You are currently browsing the category archive for the ‘math.CO’ category.

In the modern theory of additive combinatorics, a large role is played by the *Gowers uniformity norms* , where , is a finite abelian group, and is a function (one can also consider these norms in finite approximate groups such as instead of finite groups, but we will focus on the group case here for simplicity). These norms can be defined by the formula

where we use the averaging notation

for any non-empty finite set (with denoting the cardinality of ), and is the multiplicative discrete derivative operator

One reason why these norms play an important role is that they control various multilinear averages. We give two sample examples here:

We establish these claims a little later in this post.

In some more recent literature (e.g., this paper of Conlon, Fox, and Zhao), the role of Gowers norms have been replaced by (generalisations) of the *cut norm*, a concept originating from graph theory. In this blog post, it will be convenient to define these cut norms in the language of probability theory (using boldface to denote random variables).

Definition 2 (Cut norm)Let be independent random variables with ; to avoid minor technicalities we assume that these random variables are discrete and take values in a finite set. Given a random variable of these independent random variables, we define thecut normwhere the supremum ranges over all choices of random variables that are -bounded (thus surely), and such that does not depend on .

If , we abbreviate as .

Strictly speaking, the cut norm is only a cut semi-norm when , but we will abuse notation by referring to it as a norm nevertheless.

Example 3If is a bipartite graph, and , are independent random variables chosen uniformly from respectively, thenwhere the supremum ranges over all -bounded functions , . The right hand side is essentially the cut norm of the graph , as defined for instance by Frieze and Kannan.

The cut norm is basically an expectation when :

Example 4If , we see from definition thatIf , one easily checks that

where is the conditional expectation of to the -algebra generated by all the variables other than , i.e., the -algebra generated by . In particular, if are independent random variables drawn uniformly from respectively, then

Here are some basic properties of the cut norm:

Lemma 5 (Basic properties of cut norm)Let be independent discrete random variables, and a function of these variables.

- (i) (Permutation invariance) The cut norm is invariant with respect to permutations of the , or permutations of the .
- (ii) (Conditioning) One has
where on the right-hand side we view, for each realisation of , as a function of the random variables alone, thus the right-hand side may be expanded as

- (iii) (Monotonicity) If , we have
- (iv) (Multiplicative invariances) If is a -bounded function that does not depend on one of the , then
In particular, if we additionally assume , then

- (v) (Cauchy-Schwarz) If , one has
where is a copy of that is independent of and is the random variable

- (vi) (Averaging) If and , where is another random variable independent of , and is a random variable depending on both and , then

*Proof:* The claims (i), (ii) are clear from expanding out all the definitions. The claim (iii) also easily follows from the definitions (the left-hand side involves a supremum over a more general class of multipliers , while the right-hand side omits the multiplier), as does (iv) (the multiplier can be absorbed into one of the multipliers in the definition of the cut norm). The claim (vi) follows by expanding out the definitions, and observing that all of the terms in the supremum appearing in the left-hand side also appear as terms in the supremum on the right-hand side. It remains to prove (v). By definition, the left-hand side is the supremum over all quantities of the form

where the are -bounded functions of that do not depend on . We average out in the direction (that is, we condition out the variables ), and pull out the factor (which does not depend on ), to write this as

which by Cauchy-Schwarz is bounded by

which can be expanded using the copy as

Expanding

and noting that each is -bounded and independent of for , we obtain the claim.

Now we can relate the cut norm to Gowers uniformity norms:

Lemma 6Let be a finite abelian group, let be independent random variables uniformly drawn from for some , and let . ThenIf is additionally assumed to be -bounded, we have the converse inequalities

*Proof:* Applying Lemma 5(v) times, we can bound

where are independent copies of that are also independent of . The expression inside the norm can also be written as

so by Example 4 one can write (6) as

which after some change of variables simplifies to

which by Cauchy-Schwarz is bounded by

which one can rearrange as

giving (2). A similar argument bounds

by

which gives (3).

For (4), we can reverse the above steps and expand as

which we can write as

for some -bounded function . This can in turn be expanded as

for some -bounded functions that do not depend on . By Example 4, this can be written as

which by several applications of Theorem 5(iii) and then Theorem 5(iv) can be bounded by

giving (4). A similar argument gives (5).

Now we can prove Proposition 1. We begin with part (i). By permutation we may assume , then by translation we may assume . Replacing by and by , we can write the left-hand side of (1) as

where

is a -bounded function that does not depend on . Taking to be independent random variables drawn uniformly from , the left-hand side of (1) can then be written as

which by Example 4 is bounded in magnitude by

After many applications of Lemma 5(iii), (iv), this is bounded by

By Lemma 5(ii) we may drop the variable, and then the claim follows from Lemma 6.

For part (ii), we replace by and by to write the left-hand side as

the point here is that the first factor does not involve , the second factor does not involve , and the third factor has no quadratic terms in . Letting be independent variables drawn uniformly from , we can use Example 4 to bound this in magnitude by

which by Lemma 5(i),(iii),(iv) is bounded by

and then by Lemma 5(v) we may bound this by

which by Example 4 is

Now the expression inside the expectation is the product of four factors, each of which is or applied to an affine form where depends on and is one of , , , . With probability , the four different values of are distinct, and then by part (i) we have

When they are not distinct, we can instead bound this quantity by . Taking expectations in , we obtain the claim.

The analogue of the inverse theorem for cut norms is the following claim (which I learned from Ben Green):

Lemma 7 (-type inverse theorem)Let be independent random variables drawn from a finite abelian group , and let be -bounded. Then we havewhere is the group of homomorphisms is a homomorphism from to , and .

*Proof:* Suppose first that for some , then by definition

for some -bounded . By Fourier expansion, the left-hand side is also

where . From Plancherel’s theorem we have

hence by Hölder’s inequality one has for some , and hence

Conversely, suppose (7) holds. Then there is such that

which on substitution and Example 4 implies

The term splits into the product of a factor not depending on , and a factor not depending on . Applying Lemma 5(iii), (iv) we conclude that

The claim follows.

