You are currently browsing the category archive for the ‘math.DS’ category.

I’ve just uploaded to the arXiv my paper “On the universality of potential well dynamics“, submitted to Dynamics of PDE. This is a spinoff from my previous paper on blowup of nonlinear wave equations, inspired by some conversations with Sungjin Oh. Here we focus mainly on the zero-dimensional case of such equations, namely the potential well equation

for a particle trapped in a potential well with potential , with as . This ODE always admits global solutions from arbitrary initial positions and initial velocities , thanks to conservation of the Hamiltonian . As this Hamiltonian is coercive (in that its level sets are compact), solutions to this equation are always almost periodic. On the other hand, as can already be seen using the harmonic oscillator (and direct sums of this system), this equation can generate periodic solutions, as well as quasiperiodic solutions.

All quasiperiodic motions are almost periodic. However, there are many examples of dynamical systems that admit solutions that are almost periodic but not quasiperiodic. So one can pose the question: are the dynamics of potential wells *universal* in the sense that they can capture all almost periodic solutions?

A precise question can be phrased as follows. Let be a compact manifold, and let be a smooth vector field on ; to avoid degeneracies, let us take to be *non-singular* in the sense that it is everywhere non-vanishing. Then the trajectories of the first-order ODE

for are always global and almost periodic. Can we then find a (coercive) potential for some , as well as a smooth embedding , such that every solution to (2) pushes forward under to a solution to (1)? (Actually, for technical reasons it is preferable to map into the phase space , rather than position space , but let us ignore this detail for this discussion.)

It turns out that the answer is no; there is a very specific obstruction. Given a pair as above, define a *strongly adapted -form* to be a -form on such that is pointwise positive, and the Lie derivative is an exact -form. We then have

Theorem 1A smooth compact non-singular dynamics can be embedded smoothly in a potential well system if and only if it admits a strongly adapted -form.

For the “only if” direction, the key point is that potential wells (viewed as a Hamiltonian flow on the phase space ) admit a strongly adapted -form, namely the canonical -form , whose Lie derivative is the derivative of the Lagrangian and is thus exact. The converse “if” direction is mainly a consequence of the Nash embedding theorem, and follows the arguments used in my previous paper.

Interestingly, the same obstruction also works for potential wells in a more general Riemannian manifold than , or for nonlinear wave equations with a potential; combining the two, the obstruction is also present for wave maps with a potential.

It is then natural to ask whether this obstruction is non-trivial, in the sense that there are at least some examples of dynamics that do not support strongly adapted -forms (and hence cannot be modeled smoothly by the dynamics of a potential well, nonlinear wave equation, or wave maps). I posed this question on MathOverflow, and Robert Bryant provided a very nice construction, showing that the vector field on the -torus had no strongly adapted -forms, and hence the dynamics of this vector field cannot be smoothly reproduced by a potential well, nonlinear wave equation, or wave map:

On the other hand, the suspension of any diffeomorphism does support a strongly adapted -form (the derivative of the time coordinate), and using this and the previous theorem I was able to embed a universal Turing machine into a potential well. In particular, there are flows for an explicitly describable potential well whose trajectories have behavior that is undecidable using the usual ZFC axioms of set theory! So potential well dynamics are “effectively” universal, despite the presence of the aforementioned obstruction.

In my previous work on blowup for Navier-Stokes like equations, I speculated that if one could somehow replicate a universal Turing machine within the Euler equations, one could use this machine to create a “von Neumann machine” that replicated smaller versions of itself, which on iteration would lead to a finite time blowup. Now that such a mechanism is present in nonlinear wave equations, it is tempting to try to make this scheme work in that setting. Of course, in my previous paper I had already demonstrated finite time blowup, at least in a three-dimensional setting, but that was a relatively simple discretely self-similar blowup in which no computation occurred. This more complicated blowup scheme would be significantly more effort to set up, but would be proof-of-concept that the same scheme would in principle be possible for the Navier-Stokes equations, assuming somehow that one can embed a universal Turing machine into the Euler equations. (But I’m still hopelessly stuck on how to accomplish this latter task…)

A sequence of complex numbers is said to be quasiperiodic if it is of the form

for some real numbers and continuous function . For instance, linear phases such as (where ) are examples of quasiperiodic sequences; the top order coefficient (modulo ) can be viewed as a “frequency” of the integers, and an element of the Pontryagin dual of the integers. Any periodic sequence is also quasiperiodic (taking and to be the reciprocal of the period). A sequence is said to be almost periodic if it is the uniform limit of quasiperiodic sequences. For instance any Fourier series of the form

with real numbers and an absolutely summable sequence of complex coefficients, will be almost periodic.

These sequences arise in various “complexity one” problems in arithmetic combinatorics and ergodic theory. For instance, if is a measure-preserving system – a probability space equipped with a measure-preserving shift, and are bounded measurable functions, then the correlation sequence

can be shown to be an almost periodic sequence, plus an error term which is “null” in the sense that it has vanishing uniform density:

This can be established in a number of ways, for instance by writing as the Fourier coefficients of the spectral measure of the shift with respect to the functions , and then decomposing that measure into pure point and continuous components.

In the last two decades or so, it has become clear that there are natural higher order versions of these concepts, in which linear polynomials such as are replaced with higher degree counterparts. The most obvious candidates for these counterparts would be the polynomials , but this turns out to not be a complete set of higher degree objects needed for the theory. Instead, the higher order versions of quasiperiodic and almost periodic sequences are now known as *basic nilsequences* and *nilsequences* respectively, while the higher order version of a linear phase is a *nilcharacter*; each nilcharacter then has a *symbol* that is a higher order generalisation of the concept of a frequency (and the collection of all symbols forms a group that can be viewed as a higher order version of the Pontryagin dual of ). The theory of these objects is spread out in the literature across a number of papers; in particular, the theory of nilcharacters is mostly developed in Appendix E of this 116-page paper of Ben Green, Tamar Ziegler, and myself, and is furthermore written using nonstandard analysis and treating the more general setting of higher dimensional sequences. I therefore decided to rewrite some of that material in this blog post, in the simpler context of the qualitative asymptotic theory of one-dimensional nilsequences and nilcharacters rather than the quantitative single-scale theory that is needed for combinatorial applications (and which necessitated the use of nonstandard analysis in the previous paper).

For technical reasons (having to do with the non-trivial topological structure on nilmanifolds), it will be convenient to work with vector-valued sequences, that take values in a finite-dimensional complex vector space rather than in . By doing so, the space of sequences is now, technically, no longer a ring, as the operations of addition and multiplication on vector-valued sequences become ill-defined. However, we can still take complex conjugates of a sequence, and add sequences taking values in the same vector space , and for sequences taking values in different vector spaces , , we may utilise the tensor product , which we will normalise by defining

This product is associative and bilinear, and also commutative up to permutation of the indices. It also interacts well with the Hermitian norm

since we have .

