write the Vinogradov main conjecture in terms of solutions to the system of equations

but we will not use this formulation here.

A history of the Vinogradov main conjecture may be found in this survey of Wooley; prior to the Bourgain-Demeter-Guth theorem, the conjecture was solved completely for , or for and either below or above , with the bulk of recent progress coming from the *efficient congruencing* technique of Wooley. It has numerous applications to exponential sums, Waring’s problem, and the zeta function; to give just one application, the main conjecture implies the predicted asymptotic for the number of ways to express a large number as the sum of fifth powers (the previous best result required fifth powers). The Bourgain-Demeter-Guth approach to the Vinogradov main conjecture, based on decoupling, is ostensibly very different from the efficient congruencing technique, which relies heavily on the arithmetic structure of the program, but it appears (as I have been told from second-hand sources) that the two methods are actually closely related, with the former being a sort of “Archimedean” version of the latter (with the intervals in the decoupling theorem being analogous to congruence classes in the efficient congruencing method); hopefully there will be some future work making this connection more precise. One advantage of the decoupling approach is that it generalises to non-arithmetic settings in which the set that is drawn from is replaced by some other similarly separated set of real numbers. (A random thought – could this allow the Vinogradov-Korobov bounds on the zeta function to extend to Beurling zeta functions?)

Below the fold we sketch the Bourgain-Demeter-Guth argument proving Theorem 1.

I thank Jean Bourgain and Andrew Granville for helpful discussions.

In the previous set of notes we established the central limit theorem, which we formulate here as follows:

Theorem 1 (Central limit theorem)Let be iid copies of a real random variable of mean and variance , and write . Then, for any fixed , we have

This is however not the end of the matter; there are many variants, refinements, and generalisations of the central limit theorem, and the purpose of this set of notes is to present a small sample of these variants.

First of all, the above theorem does not quantify the *rate* of convergence in (1). We have already addressed this issue to some extent with the Berry-Esséen theorem, which roughly speaking gives a convergence rate of uniformly in if we assume that has finite third moment. However there are still some quantitative versions of (1) which are not addressed by the Berry-Esséen theorem. For instance one may be interested in bounding the *large deviation probabilities*

in the setting where grows with . Chebyshev’s inequality gives an upper bound of for this quantity, but one can often do much better than this in practice. For instance, the central limit theorem (1) suggests that this probability should be bounded by something like ; however, this theorem only kicks in when is very large compared with . For instance, if one uses the Berry-Esséen theorem, one would need as large as or so to reach the desired bound of , even under the assumption of finite third moment. Basically, the issue is that convergence-in-distribution results, such as the central limit theorem, only really control the *typical* behaviour of statistics in ; they are much less effective at controlling the very rare *outlier* events in which the statistic strays far from its typical behaviour. Fortunately, there are large deviation inequalities (or *concentration of measure inequalities*) that do provide exponential type bounds for quantities such as (2), which are valid for both small and large values of . A basic example of this is the Chernoff bound that made an appearance in Exercise 47 of Notes 4; here we give some further basic inequalities of this type, including versions of the Bennett and Hoeffding inequalities.

In the other direction, we can also look at the fine scale behaviour of the sums by trying to control probabilities such as

where is now bounded (but can grow with ). The central limit theorem predicts that this quantity should be roughly , but even if one is able to invoke the Berry-Esséen theorem, one cannot quite see this main term because it is dominated by the error term in Berry-Esséen. There is good reason for this: if for instance takes integer values, then also takes integer values, and can vanish when is less than and is slightly larger than an integer. However, this turns out to essentially be the only obstruction; if does not lie in a lattice such as , then we can establish a *local limit theorem* controlling (3), and when does take values in a lattice like , there is a discrete local limit theorem that controls probabilities such as . Both of these limit theorems will be proven by the Fourier-analytic method used in the previous set of notes.

We also discuss other limit theorems in which the limiting distribution is something other than the normal distribution. Perhaps the most common example of these theorems is the Poisson limit theorems, in which one sums a large number of indicator variables (or approximate indicator variables), each of which is rarely non-zero, but which collectively add up to a random variable of medium-sized mean. In this case, it turns out that the limiting distribution should be a Poisson random variable; this again is an easy application of the Fourier method. Finally, we briefly discuss limit theorems for other stable laws than the normal distribution, which are suitable for summing random variables of infinite variance, such as the Cauchy distribution.