The higher order inverse theorems are much less trivial (and the optimal quantitative bounds are not currently known). However, there is a useful *degree lowering* argument, due to Peluse and Prendiville, that can allow one to lower the order of a uniformity norm in some cases. We give a simple version of this argument here:

Lemma 8 (Degree lowering argument, special case)Let be a finite abelian group, let be a non-empty finite set, and let be a function of the form for some -bounded functions indexed by . Suppose thatfor some and . Then one of the following claims hold (with implied constants allowed to depend on ):

- (i) (Degree lowering) one has .
- (ii) (Non-zero frequency) There exist and non-zero such that

There are more sophisticated versions of this argument in which the frequency is “minor arc” rather than “zero frequency”, and then the Gowers norms are localised to suitable large arithmetic progressions; this is implicit in the above-mentioned paper of Peluse and Prendiville.

*Proof:* One can write

and hence we conclude that

for a set of tuples of density . Applying Lemma 6 and Lemma 7, we see that for each such tuple, there exists such that

where is drawn uniformly from .

Let us adopt the convention that vanishes for not in , then from Lemma 5(ii) we have

where are independent random variables drawn uniformly from and also independent of . By repeated application of Lemma 5(iii) we then have

Expanding out and using Lemma 5(iv) repeatedly we conclude that

From definition of we then have

By Lemma 5(vi), we see that the left-hand side is less than

where is drawn uniformly from , independently of . By repeated application of Lemma 5(i), (v) repeatedly, we conclude that

where are independent copies of that are also independent of , . By Lemma 5(ii) and Example 4 we conclude that

with probability .

The left-hand side can be rewritten as

where is the additive version of , thus

Translating , we can simplify this a little to

If the frequency is ever non-vanishing in the event (9) then conclusion (ii) applies. We conclude that

with probability . In particular, by the pigeonhole principle, there exist such that

with probability . Expanding this out, we obtain a representation of the form

holding with probability , where the are functions that do not depend on the coordinate. From (8) we conclude that

for of the tuples . Thus by Lemma 5(ii)

By repeated application of Lemma 5(iii) we then have

and then by repeated application of Lemma 5(iv)

and then the conclusion (i) follows from Lemma 6.

As an application of degree lowering, we give an inverse theorem for the average in Proposition 1(ii), first established by Bourgain-Chang and later reproved by Peluse (by different methods from those given here):

Proposition 9Let be a cyclic group of prime order. Suppose that one has -bounded functions such thatfor some . Then either , or one has

We remark that a modification of the arguments below also give .

*Proof:* The left-hand side of (10) can be written as

where is the *dual function*

By Cauchy-Schwarz one thus has

and hence by Proposition 1, we either have (in which case we are done) or

Writing with , we conclude that either , or that

for some and non-zero . The left-hand side can be rewritten as

where and . We can rewrite this in turn as

which is bounded by

where are independent random variables drawn uniformly from . Applying Lemma 5(v), we conclude that

However, a routine Gauss sum calculation reveals that the left-hand side is for some absolute constant because is non-zero, so that . The only remaining case to consider is when

Repeating the above arguments we then conclude that

and then

The left-hand side can be computed to equal , and the claim follows.

This argument was given for the cyclic group setting, but the argument can also be applied to the integers (see Peluse-Prendiville) and can also be used to establish an analogue over the reals (that was first obtained by Bourgain).

Define the *Collatz map* on the natural numbers by setting to equal when is odd and when is even, and let denote the forward Collatz orbit of . The notorious Collatz conjecture asserts that for all . Equivalently, if we define the backwards Collatz orbit to be all the natural numbers that encounter in their forward Collatz orbit, then the Collatz conjecture asserts that . As a partial result towards this latter statement, Krasikov and Lagarias in 2003 established the bound

for all and . (This improved upon previous values of obtained by Applegate and Lagarias in 1995, by Applegate and Lagarias in 1995 by a different method, by Wirsching in 1993, by Krasikov in 1989, by Sander in 1990, and some by Crandall in 1978.) This is still the largest value of for which (1) has been established. Of course, the Collatz conjecture would imply that we can take equal to , which is the assertion that a positive density set of natural numbers obeys the Collatz conjecture. This is not yet established, although the results in my previous paper do at least imply that a positive density set of natural numbers iterates to an (explicitly computable) bounded set, so in principle the case of (1) could now be verified by an (enormous) finite computation in which one verifies that every number in this explicit bounded set iterates to . In this post I would like to record a possible alternate route to this problem that depends on the distribution of a certain family of random variables that appeared in my previous paper, that I called *Syracuse random variables*.

Definition 1 (Syracuse random variables)For any natural number , aSyracuse random variableon the cyclic group is defined as a random variable of the form

where are independent copies of a geometric random variable on the natural numbers with mean , thus

} for . In (2) the arithmetic is performed in the ring .

Thus for instance

and so forth. After reversing the labeling of the , one could also view as the mod reduction of a -adic random variable

The probability density function of the Syracuse random variable can be explicitly computed by a recursive formula (see Lemma 1.12 of my previous paper). For instance, when , is equal to for respectively, while when , is equal to

when respectively.

The relationship of these random variables to the Collatz problem can be explained as follows. Let denote the odd natural numbers, and define the *Syracuse map* by

where the –valuation is the number of times divides . We can define the forward orbit and backward orbit of the Syracuse map as before. It is not difficult to then see that the Collatz conjecture is equivalent to the assertion , and that the assertion (1) for a given is equivalent to the assertion

for all , where is now understood to range over odd natural numbers. A brief calculation then shows that for any odd natural number and natural number , one has

where the natural numbers are defined by the formula

so in particular

Heuristically, one expects the -valuation of a typical odd number to be approximately distributed according to the geometric distribution , so one therefore expects the residue class to be distributed approximately according to the random variable .

The Syracuse random variables will always avoid multiples of three (this reflects the fact that is never a multiple of three), but attains any non-multiple of three in with positive probability. For any natural number , set

Equivalently, is the greatest quantity for which we have the inequality

for all integers not divisible by three, where is the set of all tuples for which

Thus for instance , , and . On the other hand, since all the probabilities sum to as ranges over the non-multiples of , we have the trivial upper bound

There is also an easy submultiplicativity result:

*Proof:* Let be an integer not divisible by , then by (4) we have

If we let denote the set of tuples that can be formed from the tuples in by deleting the final component from each tuple, then we have

with an integer not divisible by three. By definition of and a relabeling, we then have

for all . For such tuples we then have

so that . Since

for each , the claim follows.