The traditional definition of a basic nilsequence (as defined for instance by Bergelson, Host, and Kra) is as follows:

Definition 1 (Basic nilsequence, first definition)Anilmanifold of step at mostis a quotient , where is a connected, simply connected nilpotent Lie group of step at most (thus, all -fold commutators vanish) and is a discrete cocompact lattice in . Abasic nilsequence of degree at mostis a sequence of the form , where , , and is a continuous function.

For instance, it is not difficult using this definition to show that a sequence is a basic nilsequence of degree at most if and only if it is quasiperiodic. The requirement that be simply connected can be easily removed if desired by passing to a universal cover, but it is technically convenient to assume it (among other things, it allows for a well-defined logarithm map that obeys the Baker-Campbell-Hausdorff formula). When one wishes to perform a more quantitative analysis of nilsequences (particularly when working on a “single scale”. sich as on a single long interval ), it is common to impose additional regularity conditions on the function , such as Lipschitz continuity or smoothness, but ordinary continuity will suffice for the qualitative discussion in this blog post.

Nowadays, and particularly when one needs to understand the “single-scale” equidistribution properties of nilsequences, it is more convenient (as is for instance done in this ICM paper of Green) to use an alternate definition of a nilsequence as follows.

Definition 2Let . Afiltered group of degree at mostis a group together with a sequence of subgroups with and for . Apolynomial sequenceinto a filtered group is a function such that for all and , where is the difference operator. Afiltered nilmanifold of degree at mostis a quotient , where is a filtered group of degree at most such that and all of the subgroups are connected, simply connected nilpotent filtered Lie group, and is a discrete cocompact subgroup of such that is a discrete cocompact subgroup of . Abasic nilsequence of degree at mostis a sequence of the form , where is a polynomial sequence, is a filtered nilmanifold of degree at most , and is a continuous function which is -automorphic, in the sense that for all and .

One can easily identify a -automorphic function on with a function on , but there are some (very minor) advantages to working on the group instead of the quotient , as it becomes slightly easier to modify the automorphy group when needed. (But because the action of on is free, one can pass from -automorphic functions on to functions on with very little difficulty.) The main reason to work with polynomial sequences rather than geometric progressions is that they form a group, a fact essentially established by by Lazard and Leibman; see Corollary B.4 of this paper of Green, Ziegler, and myself for a proof in the filtered group setting.

It is easy to see that any sequence that is a basic nilsequence of degree at most in the sense of the first definition, is also a basic nilsequence of degree at most in the second definition, since a nilmanifold of degree at most can be filtered using the lower central series, and any linear sequence will be a polynomial sequence with respect to that filtration. The converse implication is a little trickier, but still not too hard to show: see Appendix C of this paper of Ben Green, Tamar Ziegler, and myself. There are two key examples of basic nilsequences to keep in mind. The first are the polynomially quasiperiodic sequences

where are polynomials of degree at most , and is a -automorphic (i.e., -periodic) continuous function. The map defined by is a polynomial map of degree at most , if one filters by defining to equal when , and for . The torus then becomes a filtered nilmanifold of degree at most , and is thus a basic nilsequence of degree at most as per the second definition. It is also possible explicitly describe as a basic nilsequence of degree at most as per the first definition, for instance (in the case) by taking to be the space of upper triangular unipotent real matrices, and the subgroup with integer coefficients; we leave the details to the interested reader.

The other key example is a sequence of the form

where are real numbers, denotes the fractional part of , and and is a -automorphic continuous function that vanishes in a neighbourhood of . To describe this as a nilsequence, we use the nilpotent connected, simply connected degree , Heisenberg group

with the lower central series filtration , , and for , to be the discrete compact subgroup

to be the polynomial sequence

and to be the -automorphic function

one easily verifies that this function is indeed -automorphic, and it is continuous thanks to the vanishing properties of . Also we have , so is a basic nilsequence of degree at most . One can concoct similar examples with replaced by other “bracket polynomials” of ; for instance

will be a basic nilsequence if now vanishes in a neighbourhood of rather than . See this paper of Bergelson and Leibman for more discussion of bracket polynomials (also known as generalised polynomials) and their relationship to nilsequences.

A *nilsequence of degree at most * is defined to be a sequence that is the uniform limit of basic nilsequences of degree at most . Thus for instance a sequence is a nilsequence of degree at most if and only if it is almost periodic, while a sequence is a nilsequence of degree at most if and only if it is constant. Such objects arise in higher order recurrence: for instance, if are integers, is a measure-preserving system, and , then it was shown by Leibman that the sequence

is equal to a nilsequence of degree at most , plus a null sequence. (The special case when the measure-preserving system was ergodic and for was previously established by Bergelson, Host, and Kra.) Nilsequences also arise in the inverse theory of the Gowers uniformity norms, as discussed for instance in this previous post.

It is easy to see that a sequence is a basic nilsequence of degree at most if and only if each of its components are. The scalar basic nilsequences of degree are easily seen to form a -algebra (that is to say, they are a complex vector space closed under pointwise multiplication and complex conjugation), which implies similarly that vector-valued basic nilsequences of degree at most form a complex vector space closed under complex conjugation for each , and that the tensor product of any two basic nilsequences of degree at most is another basic nilsequence of degree at most . Similarly with “basic nilsequence” replaced by “nilsequence” throughout.

Now we turn to the notion of a nilcharacter, as defined in this paper of Ben Green, Tamar Ziegler, and myself:

Definition 3 (Nilcharacters)Let . Asub-nilcharacter of degreeis a basic nilsequence of degree at most , such that obeys the additional modulation propertyfor all and , where is a continuous homomorphism . (Note from (1) and -automorphy that unless vanishes identically, must map to , thus without loss of generality one can view as an element of the Pontryagial dual of the torus .) If in addition one has for all , we call a

nilcharacterof degree .

In the degree one case , the only sub-nilcharacters are of the form for some vector and , and this is a nilcharacter if is a unit vector. Similarly, in higher degree, any sequence of the form , where is a vector and is a polynomial of degree at most , is a sub-nilcharacter of degree , and a character if is a unit vector. A nilsequence of degree at most is automatically a sub-nilcharacter of degree , and a nilcharacter if it is of magnitude . A further example of a nilcharacter is provided by the two-dimensional sequence defined by

where are continuous, -automorphic functions that vanish on a neighbourhood of and respectively, and which form a partition of unity in the sense that

for all . Note that one needs both and to be not identically zero in order for all these conditions to be satisfied; it turns out (for topological reasons) that there is no scalar nilcharacter that is “equivalent” to this nilcharacter in a sense to be defined shortly. In some literature, one works exclusively with sub-nilcharacters rather than nilcharacters, however the former space contains zero-divisors, which is a little annoying technically. Nevertheless, both nilcharacters and sub-nilcharacters generate the same set of “symbols” as we shall see later.

We claim that every degree sub-nilcharacter can be expressed in the form , where is a degree nilcharacter, and is a linear transformation. Indeed, by scaling we may assume where uniformly. Using partitions of unity, one can find further functions also obeying (1) for the same character such that is non-zero; by dividing out the by the square root of this quantity, and then multiplying by , we may assume that

and then

becomes a degree nilcharacter that contains amongst its components, giving the claim.