Finally, we mention a very important class of generalisations to the CLT (and to the variants of the CLT discussed in this post), in which the hypothesis of joint independence between the variables is relaxed, for instance one could assume only that the form a martingale. Many (though not all) of the proofs of the CLT extend to these more general settings, and this turns out to be important for many applications in which one does not expect joint independence. However, we will not discuss these generalisations in this course, as they are better suited for subsequent courses in this series when the theory of martingales, conditional expectation, and related tools are developed.

Let be iid copies of an absolutely integrable real scalar random variable , and form the partial sums . As we saw in the last set of notes, the law of large numbers ensures that the empirical averages converge (both in probability and almost surely) to a deterministic limit, namely the mean of the reference variable . Furthermore, under some additional moment hypotheses on the underlying variable , we can obtain *square root cancellation* for the fluctuation of the empirical average from the mean. To simplify the calculations, let us first restrict to the case of mean zero and variance one, thus

and

Then, as computed in previous notes, the normalised fluctuation also has mean zero and variance one:

This and Chebyshev’s inequality already indicates that the “typical” size of is , thus for instance goes to zero in probability for any that goes to infinity as . If we also have a finite fourth moment , then the calculations of the previous notes also give a fourth moment estimate

From this and the Paley-Zygmund inequality (Exercise 42 of Notes 1) we also get some lower bound for of the form

for some absolute constant and for sufficiently large; this indicates in particular that does not converge in any reasonable sense to something finite for any that goes to infinity.

The question remains as to what happens to the ratio itself, without multiplying or dividing by any factor . A first guess would be that these ratios converge in probability or almost surely, but this is unfortunately not the case:

Proposition 1Let be iid copies of an absolutely integrable real scalar random variable with mean zero, variance one, and finite fourth moment, and write . Then the random variables do not converge in probability or almost surely to any limit, and neither does any subsequence of these random variables.

*Proof:* Suppose for contradiction that some sequence converged in probability or almost surely to a limit . By passing to a further subsequence we may assume that the convergence is in the almost sure sense. Since all of the have mean zero, variance one, and bounded fourth moment, Theorem 24 of Notes 1 implies that the limit also has mean zero and variance one. On the other hand, is a tail random variable and is thus almost surely constant by the Kolmogorov zero-one law from Notes 3. Since constants have variance zero, we obtain the required contradiction.

Nevertheless there is an important limit for the ratio , which requires one to replace the notions of convergence in probability or almost sure convergence by the weaker concept of convergence in distribution.

Definition 2 (Vague convergence and convergence in distribution)Let be a locally compact Hausdorff topological space with the Borel -algebra. A sequence of finite measures on is said to converge vaguely to another finite measure if one hasas for all continuous compactly supported functions . (Vague convergence is also known as

weak convergence, although strictly speaking the terminology weak-* convergence would be more accurate.) A sequence of random variables taking values in is said toconverge in distribution(orconverge weaklyorconverge in law) to another random variable if the distributions converge vaguely to the distribution , or equivalently ifas for all continuous compactly supported functions .

One could in principle try to extend this definition beyond the locally compact Hausdorff setting, but certain pathologies can occur when doing so (e.g. failure of the Riesz representation theorem), and we will never need to consider vague convergence in spaces that are not locally compact Hausdorff, so we restrict to this setting for simplicity.

Note that the notion of convergence in distribution depends only on the distribution of the random variables involved. One consequence of this is that convergence in distribution does not produce unique limits: if converges in distribution to , and has the same distribution as , then also converges in distribution to . However, limits are unique up to equivalence in distribution (this is a consequence of the Riesz representation theorem, discussed for instance in this blog post). As a consequence of the insensitivity of convergence in distribution to equivalence in distribution, we may also legitimately talk about convergence of distribution of a sequence of random variables to another random variable even when all the random variables and involved are being modeled by different probability spaces (e.g. each is modeled by , and is modeled by , with no coupling presumed between these spaces). This is in contrast to the stronger notions of convergence in probability or almost sure convergence, which require all the random variables to be modeled by a common probability space. Also, by an abuse of notation, we can say that a sequence of random variables converges in distribution to a probability measure , when converges vaguely to . Thus we can talk about a sequence of random variables converging in distribution to a uniform distribution, a gaussian distribution, etc..