From this lemma we see that for some absolute constant . Heuristically, we expect the Syracuse random variables to be somewhat approximately equidistributed amongst the multiples of (in Proposition 1.4 of my previous paper I prove a fine scale mixing result that supports this heuristic). As a consequence it is natural to conjecture that . I cannot prove this, but I can show that this conjecture would imply that we can take the exponent in (1), (3) arbitrarily close to one:

Proposition 3Suppose that (that is to say, as ). Thenas , or equivalently

I prove this proposition below the fold. A variant of the argument shows that for any value of , (1), (3) holds whenever , where is an explicitly computable function with as . In principle, one could then improve the Krasikov-Lagarias result by getting a sufficiently good upper bound on , which is in principle achievable numerically (note for instance that Lemma 2 implies the bound for any , since for any ).

Just a brief post to record some notable papers in my fields of interest that appeared on the arXiv recently.

- “A sharp square function estimate for the cone in “, by Larry Guth, Hong Wang, and Ruixiang Zhang. This paper establishes an optimal (up to epsilon losses) square function estimate for the three-dimensional light cone that was essentially conjectured by Mockenhaupt, Seeger, and Sogge, which has a number of other consequences including Sogge’s local smoothing conjecture for the wave equation in two spatial dimensions, which in turn implies the (already known) Bochner-Riesz, restriction, and Kakeya conjectures in two dimensions. Interestingly, modern techniques such as polynomial partitioning and decoupling estimates are not used in this argument; instead, the authors mostly rely on an induction on scales argument and Kakeya type estimates. Many previous authors (including myself) were able to get weaker estimates of this type by an induction on scales method, but there were always significant inefficiencies in doing so; in particular knowing the sharp square function estimate at smaller scales did not imply the sharp square function estimate at the given larger scale. The authors here get around this issue by finding an even stronger estimate that implies the square function estimate, but behaves significantly better with respect to induction on scales.
- “On the Chowla and twin primes conjectures over “, by Will Sawin and Mark Shusterman. This paper resolves a number of well known open conjectures in analytic number theory, such as the Chowla conjecture and the twin prime conjecture (in the strong form conjectured by Hardy and Littlewood), in the case of function fields where the field is a prime power which is fixed (in contrast to a number of existing results in the “large ” limit) but has a large exponent . The techniques here are orthogonal to those used in recent progress towards the Chowla conjecture over the integers (e.g., in this previous paper of mine); the starting point is an algebraic observation that in certain function fields, the Mobius function behaves like a quadratic Dirichlet character along certain arithmetic progressions. In principle, this reduces problems such as Chowla’s conjecture to problems about estimating sums of Dirichlet characters, for which more is known; but the task is still far from trivial.
- “Bounds for sets with no polynomial progressions“, by Sarah Peluse. This paper can be viewed as part of a larger project to obtain quantitative density Ramsey theorems of Szemeredi type. For instance, Gowers famously established a relatively good quantitative bound for Szemeredi’s theorem that all dense subsets of integers contain arbitrarily long arithmetic progressions . The corresponding question for polynomial progressions is considered more difficult for a number of reasons. One of them is that dilation invariance is lost; a dilation of an arithmetic progression is again an arithmetic progression, but a dilation of a polynomial progression will in general not be a polynomial progression with the same polynomials . Another issue is that the ranges of the two parameters are now at different scales. Peluse gets around these difficulties in the case when all the polynomials have distinct degrees, which is in some sense the opposite case to that considered by Gowers (in particular, she avoids the need to obtain quantitative inverse theorems for high order Gowers norms; which was recently obtained in this integer setting by Manners but with bounds that are probably not strong enough to for the bounds in Peluse’s results, due to a degree lowering argument that is available in this case). To resolve the first difficulty one has to make all the estimates rather uniform in the coefficients of the polynomials , so that one can still run a density increment argument efficiently. To resolve the second difficulty one needs to find a quantitative concatenation theorem for Gowers uniformity norms. Many of these ideas were developed in previous papers of Peluse and Peluse-Prendiville in simpler settings.
- “On blow up for the energy super critical defocusing non linear Schrödinger equations“, by Frank Merle, Pierre Raphael, Igor Rodnianski, and Jeremie Szeftel. This paper (when combined with two companion papers) resolves a long-standing problem as to whether finite time blowup occurs for the defocusing supercritical nonlinear Schrödinger equation (at least in certain dimensions and nonlinearities). I had a previous paper establishing a result like this if one “cheated” by replacing the nonlinear Schrodinger equation by a system of such equations, but remarkably they are able to tackle the original equation itself without any such cheating. Given the very analogous situation with Navier-Stokes, where again one can create finite time blowup by “cheating” and modifying the equation, it does raise hope that finite time blowup for the incompressible Navier-Stokes and Euler equations can be established… In fact the connection may not just be at the level of analogy; a surprising key ingredient in the proofs here is the observation that a certain blowup ansatz for the nonlinear Schrodinger equation is governed by solutions to the (compressible) Euler equation, and finite time blowup examples for the latter can be used to construct finite time blowup examples for the former.

Peter Denton, Stephen Parke, Xining Zhang, and I have just uploaded to the arXiv a completely rewritten version of our previous paper, now titled “Eigenvectors from Eigenvalues: a survey of a basic identity in linear algebra“. This paper is now a survey of the various literature surrounding the following basic identity in linear algebra, which we propose to call the *eigenvector-eigenvalue identity*:

Theorem 1 (Eigenvector-eigenvalue identity)Let be an Hermitian matrix, with eigenvalues . Let be a unit eigenvector corresponding to the eigenvalue , and let be the component of . Thenwhere is the Hermitian matrix formed by deleting the row and column from .

When we posted the first version of this paper, we were unaware of previous appearances of this identity in the literature; a related identity had been used by Erdos-Schlein-Yau and by myself and Van Vu for applications to random matrix theory, but to our knowledge this specific identity appeared to be new. Even two months after our preprint first appeared on the arXiv in August, we had only learned of one other place in the literature where the identity showed up (by Forrester and Zhang, who also cite an earlier paper of Baryshnikov).