As we shall show below, nilsequences can be approximated uniformly by linear combinations of nilcharacters, in much the same way that quasiperiodic or almost periodic sequences can be approximated uniformly by linear combinations of linear phases. In particular, nilcharacters can be used as “obstructions to uniformity” in the sense of the inverse theory of the Gowers uniformity norms.

The space of degree nilcharacters forms a semigroup under tensor product, with the constant sequence as the identity. One can upgrade this semigroup to an abelian group by quotienting nilcharacters out by equivalence:

Definition 4Let . We say that two degree nilcharacters , areequivalentif is equal (as a sequence) to a basic nilsequence of degree at most . (We will later show that this is indeed an equivalence relation.) The equivalence class of such a nilcharacter will be called thesymbolof that nilcharacter (in analogy to the symbol of a differential or pseudodifferential operator), and the collection of such symbols will be denoted .

As we shall see below the fold, has the structure of an abelian group, and enjoys some nice “symbol calculus” properties; also, one can view symbols as precisely describing the obstruction to equidistribution for nilsequences. For , the group is isomorphic to the Ponytragin dual of the integers, and for should be viewed as higher order generalisations of this Pontryagin dual. In principle, this group can be explicitly described for all , but the theory rapidly gets complicated as increases (much as the classification of nilpotent Lie groups or Lie algebras of step rapidly gets complicated even for medium-sized such as or ). We will give an explicit description of the case here. There is however one nice (and non-trivial) feature of for – it is not just an abelian group, but is in fact a vector space over the rationals !

Tamar Ziegler and I have just uploaded to the arXiv two related papers: “Concatenation theorems for anti-Gowers-uniform functions and Host-Kra characteoristic factors” and “polynomial patterns in primes“, with the former developing a “quantitative Bessel inequality” for local Gowers norms that is crucial in the latter.

We use the term “concatenation theorem” to denote results in which structural control of a function in two or more “directions” can be “concatenated” into structural control in a *joint* direction. A trivial example of such a concatenation theorem is the following: if a function is constant in the first variable (thus is constant for each ), and also constant in the second variable (thus is constant for each ), then it is constant in the joint variable . A slightly less trivial example: if a function is affine-linear in the first variable (thus, for each , there exist such that for all ) and affine-linear in the second variable (thus, for each , there exist such that for all ) then is a quadratic polynomial in ; in fact it must take the form

for some real numbers . (This can be seen for instance by using the affine linearity in to show that the coefficients are also affine linear.)

The same phenomenon extends to higher degree polynomials. Given a function from one additive group to another, we say that is of *degree less than * along a subgroup of if all the -fold iterated differences of along directions in vanish, that is to say

for all and , where is the difference operator

(We adopt the convention that the only of degree less than is the zero function.)

We then have the following simple proposition:

Proposition 1 (Concatenation of polynomiality)Let be of degree less than along one subgroup of , and of degree less than along another subgroup of , for some . Then is of degree less than along the subgroup of .

Note the previous example was basically the case when , , , , and .

*Proof:* The claim is trivial for or (in which is constant along or respectively), so suppose inductively and the claim has already been proven for smaller values of .

We take a derivative in a direction along to obtain

where is the shift of by . Then we take a further shift by a direction to obtain

leading to the *cocycle equation*

Since has degree less than along and degree less than along , has degree less than along and less than along , so is degree less than along by induction hypothesis. Similarly is also of degree less than along . Combining this with the cocycle equation we see that is of degree less than along for any , and hence is of degree less than along , as required.

While this proposition is simple, it already illustrates some basic principles regarding how one would go about proving a concatenation theorem:

- (i) One should perform induction on the degrees involved, and take advantage of the recursive nature of degree (in this case, the fact that a function is of less than degree along some subgroup of directions iff all of its first derivatives along are of degree less than ).
- (ii) Structure is preserved by operations such as addition, shifting, and taking derivatives. In particular, if a function is of degree less than along some subgroup , then any derivative of is also of degree less than along ,
*even if does not belong to*.

Here is another simple example of a concatenation theorem. Suppose an at most countable additive group acts by measure-preserving shifts on some probability space ; we call the pair (or more precisely ) a *-system*. We say that a function is a *generalised eigenfunction of degree less than * along some subgroup of and some if one has

almost everywhere for all , and some functions of degree less than along , with the convention that a function has degree less than if and only if it is equal to . Thus for instance, a function is an generalised eigenfunction of degree less than along if it is constant on almost every -ergodic component of , and is a generalised function of degree less than along if it is an eigenfunction of the shift action on almost every -ergodic component of . A basic example of a higher order eigenfunction is the function on the *skew shift* with action given by the generator for some irrational . One can check that for every integer , where is a generalised eigenfunction of degree less than along , so is of degree less than along .

We then have

Proposition 2 (Concatenation of higher order eigenfunctions)Let be a -system, and let be a generalised eigenfunction of degree less than along one subgroup of , and a generalised eigenfunction of degree less than along another subgroup of , for some . Then is a generalised eigenfunction of degree less than along the subgroup of .

The argument is almost identical to that of the previous proposition and is left as an exercise to the reader. The key point is the point (ii) identified earlier: the space of generalised eigenfunctions of degree less than along is preserved by multiplication and shifts, as well as the operation of “taking derivatives” even along directions that do not lie in . (To prove this latter claim, one should restrict to the region where is non-zero, and then divide by to locate .)

A typical example of this proposition in action is as follows: consider the -system given by the -torus with generating shifts

for some irrational , which can be checked to give a action

The function can then be checked to be a generalised eigenfunction of degree less than along , and also less than along , and less than along . One can view this example as the dynamical systems translation of the example (1) (see this previous post for some more discussion of this sort of correspondence).

The main results of our concatenation paper are analogues of these propositions concerning a more complicated notion of “polynomial-like” structure that are of importance in additive combinatorics and in ergodic theory. On the ergodic theory side, the notion of structure is captured by the *Host-Kra characteristic factors* of a -system along a subgroup . These factors can be defined in a number of ways. One is by duality, using the *Gowers-Host-Kra uniformity seminorms* (defined for instance here) . Namely, is the factor of defined up to equivalence by the requirement that

An equivalent definition is in terms of the *dual functions* of along , which can be defined recursively by setting and

where denotes the ergodic average along a Følner sequence in (in fact one can also define these concepts in non-amenable abelian settings as per this previous post). The factor can then be alternately defined as the factor generated by the dual functions for .

In the case when and is -ergodic, a deep theorem of Host and Kra shows that the factor is equivalent to the inverse limit of nilsystems of step less than . A similar statement holds with replaced by any finitely generated group by Griesmer, while the case of an infinite vector space over a finite field was treated in this paper of Bergelson, Ziegler, and myself. The situation is more subtle when is not -ergodic, or when is -ergodic but is a proper subgroup of acting non-ergodically, when one has to start considering measurable families of directional nilsystems; see for instance this paper of Austin for some of the subtleties involved (for instance, higher order group cohomology begins to become relevant!).