From the dominated convergence theorem (available for both convergence in probability and almost sure convergence) we see that convergence in probability or almost sure convergence implies convergence in distribution. The converse is not true, due to the insensitivity of convergence in distribution to equivalence in distribution; for instance, if are iid copies of a non-deterministic scalar random variable , then the trivially converge in distribution to , but will not converge in probability or almost surely (as one can see from the zero-one law). However, there are some partial converses that relate convergence in distribution to convergence in probability; see Exercise 10 below.

Remark 3The notion of convergence in distribution is somewhat similar to the notion of convergence in the sense of distributions that arises in distribution theory (discussed for instance in this previous blog post), however strictly speaking the two notions of convergence are distinct and should not be confused with each other, despite the very similar names.

The notion of convergence in distribution simplifies in the case of real scalar random variables:

Proposition 4Let be a sequence of scalar random variables, and let be another scalar random variable. Then the following are equivalent:

- (i) converges in distribution to .
- (ii) converges to for each continuity point of (i.e. for all real numbers at which is continuous). Here is the cumulative distribution function of .

*Proof:* First suppose that converges in distribution to , and is continuous at . For any , one can find a such that

for every . One can also find an larger than such that and . Thus

and

Let be a continuous function supported on that equals on . Then by the above discussion we have

and hence

for large enough . In particular

A similar argument, replacing with a continuous function supported on that equals on gives

for large enough. Putting the two estimates together gives

for large enough; sending , we obtain the claim.

Conversely, suppose that converges to at every continuity point of . Let be a continuous compactly supported function, then it is uniformly continuous. As is monotone increasing, it can only have countably many points of discontinuity. From these two facts one can find, for any , a simple function for some that are points of continuity of , and real numbers , such that for all . Thus

Similarly for replaced by . Subtracting and taking limit superior, we conclude that

and on sending , we obtain that converges in distribution to as claimed.

The restriction to continuity points of is necessary. Consider for instance the deterministic random variables , then converges almost surely (and hence in distribution) to , but does not converge to .

Example 5For any natural number , let be a discrete random variable drawn uniformly from the finite set , and let be the continuous random variable drawn uniformly from . Then converges in distribution to . Thus we see that a continuous random variable can emerge as the limit of discrete random variables.

Example 6For any natural number , let be a continuous random variable drawn uniformly from , then converges in distribution to the deterministic real number . Thus we see that discrete (or even deterministic) random variables can emerge as the limit of continuous random variables.

Exercise 7 (Portmanteau theorem)Show that the properties (i) and (ii) in Proposition 4 are also equivalent to the following three statements:

- (iii) One has for all closed sets .
- (iv) One has for all open sets .
- (v) For any Borel set whose topological boundary is such that , one has .
(Note: to prove this theorem, you may wish to invoke Urysohn’s lemma. To deduce (iii) from (i), you may wish to start with the case of compact .)

We can now state the famous central limit theorem:

Theorem 8 (Central limit theorem)Let be iid copies of a scalar random variable of finite mean and finite non-zero variance . Let . Then the random variables converges in distribution to a random variable with the standard normal distribution (that is to say, a random variable with probability density function ). Thus, by abuse of notationIn the normalised case when has mean zero and unit variance, this simplifies to

Using Proposition 4 (and the fact that the cumulative distribution function associated to is continuous, the central limit theorem is equivalent to asserting that

as for any , or equivalently that

Informally, one can think of the central limit theorem as asserting that approximately behaves like it has distribution for large , where is the normal distribution with mean and variance , that is to say the distribution with probability density function . The integrals can be written in terms of the error function as .

The central limit theorem is a basic example of the *universality phenomenon* in probability – many statistics involving a large system of many independent (or weakly dependent) variables (such as the normalised sums ) end up having a universal asymptotic limit (in this case, the normal distribution), regardless of the precise makeup of the underlying random variable that comprised that system. Indeed, the universality of the normal distribution is such that it arises in many other contexts than the fluctuation of iid random variables; the central limit theorem is merely the first place in probability theory where it makes a prominent appearance.