The situation changed rather dramatically with the publication of a popular science article in Quanta on this identity in November, which gave this result significantly more exposure. Within a few weeks we became informed (through private communication, online discussion, and exploration of the citation tree around the references we were alerted to) of over three dozen places where the identity, or some other closely related identity, had previously appeared in the literature, in such areas as numerical linear algebra, various aspects of graph theory (graph reconstruction, chemical graph theory, and walks on graphs), inverse eigenvalue problems, random matrix theory, and neutrino physics. As a consequence, we have decided to completely rewrite our article in order to collate this crowdsourced information, and survey the history of this identity, all the known proofs (we collect seven distinct ways to prove the identity (or generalisations thereof)), and all the applications of it that we are currently aware of. The citation graph of the literature that this *ad hoc* crowdsourcing effort produced is only very weakly connected, which we found surprising:

The earliest explicit appearance of the eigenvector-eigenvalue identity we are now aware of is in a 1966 paper of Thompson, although this paper is only cited (directly or indirectly) by a fraction of the known literature, and also there is a precursor identity of Löwner from 1934 that can be shown to imply the identity as a limiting case. At the end of the paper we speculate on some possible reasons why this identity only achieved a modest amount of recognition and dissemination prior to the November 2019 Quanta article.

Earlier this month, Hao Huang (who, incidentally, was a graduate student here at UCLA) gave a remarkably short proof of a long-standing problem in theoretical computer science known as the sensitivity conjecture. See for instance this blog post of Gil Kalai for further discussion and links to many other online discussions of this result. One formulation of the theorem proved is as follows. Define the -dimensional hypercube graph to be the graph with vertex set , and with every vertex joined to the vertices , where is the standard basis of .

Theorem 1 (Lower bound on maximum degree of induced subgraphs of hypercube)Let be a set of at least vertices in . Then there is a vertex in that is adjacent (in ) to at least other vertices in .

The bound (or more precisely, ) is completely sharp, as shown by Chung, Furedi, Graham, and Seymour; we describe this example below the fold. When combined with earlier reductions of Gotsman-Linial and Nisan-Szegedy; we give these below the fold also.

Let be the adjacency matrix of (where we index the rows and columns directly by the vertices in , rather than selecting some enumeration ), thus when for some , and otherwise. The above theorem then asserts that if is a set of at least vertices, then the minor of has a row (or column) that contains at least non-zero entries.

The key step to prove this theorem is the construction of rather curious variant of the adjacency matrix :

Proposition 2There exists a matrix which is entrywise dominated by in the sense that

Assuming this proposition, the proof of Theorem 1 can now be quickly concluded. If we view as a linear operator on the -dimensional space of functions of , then by hypothesis this space has a -dimensional subspace on which acts by multiplication by . If is a set of at least vertices in , then the space of functions on has codimension at most in , and hence intersects non-trivially. Thus the minor of also has as an eigenvalue (this can also be derived from the Cauchy interlacing inequalities), and in particular this minor has operator norm at least . By Schur’s test, this implies that one of the rows or columns of this matrix has absolute values summing to at least , giving the claim.

Remark 3The argument actually gives a strengthening of Theorem 1: there exists a vertex of with the property that for every natural number , there are at least paths of length in the restriction of to that start from . Indeed, if we let be an eigenfunction of on , and let be a vertex in that maximises the value of , then for any we have that the component of is equal to ; on the other hand, by the triangle inequality, this component is at most times the number of length paths in starting from , giving the claim.

This argument can be viewed as an instance of a more general “interlacing method” to try to control the behaviour of a graph on all large subsets by first generating a matrix on with very good spectral properties, which are then partially inherited by the minor of by interlacing inequalities. In previous literature using this method (see e.g., this survey of Haemers, or this paper of Wilson), either the original adjacency matrix , or some non-negatively weighted version of that matrix, was used as the controlling matrix ; the novelty here is the use of signed controlling matrices. It will be interesting to see what further variants and applications of this method emerge in the near future. (Thanks to Anurag Bishoi in the comments for these references.)

The “magic” step in the above argument is constructing . In Huang’s paper, is constructed recursively in the dimension in a rather simple but mysterious fashion. Very recently, Roman Karasev gave an interpretation of this matrix in terms of the exterior algebra on . In this post I would like to give an alternate interpretation in terms of the operation of *twisted convolution*, which originated in the theory of the Heisenberg group in quantum mechanics.

Firstly note that the original adjacency matrix , when viewed as a linear operator on , is a convolution operator

where

is the counting measure on the standard basis , and denotes the ordinary convolution operation

As is well known, this operation is commutative and associative. Thus for instance the square of the adjacency operator is also a convolution operator

where the convolution kernel is moderately complicated:

The factor in this expansion comes from combining the two terms and , which both evaluate to .

More generally, given any bilinear form , one can define the *twisted convolution*

of two functions . This operation is no longer commutative (unless is symmetric). However, it remains associative; indeed, one can easily compute that

In particular, if we define the twisted convolution operator

then the square is also a twisted convolution operator

and the twisted convolution kernel can be computed as

For general bilinear forms , this twisted convolution is just as messy as is. But if we take the specific bilinear form

then for and for , and the above twisted convolution simplifies to

and now is very simple:

Thus the only eigenvalues of are and . The matrix is entrywise dominated by in the sense of (1), and in particular has trace zero; thus the and eigenvalues must occur with equal multiplicity, so in particular the eigenvalue occurs with multiplicity since the matrix has dimensions . This establishes Proposition 2.

Remark 4Twisted convolution is actually just a component of ordinary convolution, but not on the original group ; instead it relates to convolution on a Heisenberg group extension of this group. More specifically, define the Heisenberg group to be the set of pairs with group lawand inverse operation

(one can dispense with the negative signs here if desired, since we are in characteristic two). Convolution on is defined in the usual manner: one has

for any . Now if is a function on the original group , we can define the lift by the formula

and then by chasing all the definitions one soon verifies that

for any , thus relating twisted convolution to Heisenberg group convolution .

Remark 5With the twisting by the specific bilinear form given by (2), convolution by and now anticommute rather than commute. This makes the twisted convolution algebra isomorphic to a Clifford algebra (the real or complex algebra generated by formal generators subject to the relations for ) rather than the commutative algebra more familiar to abelian Fourier analysis. This connection to Clifford algebra (also observed independently by Tom Mrowka and by Daniel Matthews) may be linked to the exterior algebra interpretation of the argument in the recent preprint of Karasev mentioned above.

Remark 6One could replace the form (2) in this argument by any other bilinear form that obeyed the relations and for . However, this additional level of generality does not add much; any such will differ from by an antisymmetric form (so that for all , which in characteristic two implied that for all ), and such forms can always be decomposed as , where . As such, the matrices and are conjugate, with the conjugation operator being the diagonal matrix with entries at each vertex .