One of our main theorems is then

Proposition 3 (Concatenation of characteristic factors)Let be a -system, and let be measurable with respect to the factor and with respect to the factor for some and some subgroups of . Then is also measurable with respect to the factor .

We give two proofs of this proposition in the paper; an ergodic-theoretic proof using the Host-Kra theory of “cocycles of type (along a subgroup )”, which can be used to inductively describe the factors , and a combinatorial proof based on a combinatorial analogue of this proposition which is harder to state (but which roughly speaking asserts that a function which is nearly orthogonal to all bounded functions of small norm, and also to all bounded functions of small norm, is also nearly orthogonal to alll bounded functions of small norm). The combinatorial proof parallels the proof of Proposition 2. A key point is that dual functions obey a property analogous to being a generalised eigenfunction, namely that

where and is a “structured function of order ” along . (In the language of this previous paper of mine, this is an assertion that dual functions are uniformly almost periodic of order .) Again, the point (ii) above is crucial, and in particular it is key that any structure that has is inherited by the associated functions and . This sort of inheritance is quite easy to accomplish in the ergodic setting, as there is a ready-made language of factors to encapsulate the concept of structure, and the shift-invariance and -algebra properties of factors make it easy to show that just about any “natural” operation one performs on a function measurable with respect to a given factor, returns a function that is still measurable in that factor. In the finitary combinatorial setting, though, encoding the fact (ii) becomes a remarkably complicated notational nightmare, requiring a huge amount of “epsilon management” and “second-order epsilon management” (in which one manages not only scalar epsilons, but also function-valued epsilons that depend on other parameters). In order to avoid all this we were forced to utilise a nonstandard analysis framework for the combinatorial theorems, which made the arguments greatly resemble the ergodic arguments in many respects (though the two settings are still not equivalent, see this previous blog post for some comparisons between the two settings). Unfortunately the arguments are still rather complicated.

For combinatorial applications, dual formulations of the concatenation theorem are more useful. A direct dualisation of the theorem yields the following decomposition theorem: a bounded function which is small in norm can be split into a component that is small in norm, and a component that is small in norm. (One may wish to understand this type of result by first proving the following baby version: any function that has mean zero on every coset of , can be decomposed as the sum of a function that has mean zero on every coset, and a function that has mean zero on every coset. This is dual to the assertion that a function that is constant on every coset and constant on every coset, is constant on every coset.) Combining this with some standard “almost orthogonality” arguments (i.e. Cauchy-Schwarz) give the following Bessel-type inequality: if one has a lot of subgroups and a bounded function is small in norm for most , then it is also small in norm for most . (Here is a baby version one may wish to warm up on: if a function has small mean on for some large prime , then it has small mean on most of the cosets of most of the one-dimensional subgroups of .)

There is also a generalisation of the above Bessel inequality (as well as several of the other results mentioned above) in which the subgroups are replaced by more general *coset progressions* (of bounded rank), so that one has a Bessel inequailty controlling “local” Gowers uniformity norms such as by “global” Gowers uniformity norms such as . This turns out to be particularly useful when attempting to compute polynomial averages such as

for various functions . After repeated use of the van der Corput lemma, one can control such averages by expressions such as

(actually one ends up with more complicated expressions than this, but let’s use this example for sake of discussion). This can be viewed as an average of various Gowers uniformity norms of along arithmetic progressions of the form for various . Using the above Bessel inequality, this can be controlled in turn by an average of various Gowers uniformity norms along rank two generalised arithmetic progressions of the form for various . But for generic , this rank two progression is close in a certain technical sense to the “global” interval (this is ultimately due to the basic fact that two randomly chosen large integers are likely to be coprime, or at least have a small gcd). As a consequence, one can use the concatenation theorems from our first paper to control expressions such as (2) in terms of *global* Gowers uniformity norms. This is important in number theoretic applications, when one is interested in computing sums such as

or

where and are the Möbius and von Mangoldt functions respectively. This is because we are able to control global Gowers uniformity norms of such functions (thanks to results such as the proof of the inverse conjecture for the Gowers norms, the orthogonality of the Möbius function with nilsequences, and asymptotics for linear equations in primes), but much less control is currently available for local Gowers uniformity norms, even with the assistance of the generalised Riemann hypothesis (see this previous blog post for some further discussion).

By combining these tools and strategies with the “transference principle” approach from our previous paper (as improved using the recent “densification” technique of Conlon, Fox, and Zhao, discussed in this previous post), we are able in particular to establish the following result:

Theorem 4 (Polynomial patterns in the primes)Let be polynomials of degree at most , whose degree coefficients are all distinct, for some . Suppose that is admissible in the sense that for every prime , there are such that are all coprime to . Then there exist infinitely many pairs of natural numbers such that are prime.

Furthermore, we obtain an asymptotic for the number of such pairs in the range , (actually for minor technical reasons we reduce the range of to be very slightly less than ). In fact one could in principle obtain asymptotics for smaller values of , and relax the requirement that the degree coefficients be distinct with the requirement that no two of the differ by a constant, provided one had good enough local uniformity results for the Möbius or von Mangoldt functions. For instance, we can obtain an asymptotic for triplets of the form unconditionally for , and conditionally on GRH for all , using known results on primes in short intervals on average.

The case of this theorem was obtained in a previous paper of myself and Ben Green (using the aforementioned conjectures on the Gowers uniformity norm and the orthogonality of the Möbius function with nilsequences, both of which are now proven). For higher , an older result of Tamar and myself was able to tackle the case when (though our results there only give lower bounds on the number of pairs , and no asymptotics). Both of these results generalise my older theorem with Ben Green on the primes containing arbitrarily long arithmetic progressions. The theorem also extends to multidimensional polynomials, in which case there are some additional previous results; see the paper for more details. We also get a technical refinement of our previous result on narrow polynomial progressions in (dense subsets of) the primes by making the progressions just a little bit narrower in the case of the density of the set one is using is small.

. This latter Bessel type inequality is particularly useful in combinatorial and number-theoretic applications, as it allows one to convert “global” Gowers uniformity norm (basically, bounds on norms such as ) to “local” Gowers uniformity norm control.

Note: this post is of a particularly technical nature, in particular presuming familiarity with nilsequences, nilsystems, characteristic factors, etc., and is primarily intended for experts.

As mentioned in the previous post, Ben Green, Tamar Ziegler, and myself proved the following inverse theorem for the Gowers norms:

Theorem 1 (Inverse theorem for Gowers norms)Let and be integers, and let . Suppose that is a function supported on such thatThen there exists a filtered nilmanifold of degree and complexity , a polynomial sequence , and a Lipschitz function of Lipschitz constant such that

This result was conjectured earlier by Ben Green and myself; this conjecture was strongly motivated by an analogous inverse theorem in ergodic theory by Host and Kra, which we formulate here in a form designed to resemble Theorem 1 as closely as possible:

Theorem 2 (Inverse theorem for Gowers-Host-Kra seminorms)Let be an integer, and let be an ergodic, countably generated measure-preserving system. Suppose that one hasfor all non-zero (all spaces are real-valued in this post). Then is an inverse limit (in the category of measure-preserving systems, up to almost everywhere equivalence) of ergodic degree nilsystems, that is to say systems of the form for some degree filtered nilmanifold and a group element that acts ergodically on .