We will give several proofs of the central limit theorem in these notes; each of these proofs has their advantages and disadvantages, and can each extend to prove many further results beyond the central limit theorem. We first give Lindeberg’s proof of the central limit theorem, based on exchanging (or swapping) each component of the sum in turn. This proof gives an accessible explanation as to why there should be a universal limit for the central limit theorem; one then computes directly with gaussians to verify that it is the normal distribution which is the universal limit. Our second proof is the most popular one taught in probability texts, namely the Fourier-analytic proof based around the concept of the characteristic function of a real random variable . Thanks to the powerful identities and other results of Fourier analysis, this gives a quite short and direct proof of the central limit theorem, although the arguments may seem rather magical to readers who are not already familiar with Fourier methods. Finally, we give a proof based on the moment method, in the spirit of the arguments in the previous notes; this argument is more combinatorial, but is straightforward and is particularly robust, in particular being well equipped to handle some dependencies between components; we will illustrate this by proving the Erdos-Kac law in number theory by this method. Some further discussion of the central limit theorem (including some further proofs, such as one based on Stein’s method) can be found in this blog post. Some further variants of the central limit theorem, such as local limit theorems, stable laws, and large deviation inequalities, will be discussed in the next (and final) set of notes.

The following exercise illustrates the power of the central limit theorem, by establishing combinatorial estimates which would otherwise require the use of Stirling’s formula to establish.

Exercise 9 (De Moivre-Laplace theorem)Let be a Bernoulli random variable, taking values in with , thus has mean and variance . Let be iid copies of , and write .

- (i) Show that takes values in with . (This is an example of a binomial distribution.)
- (ii) Assume Stirling’s formula
where is a function of that goes to zero as . (A proof of this formula may be found in this previous blog post.) Using this formula, and without using the central limit theorem, show that

as for any fixed real numbers .

The above special case of the central limit theorem was first established by de Moivre and Laplace.

We close this section with some basic facts about convergence of distribution that will be useful in the sequel.

Exercise 10Let , be sequences of real random variables, and let be further real random variables.

- (i) If is deterministic, show that converges in distribution to if and only if converges in probability to .
- (ii) Suppose that is independent of for each , and independent of . Show that converges in distribution to if and only if converges in distribution to and converges in distribution to . (The shortest way to prove this is by invoking the Stone-Weierstrass theorem, but one can also proceed by proving some version of Proposition 4.) What happens if the independence hypothesis is dropped?
- (iii) If converges in distribution to , show that for every there exists such that for all sufficiently large . (That is to say, is a tight sequence of random variables.)
- (iv) Show that converges in distribution to if and only if, after extending the probability space model if necessary, one can find copies and of and respectively such that converges almost surely to . (
Hint:use the Skorohod representation, Exercise 29 of Notes 0.)- (v) If converges in distribution to , and is continuous, show that converges in distribution to . Generalise this claim to the case when takes values in an arbitrary locally compact Hausdorff space.
- (vi) (Slutsky’s theorem) If converges in distribution to , and converges in probability to a
deterministiclimit , show that converges in distribution to , and converges in distribution to . (Hint: either use (iv), or else use (iii) to control some error terms.) This statement combines particularly well with (i). What happens if is not assumed to be deterministic?- (vii) (Fatou lemma) If is continuous, and converges in distribution to , show that .
- (viii) (Bounded convergence) If is continuous and bounded, and converges in distribution to , show that .
- (ix) (Dominated convergence) If converges in distribution to , and there is an absolutely integrable such that almost surely for all , show that .

For future reference we also mention (but will not prove) Prokhorov’s theorem that gives a partial converse to part (iii) of the above exercise:

Theorem 11 (Prokhorov’s theorem)Let be a sequence of real random variables which is tight (that is, for every there exists such that for all sufficiently large ). Then there exists a subsequence which converges in distribution to some random variable (which may possibly be modeled by a different probability space model than the .)

The proof of this theorem relies on the Riesz representation theorem, and is beyond the scope of this course; but see for instance Exercise 29 of this previous blog post. (See also the closely related Helly selection theorem, covered in Exercise 30 of the same post.)

## Recent Comments