Remark 7(Added later) This remark combines the two previous remarks. One can view any of the matrices in Remark 6 as components of a single canonical matrix that is still of dimensions , but takes values in the Clifford algebra from Remark 5; with this “universal algebra” perspective, one no longer needs to make any arbitrary choices of form . More precisely, let denote the vector space of functions from the hypercube to the Clifford algebra; as a real vector space, this is a dimensional space, isomorphic to the direct sum of copies of , as the Clifford algebra is itself dimensional. One can then define a canonical Clifford adjacency operator on this space bywhere are the generators of . This operator can either be identified with a Clifford-valued matrix or as a real-valued matrix. In either case one still has the key algebraic relations and , ensuring that when viewed as a real matrix, half of the eigenvalues are equal to and half equal to . One can then use this matrix in place of any of the to establish Theorem 1 (noting that Schur’s test continues to work for Clifford-valued matrices because of the norm structure on ).

To relate to the real matrices , first observe that each point in the hypercube can be associated with a one-dimensional real subspace (i.e., a line) in the Clifford algebra by the formula

for any (note that this definition is well-defined even if the are out of order or contain repetitions). This can be viewed as a discrete line bundle over the hypercube. Since for any , we see that the -dimensional real linear subspace of of sections of this bundle, that is to say the space of functions such that for all , is an invariant subspace of . (Indeed, using the left-action of the Clifford algebra on , which commutes with , one can naturally identify with , with the left action of acting purely on the first factor and acting purely on the second factor.) Any trivialisation of this line bundle lets us interpret the restriction of to as a real matrix. In particular, given one of the bilinear forms from Remark 6, we can identify with by identifying any real function with the lift defined by

whenever . A somewhat tedious computation using the properties of then eventually gives the intertwining identity

and so is conjugate to .

Let be some domain (such as the real numbers). For any natural number , let denote the space of symmetric real-valued functions on variables , thus

for any permutation . For instance, for any natural numbers , the elementary symmetric polynomials

will be an element of . With the pointwise product operation, becomes a commutative real algebra. We include the case , in which case consists solely of the real constants.

Given two natural numbers , one can “lift” a symmetric function of variables to a symmetric function of variables by the formula

where ranges over all injections from to (the latter formula making it clearer that is symmetric). Thus for instance

and

Also we have

With these conventions, we see that vanishes for , and is equal to if . We also have the transitivity

if .

The lifting map is a linear map from to , but it is not a ring homomorphism. For instance, when , one has

In general, one has the identity

for all natural numbers and , , where range over all injections , with . Combinatorially, the identity (2) follows from the fact that given any injections and with total image of cardinality , one has , and furthermore there exist precisely triples of injections , , such that and .

Example 1When , one haswhich is just a restatement of the identity

Note that the coefficients appearing in (2) do not depend on the final number of variables . We may therefore abstract the role of from the law (2) by introducing the real algebra of formal sums

where for each , is an element of (with only finitely many of the being non-zero), and with the formal symbol being formally linear, thus

and

for and scalars , and with multiplication given by the analogue

of (2). Thus for instance, in this algebra we have

and

Informally, is an abstraction (or “inverse limit”) of the concept of a symmetric function of an unspecified number of variables, which are formed by summing terms that each involve only a bounded number of these variables at a time. One can check (somewhat tediously) that is indeed a commutative real algebra, with a unit . (I do not know if this algebra has previously been studied in the literature; it is somewhat analogous to the abstract algebra of finite linear combinations of Schur polynomials, with multiplication given by a Littlewood-Richardson rule. )

For natural numbers , there is an obvious specialisation map from to , defined by the formula

Thus, for instance, maps to and to . From (2) and (3) we see that this map is an algebra homomorphism, even though the maps and are not homomorphisms. By inspecting the component of we see that the homomorphism is in fact surjective.

Now suppose that we have a measure on the space , which then induces a product measure on every product space . To avoid degeneracies we will assume that the integral is strictly positive. Assuming suitable measurability and integrability hypotheses, a function can then be integrated against this product measure to produce a number

In the event that arises as a lift of another function , then from Fubini’s theorem we obtain the formula

is an element of the formal algebra , then

Note that by hypothesis, only finitely many terms on the right-hand side are non-zero.

Now for a key observation: whereas the left-hand side of (6) only makes sense when is a natural number, the right-hand side is meaningful when takes a fractional value (or even when it takes negative or complex values!), interpreting the binomial coefficient as a polynomial in . As such, this suggests a way to introduce a “virtual” concept of a symmetric function on a fractional power space for such values of , and even to integrate such functions against product measures , even if the fractional power does not exist in the usual set-theoretic sense (and similarly does not exist in the usual measure-theoretic sense). More precisely, for arbitrary real or complex , we now *define* to be the space of abstract objects

with and (and now interpreted as formal symbols, with the structure of a commutative real algebra inherited from , thus

In particular, the multiplication law (2) continues to hold for such values of , thanks to (3). Given any measure on , we formally define a measure on with regards to which we can integrate elements of by the formula (6) (providing one has sufficient measurability and integrability to make sense of this formula), thus providing a sort of “fractional dimensional integral” for symmetric functions. Thus, for instance, with this formalism the identities (4), (5) now hold for fractional values of , even though the formal space no longer makes sense as a set, and the formal measure no longer makes sense as a measure. (The formalism here is somewhat reminiscent of the technique of dimensional regularisation employed in the physical literature in order to assign values to otherwise divergent integrals. See also this post for an unrelated abstraction of the integration concept involving integration over supercommutative variables (and in particular over fermionic variables).)

Example 2Suppose is a probability measure on , and is a random variable; on any power , we let be the usual independent copies of on , thus for . Then for any real or complex , the formal integralcan be evaluated by first using the identity

(cf. (1)) and then using (6) and the probability measure hypothesis to conclude that

For a natural number, this identity has the probabilistic interpretation

whenever are jointly independent copies of , which reflects the well known fact that the sum has expectation and variance . One can thus view (7) as an abstract generalisation of (8) to the case when is fractional, negative, or even complex, despite the fact that there is no sensible way in this case to talk about independent copies of in the standard framework of probability theory.