It is a natural question to ask if there is any logical relationship between the two theorems. In the finite field category, one can deduce the combinatorial inverse theorem from the ergodic inverse theorem by a variant of the Furstenberg correspondence principle, as worked out by Tamar Ziegler and myself, however in the current context of -actions, the connection is less clear.

One can split Theorem 2 into two components:

Theorem 3 (Weak inverse theorem for Gowers-Host-Kra seminorms)Let be an integer, and let be an ergodic, countably generated measure-preserving system. Suppose that one hasfor all non-zero , where . Then is a

factorof an inverse limit of ergodic degree nilsystems.

Theorem 4 (Pro-nilsystems closed under factors)Let be an integer. Then any factor of an inverse limit of ergodic degree nilsystems, is again an inverse limit of ergodic degree nilsystems.

Indeed, it is clear that Theorem 2 implies both Theorem 3 and Theorem 4, and conversely that the two latter theorems jointly imply the former. Theorem 4 is, in principle, purely a fact about nilsystems, and should have an independent proof, but this is not known; the only known proofs go through the full machinery needed to prove Theorem 2 (or the closely related theorem of Ziegler). (However, the fact that a factor of a nilsystem is again a nilsystem was established previously by Parry.)

The purpose of this post is to record a partial implication in reverse direction to the correspondence principle:

As mentioned at the start of the post, a fair amount of familiarity with the area is presumed here, and some routine steps will be presented with only a fairly brief explanation.

A few years ago, Ben Green, Tamar Ziegler, and myself proved the following (rather technical-looking) inverse theorem for the Gowers norms:

Theorem 1 (Discrete inverse theorem for Gowers norms)Let and be integers, and let . Suppose that is a function supported on such thatThen there exists a filtered nilmanifold of degree and complexity , a polynomial sequence , and a Lipschitz function of Lipschitz constant such that

For the definitions of “filtered nilmanifold”, “degree”, “complexity”, and “polynomial sequence”, see the paper of Ben, Tammy, and myself. (I should caution the reader that this blog post will presume a fair amount of familiarity with this subfield of additive combinatorics.) This result has a number of applications, for instance to establishing asymptotics for linear equations in the primes, but this will not be the focus of discussion here.

The purpose of this post is to record the observation that this “discrete” inverse theorem, together with an equidistribution theorem for nilsequences that Ben and I worked out in a separate paper, implies a continuous version:

Theorem 2 (Continuous inverse theorem for Gowers norms)Let be an integer, and let . Suppose that is a measurable function supported on such thatThen there exists a filtered nilmanifold of degree and complexity , a (smooth) polynomial sequence , and a Lipschitz function of Lipschitz constant such that

The interval can be easily replaced with any other fixed interval by a change of variables. A key point here is that the bounds are completely uniform in the choice of . Note though that the coefficients of can be arbitrarily large (and this is necessary, as can be seen just by considering functions of the form for some arbitrarily large frequency ).

It is likely that one could prove Theorem 2 by carefully going through the proof of Theorem 1 and replacing all instances of with (and making appropriate modifications to the argument to accommodate this). However, the proof of Theorem 1 is quite lengthy. Here, we shall proceed by the usual limiting process of viewing the continuous interval as a limit of the discrete interval as . However there will be some problems taking the limit due to a failure of compactness, and specifically with regards to the coefficients of the polynomial sequence produced by Theorem 1, after normalising these coefficients by . Fortunately, a factorisation theorem from a paper of Ben Green and myself resolves this problem by splitting into a “smooth” part which does enjoy good compactness properties, as well as “totally equidistributed” and “periodic” parts which can be eliminated using the measurability (and thus, approximate smoothness), of .

Szemerédi’s theorem asserts that any subset of the integers of positive upper density contains arbitrarily large arithmetic progressions. Here is an equivalent quantitative form of this theorem:

Theorem 1 (Szemerédi’s theorem)Let be a positive integer, and let be a function with for some , where we use the averaging notation , , etc.. Then for we havefor some depending only on .

The equivalence is basically thanks to an averaging argument of Varnavides; see for instance Chapter 11 of my book with Van Vu or this previous blog post for a discussion. We have removed the cases as they are trivial and somewhat degenerate.

There are now many proofs of this theorem. Some time ago, I took an ergodic-theoretic proof of Furstenberg and converted it to a purely finitary proof of the theorem. The argument used some simplifying innovations that had been developed since the original work of Furstenberg (in particular, deployment of the Gowers uniformity norms, as well as a “dual” norm that I called the uniformly almost periodic norm, and an emphasis on van der Waerden’s theorem for handling the “compact extension” component of the argument). But the proof was still quite messy. However, as discussed in this previous blog post, messy finitary proofs can often be cleaned up using nonstandard analysis. Thus, there should be a nonstandard version of the Furstenberg ergodic theory argument that is relatively clean. I decided (after some encouragement from Ben Green and Isaac Goldbring) to write down most of the details of this argument in this blog post, though for sake of brevity I will skim rather quickly over arguments that were already discussed at length in other blog posts. In particular, I will presume familiarity with nonstandard analysis (in particular, the notion of a standard part of a bounded real number, and the Loeb measure construction), see for instance this previous blog post for a discussion.

I’ve just uploaded to the arXiv my paper “Failure of the pointwise and maximal ergodic theorems for the free group“, submitted to Forum of Mathematics, Sigma. This paper concerns a variant of the pointwise ergodic theorem of Birkhoff, which asserts that if one has a measure-preserving shift map on a probability space , then for any , the averages converge pointwise almost everywhere. (In the important case when the shift map is ergodic, the pointwise limit is simply the mean of the original function .)

The pointwise ergodic theorem can be extended to measure-preserving actions of other amenable groups, if one uses a suitably “tempered” Folner sequence of averages; see this paper of Lindenstrauss for more details. (I also wrote up some notes on that paper here, back in 2006 before I had started this blog.) But the arguments used to handle the amenable case break down completely for non-amenable groups, and in particular for the free non-abelian group on two generators.

Nevo and Stein studied this problem and obtained a number of pointwise ergodic theorems for -actions on probability spaces . For instance, for the spherical averaging operators

(where denotes the length of the reduced word that forms ), they showed that converged pointwise almost everywhere provided that was in for some . (The need to restrict to spheres of even radius can be seen by considering the action of on the two-element set in which both generators of act by interchanging the elements, in which case is determined by the parity of .) This result was reproven with a different and simpler proof by Bufetov, who also managed to relax the condition to the weaker condition .

The question remained open as to whether the pointwise ergodic theorem for -actions held if one only assumed that was in . Nevo and Stein were able to establish this for the Cesáro averages , but not for itself. About six years ago, Assaf Naor and I tried our hand at this problem, and was able to show an associated maximal inequality on , but due to the non-amenability of , this inequality did not transfer to and did not have any direct impact on this question, despite a fair amount of effort on our part to attack it.