In this particular case, the quantity (7) is non-negative for every nonnegative , which looks plausible given the form of the left-hand side. Unfortunately, this sort of non-negativity does not always hold; for instance, if has mean zero, one can check that

and the right-hand side can become negative for . This is a shame, because otherwise one could hope to start endowing with some sort of commutative von Neumann algebra type structure (or the abstract probability structure discussed in this previous post) and then interpret it as a genuine measure space rather than as a virtual one. (This failure of positivity is related to the fact that the characteristic function of a random variable, when raised to the power, need not be a characteristic function of any random variable once is no longer a natural number: “fractional convolution” does not preserve positivity!) However, one vestige of positivity remains: if is non-negative, then so is

One can wonder what the point is to all of this abstract formalism and how it relates to the rest of mathematics. For me, this formalism originated implicitly in an old paper I wrote with Jon Bennett and Tony Carbery on the multilinear restriction and Kakeya conjectures, though we did not have a good language for working with it at the time, instead working first with the case of natural number exponents and appealing to a general extrapolation theorem to then obtain various identities in the fractional case. The connection between these fractional dimensional integrals and more traditional integrals ultimately arises from the simple identity

(where the right-hand side should be viewed as the fractional dimensional integral of the unit against ). As such, one can manipulate powers of ordinary integrals using the machinery of fractional dimensional integrals. A key lemma in this regard is

Lemma 3 (Differentiation formula)Suppose that a positive measure on depends on some parameter and varies by the formula

for some function . Let be any real or complex number. Then, assuming sufficient smoothness and integrability of all quantities involved, we have

for all that are independent of . If we allow to now depend on also, then we have the more general total derivative formula

again assuming sufficient amounts of smoothness and regularity.

*Proof:* We just prove (10), as (11) then follows by same argument used to prove the usual product rule. By linearity it suffices to verify this identity in the case for some symmetric function for a natural number . By (6), the left-hand side of (10) is then

Differentiating under the integral sign using (9) we have

and similarly

where are the standard copies of on :

By the product rule, we can thus expand (12) as

where we have suppressed the dependence on for brevity. Since , we can write this expression using (6) as

where is the symmetric function

But from (2) one has

and the claim follows.

Remark 4It is also instructive to prove this lemma in the special case when is a natural number, in which case the fractional dimensional integral can be interpreted as a classical integral. In this case, the identity (10) is immediate from applying the product rule to (9) to conclude thatOne could in fact derive (10) for arbitrary real or complex from the case when is a natural number by an extrapolation argument; see the appendix of my paper with Bennett and Carbery for details.

Let us give a simple PDE application of this lemma as illustration:

Proposition 5 (Heat flow monotonicity)Let be a solution to the heat equation with initial data a rapidly decreasing finite non-negative Radon measure, or more explicitlyfor al . Then for any , the quantity

is monotone non-decreasing in for , constant for , and monotone non-increasing for .

*Proof:* By a limiting argument we may assume that is absolutely continuous, with Radon-Nikodym derivative a test function; this is more than enough regularity to justify the arguments below.

For any , let denote the Radon measure

Then the quantity can be written as a fractional dimensional integral

Observe that

and thus by Lemma 3 and the product rule

where we use for the variable of integration in the factor space of .

To simplify this expression we will take advantage of integration by parts in the variable. Specifically, in any direction , we have

and hence by Lemma 3

Multiplying by and integrating by parts, we see that

where we use the Einstein summation convention in . Similarly, if is any reasonable function depending only on , we have

and hence on integration by parts

We conclude that

and thus by (13)

The choice of that then achieves the most cancellation turns out to be (this cancels the terms that are linear or quadratic in the ), so that . Repeating the calculations establishing (7), one has

and

where is the random variable drawn from with the normalised probability measure . Since , one thus has

This expression is clearly non-negative for , equal to zero for , and positive for , giving the claim. (One could simplify here as if desired, though it is not strictly necessary to do so for the proof.)

Remark 6As with Remark 4, one can also establish the identity (14) first for natural numbers by direct computation avoiding the theory of fractional dimensional integrals, and then extrapolate to the case of more general values of . This particular identity is also simple enough that it can be directly established by integration by parts without much difficulty, even for fractional values of .

A more complicated version of this argument establishes the non-endpoint multilinear Kakeya inequality (without any logarithmic loss in a scale parameter ); this was established in my previous paper with Jon Bennett and Tony Carbery, but using the “natural number first” approach rather than using the current formalism of fractional dimensional integration. However, the arguments can be translated into this formalism without much difficulty; we do so below the fold. (To simplify the exposition slightly we will not address issues of establishing enough regularity and integrability to justify all the manipulations, though in practice this can be done by standard limiting arguments.)

Joni Teräväinen and I have just uploaded to the arXiv our paper “Value patterns of multiplicative functions and related sequences“, submitted to Forum of Mathematics, Sigma. This paper explores how to use recent technology on correlations of multiplicative (or nearly multiplicative functions), such as the “entropy decrement method”, in conjunction with techniques from additive combinatorics, to establish new results on the sign patterns of functions such as the Liouville function . For instance, with regards to length 5 sign patterns

of the Liouville function, we can now show that at least of the possible sign patterns in occur with positive upper density. (Conjecturally, all of them do so, and this is known for all shorter sign patterns, but unfortunately seems to be the limitation of our methods.)

The Liouville function can be written as , where is the number of prime factors of (counting multiplicity). One can also consider the variant , which is a completely multiplicative function taking values in the cube roots of unity . Here we are able to show that all sign patterns in occur with positive lower density as sign patterns of this function. The analogous result for was already known (see this paper of Matomäki, Radziwiłł, and myself), and in that case it is even known that all sign patterns occur with equal logarithmic density (from this paper of myself and Teräväinen), but these techniques barely fail to handle the case by itself (largely because the “parity” arguments used in the case of the Liouville function no longer control three-point correlations in the case) and an additional additive combinatorial tool is needed. After applying existing technology (such as entropy decrement methods), the problem roughly speaking reduces to locating patterns for a certain partition of a compact abelian group (think for instance of the unit circle , although the general case is a bit more complicated, in particular if is disconnected then there is a certain “coprimality” constraint on , also we can allow the to be replaced by any with divisible by ), with each of the having measure . An inequality of Kneser just barely fails to guarantee the existence of such patterns, but by using an inverse theorem for Kneser’s inequality in this previous paper of mine we are able to identify precisely the obstruction for this method to work, and rule it out by an *ad hoc* method.

The same techniques turn out to also make progress on some conjectures of Erdös-Pomerance and Hildebrand regarding patterns of the largest prime factor of a natural number . For instance, we improve results of Erdös-Pomerance and of Balog demonstrating that the inequalities

and

each hold for infinitely many , by demonstrating the stronger claims that the inequalities

and

each hold for a set of of positive lower density. As a variant, we also show that we can find a positive density set of for which

for any fixed (this improves on a previous result of Hildebrand with replaced by . A number of other results of this type are also obtained in this paper.

In order to obtain these sorts of results, one needs to extend the entropy decrement technology from the setting of multiplicative functions to that of what we call “weakly stable sets” – sets which have some multiplicative structure, in the sense that (roughly speaking) there is a set such that for all small primes , the statements and are roughly equivalent to each other. For instance, if is a level set , one would take ; if instead is a set of the form , then one can take . When one has such a situation, then very roughly speaking, the entropy decrement argument then allows one to estimate a one-parameter correlation such as

with a two-parameter correlation such as

(where we will be deliberately vague as to how we are averaging over and ), and then the use of the “linear equations in primes” technology of Ben Green, Tamar Ziegler, and myself then allows one to replace this average in turn by something like

where is constrained to be not divisible by small primes but is otherwise quite arbitrary. This latter average can then be attacked by tools from additive combinatorics, such as translation to a continuous group model (using for instance the Furstenberg correspondence principle) followed by tools such as Kneser’s inequality (or inverse theorems to that inequality).

(This post is mostly intended for my own reference, as I found myself repeatedly looking up several conversions between polynomial bases on various occasions.)

Let denote the vector space of polynomials of one variable with real coefficients of degree at most . This is a vector space of dimension , and the sequence of these spaces form a filtration:

A standard basis for these vector spaces are given by the monomials : every polynomial in can be expressed uniquely as a linear combination of the first monomials . More generally, if one has any sequence of polynomials, with each of degree exactly , then an easy induction shows that forms a basis for .

In particular, if we have *two* such sequences and of polynomials, with each of degree and each of degree , then must be expressible uniquely as a linear combination of the polynomials , thus we have an identity of the form

for some *change of basis coefficients* . These coefficients describe how to convert a polynomial expressed in the basis into a polynomial expressed in the basis.

Many standard combinatorial quantities involving two natural numbers can be interpreted as such change of basis coefficients. The most familiar example are the binomial coefficients , which measures the conversion from the shifted monomial basis to the monomial basis , thanks to (a special case of) the binomial formula:

thus for instance

More generally, for any shift , the conversion from to is measured by the coefficients , thanks to the general case of the binomial formula.

But there are other bases of interest too. For instance if one uses the falling factorial basis

then the conversion from falling factorials to monomials is given by the Stirling numbers of the first kind :

thus for instance

and the conversion back is given by the Stirling numbers of the second kind :

thus for instance

If one uses the binomial functions as a basis instead of the falling factorials, one of course can rewrite these conversions as

and

thus for instance

and

As a slight variant, if one instead uses rising factorials

then the conversion to monomials yields the unsigned Stirling numbers of the first kind:

thus for instance

One final basis comes from the polylogarithm functions

For instance one has

and more generally one has

for all natural numbers and some polynomial of degree (the *Eulerian polynomials*), which when converted to the monomial basis yields the (shifted) Eulerian numbers

For instance

These particular coefficients also have useful combinatorial interpretations. For instance:

- The binomial coefficient is of course the number of -element subsets of .
- The unsigned Stirling numbers of the first kind are the number of permutations of with exactly cycles. The signed Stirling numbers are then given by the formula .
- The Stirling numbers of the second kind are the number of ways to partition into non-empty subsets.
- The Eulerian numbers are the number of permutations of with exactly ascents.

These coefficients behave similarly to each other in several ways. For instance, the binomial coefficients obey the well known Pascal identity

(with the convention that vanishes outside of the range ). In a similar spirit, the unsigned Stirling numbers of the first kind obey the identity

and the signed counterparts obey the identity

The Stirling numbers of the second kind obey the identity

and the Eulerian numbers obey the identity

Let , be additive groups (i.e., groups with an abelian addition group law). A map is a homomorphism if one has

for all . A map is an *affine* homomorphism if one has

for all *additive quadruples* in , by which we mean that and . The two notions are closely related; it is easy to verify that is an affine homomorphism if and only if is the sum of a homomorphism and a constant.

Now suppose that also has a translation-invariant metric . A map is said to be a quasimorphism if one has

for all , where denotes a quantity at a bounded distance from the origin. Similarly, is an *affine quasimorphism* if

for all additive quadruples in . Again, one can check that is an affine quasimorphism if and only if it is the sum of a quasimorphism and a constant (with the implied constant of the quasimorphism controlled by the implied constant of the affine quasimorphism). (Since every constant is itself a quasimorphism, it is in fact the case that affine quasimorphisms are quasimorphisms, but now the implied constant in the latter is not controlled by the implied constant of the former.)

“Trivial” examples of quasimorphisms include the sum of a homomorphism and a bounded function. Are there others? In some cases, the answer is no. For instance, suppose we have a quasimorphism . Iterating (2), we see that for any integer and natural number , which we can rewrite as for non-zero . Also, is Lipschitz. Sending , we can verify that is a Cauchy sequence as and thus tends to some limit ; we have for , hence for positive , and then one can use (2) one last time to obtain for all . Thus is the sum of the homomorphism and a bounded sequence.

In general, one can phrase this problem in the language of group cohomology (discussed in this previous post). Call a map a *-cocycle*. A *-cocycle* is a map obeying the identity

for all . Given a -cocycle , one can form its *derivative* by the formula

Such functions are called *-coboundaries*. It is easy to see that the abelian group of -coboundaries is a subgroup of the abelian group of -cocycles. The quotient of these two groups is the first group cohomology of with coefficients in , and is denoted .

If a -cocycle is bounded then its derivative is a bounded -coboundary. The quotient of the group of bounded -cocycles by the derivatives of bounded -cocycles is called the *bounded first group cohomology* of with coefficients in , and is denoted . There is an obvious homomorphism from to , formed by taking a coset of the space of derivatives of bounded -cocycles, and enlarging it to a coset of the space of -coboundaries. By chasing all the definitions, we see that all quasimorphism from to are the sum of a homomorphism and a bounded function if and only if this homomorphism is injective; in fact the quotient of the space of quasimorphisms by the sum of homomorphisms and bounded functions is isomorphic to the kernel of .