Inspired by some recent conversations with Lewis Bowen, I returned to this problem. This time around, I tried to construct a counterexample to the pointwise ergodic theorem – something Assaf and I had not seriously attempted to do (perhaps due to being a bit too enamoured of our maximal inequality). I knew of an existing counterexample of Ornstein regarding a failure of an ergodic theorem for iterates of a self-adjoint Markov operator – in fact, I had written some notes on this example back in 2007. Upon revisiting my notes, I soon discovered that the Ornstein construction was adaptable to the setting, thus settling the problem in the negative:

Theorem 1 (Failure of pointwise ergodic theorem)There exists a measure-preserving -action on a probability space and a non-negative function such that for almost every .

To describe the proof of this theorem, let me first briefly sketch the main ideas of Ornstein’s construction, which gave an example of a self-adjoint Markov operator on a probability space and a non-negative such that for almost every . By some standard manipulations, it suffices to show that for any given and , there exists a self-adjoint Markov operator on a probability space and a non-negative with , such that on a set of measure at least . Actually, it will be convenient to replace the Markov chain with an *ancient Markov chain* – that is to say, a sequence of non-negative functions for both positive and negative , such that for all . The purpose of requiring the Markov chain to be ancient (that is, to extend infinitely far back in time) is to allow for the Markov chain to be shifted arbitrarily in time, which is key to Ornstein’s construction. (Technically, Ornstein’s original argument only uses functions that go back to a large negative time, rather than being infinitely ancient, but I will gloss over this point for sake of discussion, as it turns out that the version of the argument can be run using infinitely ancient chains.)

For any , let denote the claim that for any , there exists an ancient Markov chain with such that on a set of measure at least . Clearly holds since we can just take for all . Our objective is to show that holds for arbitrarily small . The heart of Ornstein’s argument is then the implication

for any , which upon iteration quickly gives the desired claim.

Let’s see informally how (1) works. By hypothesis, and ignoring epsilons, we can find an ancient Markov chain on some probability space of total mass , such that attains the value of or greater almost everywhere. Assuming that the Markov process is irreducible, the will eventually converge as to the constant value of , in particular its final state will essentially stay above (up to small errors).

Now suppose we duplicate the Markov process by replacing with a double copy (giving the uniform probability measure), and using the disjoint sum of the Markov operators on and as the propagator, so that there is no interaction between the two components of this new system. Then the functions form an ancient Markov chain of mass at most that lives solely in the first half of this copy, and attains the value of or greater on almost all of the first half , but is zero on the second half. The final state of will be to stay above in the first half , but be zero on the second half.

Now we modify the above example by allowing an infinitesimal amount of interaction between the two halves , of the system (I mentally think of and as two identical boxes that a particle can bounce around in, and now we wish to connect the boxes by a tiny tube). The precise way in which this interaction is inserted is not terribly important so long as the new Markov process is irreducible. Once one does so, then the ancient Markov chain in the previous example gets replaced by a slightly different ancient Markov chain which is more or less identical with for negative times , or for bounded positive times , but for very large values of the final state is now constant across the entire state space , and will stay above on this space.

Finally, we consider an ancient Markov chain which is basically of the form

for some large parameter and for all (the approximation becomes increasingly inaccurate for much larger than , but never mind this for now). This is basically two copies of the original Markov process in separate, barely interacting state spaces , but with the second copy delayed by a large time delay , and also attenuated in amplitude by a factor of . The total mass of this process is now . Because of the component of , we see that basically attains the value of or greater on the first half . On the second half , we work with times close to . If is large enough, would have averaged out to about at such times, but the component can get as large as here. Summing (and continuing to ignore various epsilon losses), we see that can get as large as on almost all of the second half of . This concludes the rough sketch of how one establishes the implication (1).

It was observed by Bufetov that the spherical averages for a free group action can be lifted up to become powers of a Markov operator, basically by randomly assigning a “velocity vector” to one’s base point and then applying the Markov process that moves along that velocity vector (and then randomly changing the velocity vector at each time step to the “reduced word” condition that the velocity never flips from to ). Thus the spherical average problem has a Markov operator interpretation, which opens the door to adapting the Ornstein construction to the setting of systems. This turns out to be doable after a certain amount of technical artifice; the main thing is to work with -measure preserving systems that admit ancient Markov chains that are initially supported in a very small region in the “interior” of the state space, so that one can couple such systems to each other “at the boundary” in the fashion needed to establish the analogue of (1) without disrupting the ancient dynamics of such chains. The initial such system (used to establish the base case ) comes from basically considering the action of on a (suitably renormalised) “infinitely large ball” in the Cayley graph, after suitably gluing together the boundary of this ball to complete the action. The ancient Markov chain associated to this system starts at the centre of this infinitely large ball at infinite negative time , and only reaches the boundary of this ball at the time .

An extremely large portion of mathematics is concerned with locating solutions to equations such as

for in some suitable domain space (either finite-dimensional or infinite-dimensional), and various maps or . To solve the fixed point iteration equation (1), the simplest general method available is the fixed point iteration method: one starts with an initial *approximate solution* to (1), so that , and then recursively constructs the sequence by . If behaves enough like a “contraction”, and the domain is complete, then one can expect the to converge to a limit , which should then be a solution to (1). For instance, if is a map from a metric space to itself, which is a contraction in the sense that

for all and some , then with as above we have

for any , and so the distances between successive elements of the sequence decay at at least a geometric rate. This leads to the contraction mapping theorem, which has many important consequences, such as the inverse function theorem and the Picard existence theorem.

A slightly more complicated instance of this strategy arises when trying to *linearise* a complex map defined in a neighbourhood of a fixed point. For simplicity we normalise the fixed point to be the origin, thus and . When studying the complex dynamics , , of such a map, it can be useful to try to conjugate to another function , where is a holomorphic function defined and invertible near with , since the dynamics of will be conjguate to that of . Note that if and , then from the chain rule any conjugate of will also have and . Thus, the “simplest” function one can hope to conjugate to is the linear function . Let us say that is *linearisable* (around ) if it is conjugate to in some neighbourhood of . Equivalently, is linearisable if there is a solution to the Schröder equation

for some defined and invertible in a neighbourhood of with , and all sufficiently close to . (The Schröder equation is normalised somewhat differently in the literature, but this form is equivalent to the usual form, at least when is non-zero.) Note that if solves the above equation, then so does for any non-zero , so we may normalise in addition to , which also ensures local invertibility from the inverse function theorem. (Note from winding number considerations that cannot be invertible near zero if vanishes.)

We have the following basic result of Koenigs:

Theorem 1 (Koenig’s linearisation theorem)Let be a holomorphic function defined near with and . If (attracting case) or (repelling case), then is linearisable near zero.

*Proof:* Observe that if solve (2), then solve (2) also (in a sufficiently small neighbourhood of zero). Thus we may reduce to the attractive case .