In additive combinatorics, one is often working with functions which only have additive structure a fraction of the time, thus for instance (1) or (3) might only hold “ of the time”. This makes it somewhat difficult to directly interpret the situation in terms of group cohomology. However, thanks to tools such as the Balog-Szemerédi-Gowers lemma, one can upgrade this sort of -structure to -structure – at the cost of restricting the domain to a smaller set. Here I record one such instance of this phenomenon, thus giving a tentative link between additive combinatorics and group cohomology. (I thank Yuval Wigderson for suggesting the problem of locating such a link.)

Theorem 1Let , be additive groups with , let be a subset of , let , and let be a function such thatfor additive quadruples in . Then there exists a subset of containing with , a subset of with , and a function such that

for all (thus, the derivative takes values in on ), and such that for each , one has

Presumably the constants and can be improved further, but we have not attempted to optimise these constants. We chose as the domain on which one has a bounded derivative, as one can use the Bogulybov lemma (see e.g, Proposition 4.39 of my book with Van Vu) to find a large Bohr set inside . In applications, the set need not have bounded size, or even bounded doubling; for instance, in the inverse theory over a small finite fields , one would be interested in the situation where is the group of matrices with coefficients in (for some large , and being the subset consisting of those matrices of rank bounded by some bound .

*Proof:* By hypothesis, there are triples such that and

Thus, there is a set with such that for all , one has (6) for pairs with ; in particular, there exists such that (6) holds for values of . Setting , we conclude that for each , one has

Consider the bipartite graph whose vertex sets are two copies of , and and connected by a (directed) edge if and (7) holds. Then this graph has edges. Applying (a slight modification of) the Balog-Szemerédi-Gowers theorem (for instance by modifying the proof of Corollary 5.19 of my book with Van Vu), we can then find a subset of with with the property that for any , there exist triples such that the edges all lie in this bipartite graph. This implies that, for all , there exist septuples obeying the constraints

and for . These constraints imply in particular that

Also observe that

Thus, if and are such that , we see that

for octuples in the hyperplane

By the pigeonhole principle, this implies that for any fixed , there can be at most sets of the form with , that are pairwise disjoint. Using a greedy algorithm, we conclude that there is a set of cardinality , such that each set with , intersects for some , or in other words that

This implies that there exists a subset of with , and an element for each , such that

for all . Note we may assume without loss of generality that and .

By construction of , and permuting labels, we can find 16-tuples such that

and

for . We sum this to obtain

and hence by (8)

where . Since

we see that there are only possible values of . By the pigeonhole principle, we conclude that at most of the sets can be disjoint. Arguing as before, we conclude that there exists a set of cardinality such that

whenever (10) holds.

For any , write arbitrarily as for some (with if , and if ) and then set

Then from (11) we have (4). For we have , and (5) then follows from (9).

I have just uploaded to the arXiv the paper “An inverse theorem for an inequality of Kneser“, submitted to a special issue of the Proceedings of the Steklov Institute of Mathematics in honour of Sergei Konyagin. It concerns an inequality of Kneser discussed previously in this blog, namely that

whenever are compact non-empty subsets of a compact connected additive group with probability Haar measure . (A later result of Kemperman extended this inequality to the nonabelian case.) This inequality is non-trivial in the regime

The connectedness of is essential, otherwise one could form counterexamples involving proper subgroups of of positive measure. In the blog post, I indicated how this inequality (together with a more “robust” strengthening of it) could be deduced from submodularity inequalities such as

which in turn easily follows from the identity and the inclusion , combined with the inclusion-exclusion formula.

In the non-trivial regime (2), equality can be attained in (1), for instance by taking to be the unit circle and to be arcs in that circle (obeying (2)). A bit more generally, if is an arbitrary connected compact abelian group and is a non-trivial character (i.e., a continuous homomorphism), then must be surjective (as has no non-trivial connected subgroups), and one can take and for some arcs in that circle (again choosing the measures of these arcs to obey (2)). The main result of this paper is an inverse theorem that asserts that this is the only way in which equality can occur in (1) (assuming (2)); furthermore, if (1) is close to being satisfied with equality and (2) holds, then must be close (in measure) to an example of the above form . Actually, for technical reasons (and for the applications we have in mind), it is important to establish an inverse theorem not just for (1), but for the more robust version mentioned earlier (in which the sumset is replaced by the partial sumset consisting of “popular” sums).

Roughly speaking, the idea is as follows. Let us informally call a *critical pair* if (2) holds and the inequality (1) (or more precisely, a robust version of this inequality) is almost obeyed with equality. The notion of a critical pair obeys some useful closure properties. Firstly, it is symmetric in , and invariant with respect to translation of either or . Furthermore, from the submodularity inequality (3), one can show that if and are critical pairs (with and positive), then and are also critical pairs. (Note that this is consistent with the claim that critical pairs only occur when come from arcs of a circle.) Similarly, from associativity , one can show that if and are critical pairs, then so are and .

One can combine these closure properties to obtain further ones. For instance, suppose is such that . Then (cheating a little bit), one can show that is also a critical pair, basically because is the union of the , , the are all critical pairs, and the all intersect each other. This argument doesn’t quite work as stated because one has to apply the closure property under union an uncountable number of times, but it turns out that if one works with the robust version of sumsets and uses a random sampling argument to approximate by the union of finitely many of the , then the argument can be made to work.

Using all of these closure properties, it turns out that one can start with an arbitrary critical pair and end up with a small set such that and are also critical pairs for all (say), where is the -fold sumset of . (Intuitively, if are thought of as secretly coming from the pullback of arcs by some character , then should be the pullback of a much shorter arc by the same character.) In particular, exhibits linear growth, in that for all . One can now use standard technology from inverse sumset theory to show first that has a very large Fourier coefficient (and thus is biased with respect to some character ), and secondly that is in fact almost of the form for some arc , from which it is not difficult to conclude similar statements for and and thus finish the proof of the inverse theorem.

In order to make the above argument rigorous, one has to be more precise about what the modifier “almost” means in the definition of a critical pair. I chose to do this in the language of “cheap” nonstandard analysis (aka asymptotic analysis), as discussed in this previous blog post; one could also have used the full-strength version of nonstandard analysis, but this does not seem to convey any substantial advantages. (One can also work in a more traditional “non-asymptotic” framework, but this requires one to keep much more careful account of various small error terms and leads to a messier argument.)

*[Update, Nov 15: Corrected the attribution of the inequality (1) to Kneser instead of Kemperman. Thanks to John Griesmer for pointing out the error.]*

## Recent Comments