Let be a sufficiently small radius, and let denote the space of holomorphic functions on the complex disk with and . We can view the Schröder equation (2) as a fixed point equation

where is the partially defined function on that maps a function to the function defined by

assuming that is well-defined on the range of (this is why is only partially defined).

We can solve this equation by the fixed point iteration method, if is small enough. Namely, we start with being the identity map, and set , etc. We equip with the uniform metric . Observe that if , and is small enough, then takes values in , and are well-defined and lie in . Also, since is smooth and has derivative at , we have

if , and is sufficiently small depending on . This is not yet enough to establish the required contraction (thanks to Mario Bonk for pointing this out); but observe that the function is holomorphic on and bounded by on the boundary of this ball (or slightly within this boundary), so by the maximum principle we see that

on all of , and in particular

on . Putting all this together, we see that

since , we thus obtain a contraction on the ball if is small enough (and sufficiently small depending on ). From this (and the completeness of , which follows from Morera’s theorem) we see that the iteration converges (exponentially fast) to a limit which is a fixed point of , and thus solves Schröder’s equation, as required.

Koenig’s linearisation theorem leaves open the *indifferent case* when . In the *rationally indifferent* case when for some natural number , there is an obvious obstruction to linearisability, namely that (in particular, linearisation is not possible in this case when is a non-trivial rational function). An obstruction is also present in some *irrationally indifferent* cases (where but for any natural number ), if is sufficiently close to various roots of unity; the first result of this form is due to Cremer, and the optimal result of this type for quadratic maps was established by Yoccoz. In the other direction, we have the following result of Siegel:

Theorem 2 (Siegel’s linearisation theorem)Let be a holomorphic function defined near with and . If and one has the Diophantine condition for all natural numbers and some constant , then is linearisable at .

The Diophantine condition can be relaxed to a more general condition involving the rational exponents of the phase of ; this was worked out by Brjuno, with the condition matching the one later obtained by Yoccoz. Amusingly, while the set of Diophantine numbers (and hence the set of linearisable ) has full measure on the unit circle, the set of non-linearisable is generic (the complement of countably many nowhere dense sets) due to the above-mentioned work of Cremer, leading to a striking disparity between the measure-theoretic and category notions of “largeness”.

Siegel’s theorem does not seem to be provable using a fixed point iteration method. However, it can be established by modifying another basic method to solve equations, namely Newton’s method. Let us first review how this method works to solve the equation for some smooth function defined on an interval . We suppose we have some initial approximant to this equation, with small but not necessarily zero. To make the analysis more quantitative, let us suppose that the interval lies in for some , and we have the estimates

for some and and all (the factors of are present to make “dimensionless”).

Lemma 3Under the above hypotheses, we can find with such thatIn particular, setting , , and , we have , and

for all .

The crucial point here is that the new error is roughly the square of the previous error . This leads to extremely fast (double-exponential) improvement in the error upon iteration, which is more than enough to absorb the exponential losses coming from the factor.

*Proof:* If for some absolute constants then we may simply take , so we may assume that for some small and large . Using the Newton approximation we are led to the choice

for . From the hypotheses on and the smallness hypothesis on we certainly have . From Taylor’s theorem with remainder we have

and the claim follows.

We can iterate this procedure; starting with as above, we obtain a sequence of nested intervals with , and with evolving by the recursive equations and estimates

If is sufficiently small depending on , we see that converges rapidly to zero (indeed, we can inductively obtain a bound of the form for some large absolute constant if is small enough), and converges to a limit which then solves the equation by the continuity of .

As I recently learned from Zhiqiang Li, a similar scheme works to prove Siegel’s theorem, as can be found for instance in this text of Carleson and Gamelin. The key is the following analogue of Lemma 3.

Lemma 4Let be a complex number with and for all natural numbers . Let , and let be a holomorphic function with , , andfor all and some . Let , and set . Then there exists an injective holomorphic function and a holomorphic function such that

and

for all and some .

*Proof:* By scaling we may normalise . If for some constants , then we can simply take to be the identity and , so we may assume that for some small and large .

To motivate the choice of , we write and , with and viewed as small. We would like to have , which expands as

As and are both small, we can heuristically approximate up to quadratic errors (compare with the Newton approximation ), and arrive at the equation

This equation can be solved by Taylor series; the function vanishes to second order at the origin and thus has a Taylor expansion

and then has a Taylor expansion

We take this as our definition of , define , and then define implicitly via (4).

Let us now justify that this choice works. By (3) and the generalised Cauchy integral formula, we have for all ; by the Diophantine assumption on , we thus have . In particular, converges on , and on the disk (say) we have the bounds

In particular, as is so small, we see that maps injectively to and to , and the inverse maps to . From (3) we see that maps to , and so if we set to be the function , then is a holomorphic function obeying (4). Expanding (4) in terms of and as before, and also writing , we have

for , which by (5) simplifies to

From (6), the fundamental theorem of calculus, and the smallness of we have

and thus

From (3) and the Cauchy integral formula we have on (say) , and so from (6) and the fundamental theorem of calculus we conclude that

on , and the claim follows.

If we set , , and to be sufficiently small, then (since vanishes to second order at the origin), the hypotheses of this lemma will be obeyed for some sufficiently small . Iterating the lemma (and halving repeatedly), we can then find sequences , injective holomorphic functions and holomorphic functions such that one has the recursive identities and estimates

for all and . By construction, decreases to a positive radius that is a constant multiple of , while (for small enough) converges double-exponentially to zero, so in particular converges uniformly to on . Also, is close enough to the identity, the compositions are uniformly convergent on with and . From this we have

on , and on taking limits using Morera’s theorem we obtain a holomorphic function defined near with , , and

obtaining the required linearisation.

Remark 5The idea of using a Newton-type method to obtain error terms that decay double-exponentially, and can therefore absorb exponential losses in the iteration, also occurs in KAM theory and in Nash-Moser iteration, presumably due to Siegel’s influence on Moser. (I discuss Nash-Moser iteration in this note that I wrote back in 2006.)

The von Neumann ergodic theorem (the Hilbert space version of the mean ergodic theorem) asserts that if is a unitary operator on a Hilbert space , and is a vector in that Hilbert space, then one has

in the strong topology, where is the -invariant subspace of , and is the orthogonal projection to . (See e.g. these previous lecture notes for a proof.) The same proof extends to more general amenable groups: if is a countable amenable group acting on a Hilbert space by unitary transformations for , and is a vector in that Hilbert space, then one has

for any Folner sequence of , where is the -invariant subspace, and is the average of on . Thus one can interpret as a certain average of elements of the orbit of .

In a previous blog post, I noted a variant of this ergodic theorem (due to Alaoglu and Birkhoff) that holds even when the group is not amenable (or not discrete), using a more abstract notion of averaging:

Theorem 1 (Abstract ergodic theorem)Let be an arbitrary group acting unitarily on a Hilbert space , and let be a vector in . Then is the element in the closed convex hull of of minimal norm, and is also the unique element of in this closed convex hull.

I recently stumbled upon a different way to think about this theorem, in the additive case when is abelian, which has a closer resemblance to the classical mean ergodic theorem. Given an arbitrary additive group (not necessarily discrete, or countable), let denote the collection of finite non-empty multisets in – that is to say, unordered collections of elements of , not necessarily distinct, for some positive integer . Given two multisets , in , we can form the sum set . Note that the sum set can contain multiplicity even when do not; for instance, . Given a multiset in , and a function from to a vector space , we define the average as

Note that the multiplicity function of the set affects the average; for instance, we have , but .

We can define a directed set on as follows: given two multisets , we write if we have for some . Thus for instance we have . It is easy to verify that this operation is transitive and reflexive, and is directed because any two elements of have a common upper bound, namely . (This is where we need to be abelian.) The notion of convergence along a net, now allows us to define the notion of convergence along ; given a family of points in a topological space indexed by elements of , and a point in , we say that *converges* to along if, for every open neighbourhood of in , one has for sufficiently large , that is to say there exists such that for all . If the topological space is Hausdorff, then the limit is unique (if it exists), and we then write

When takes values in the reals, one can also define the limit superior or limit inferior along such nets in the obvious fashion.

We can then give an alternate formulation of the abstract ergodic theorem in the abelian case:

Theorem 2 (Abelian abstract ergodic theorem)Let be an arbitrary additive group acting unitarily on a Hilbert space , and let be a vector in . Then we havein the strong topology of .

*Proof:* Suppose that , so that for some , then

so by unitarity and the triangle inequality we have

thus is monotone non-increasing in . Since this quantity is bounded between and , we conclude that the limit exists. Thus, for any , we have for sufficiently large that

for all . In particular, for any , we have

We can write

and so from the parallelogram law and unitarity we have

for all , and hence by the triangle inequality (averaging over a finite multiset )

for any . This shows that is a Cauchy sequence in (in the strong topology), and hence (by the completeness of ) tends to a limit. Shifting by a group element , we have

and hence is invariant under shifts, and thus lies in . On the other hand, for any and , we have

and thus on taking strong limits

and so is orthogonal to . Combining these two facts we see that is equal to as claimed.

To relate this result to the classical ergodic theorem, we observe

Lemma 3Let be a countable additive group, with a F{\o}lner sequence , and let be a bounded sequence in a normed vector space indexed by . If exists, then exists, and the two limits are equal.

*Proof:* From the F{\o}lner property, we see that for any and any , the averages and differ by at most in norm if is sufficiently large depending on , (and the ). On the other hand, by the existence of the limit , the averages and differ by at most in norm if is sufficiently large depending on (regardless of how large is). The claim follows.

It turns out that this approach can also be used as an alternate way to construct the Gowers–Host-Kra seminorms in ergodic theory, which has the feature that it does not explicitly require any amenability on the group (or separability on the underlying measure space), though, as pointed out to me in comments, even uncountable abelian groups are amenable in the sense of possessing an invariant mean, even if they do not have a F{\o}lner sequence.

Given an arbitrary additive group , define a *-system* to be a probability space (not necessarily separable or standard Borel), together with a collection of invertible, measure-preserving maps, such that is the identity and (modulo null sets) for all . This then gives isomorphisms for by setting . From the above abstract ergodic theorem, we see that

in the strong topology of for any , where is the collection of measurable sets that are essentially -invariant in the sense that modulo null sets for all , and is the conditional expectation of with respect to .

In a similar spirit, we have

Theorem 4 (Convergence of Gowers-Host-Kra seminorms)Let be a -system for some additive group . Let be a natural number, and for every , let , which for simplicity we take to be real-valued. Then the expressionconverges, where we write , and we are using the product direct set on to define the convergence . In particular, for , the limit

converges.

We prove this theorem below the fold. It implies a number of other known descriptions of the Gowers-Host-Kra seminorms , for instance that

for , while from the ergodic theorem we have

This definition also manifestly demonstrates the cube symmetries of the Host-Kra measures on , defined via duality by requiring that

In a subsequent blog post I hope to present a more detailed study of the norm and its relationship with eigenfunctions and the Kronecker factor, without assuming any amenability on or any separability or topological structure on .

The 2014 Fields medallists have just been announced as (in alphabetical order of surname) Artur Avila, Manjul Bhargava, Martin Hairer, and Maryam Mirzakhani (see also these nice video profiles for the winners, which is a new initiative of the IMU and the Simons foundation). This time four years ago, I wrote a blog post discussing one result from each of the 2010 medallists; I thought I would try to repeat the exercise here, although the work of the medallists this time around is a little bit further away from my own direct area of expertise than last time, and so my discussion will unfortunately be a bit superficial (and possibly not completely accurate) in places. As before, I am picking these results based on my own idiosyncratic tastes, and they should not be viewed as necessarily being the “best” work of these medallists. (See also the press releases for Avila, Bhargava, Hairer, and Mirzakhani.)

Artur Avila works in dynamical systems and in the study of Schrödinger operators. The work of Avila that I am most familiar with is his solution with Svetlana Jitormiskaya of the *ten martini problem* of Kac, the solution to which (according to Barry Simon) he offered ten martinis for, hence the name. The problem involves perhaps the simplest example of a Schrödinger operator with non-trivial spectral properties, namely the almost Mathieu operator defined for parameters and by a discrete one-dimensional Schrödinger operator with cosine potential:

This is a bounded self-adjoint operator and thus has a spectrum that is a compact subset of the real line; it arises in a number of physical contexts, most notably in the theory of the integer quantum Hall effect, though I will not discuss these applications here. Remarkably, the structure of this spectrum depends crucially on the Diophantine properties of the frequency . For instance, if is a rational number, then the operator is periodic with period , and then basic (discrete) Floquet theory tells us that the spectrum is simply the union of (possibly touching) intervals. But for irrational (in which case the spectrum is independent of the phase ), the situation is much more fractal in nature, for instance in the critical case the spectrum (as a function of ) gives rise to the Hofstadter butterfly. The “ten martini problem” asserts that for *every* irrational and every choice of coupling constant , the spectrum is homeomorphic to a Cantor set. Prior to the work of Avila and Jitormiskaya, there were a number of partial results on this problem, notably the result of Puig establishing Cantor spectrum for a full measure set of parameters , as well as results requiring a perturbative hypothesis, such as being very small or very large. The result was also already known for being either very close to rational (i.e. a Liouville number) or very far from rational (a Diophantine number), although the analyses for these two cases failed to meet in the middle, leaving some cases untreated. The argument uses a wide variety of existing techniques, both perturbative and non-perturbative, to attack this problem, as well as an amusing argument by contradiction: they assume (in certain regimes) that the spectrum *fails* to be a Cantor set, and use this hypothesis to obtain additional Lipschitz control on the spectrum (as a function of the frequency ), which they can then use (after much effort) to improve existing arguments and conclude that the spectrum was in fact Cantor after all!

Manjul Bhargava produces amazingly beautiful mathematics, though most of it is outside of my own area of expertise. One part of his work that touches on an area of my own interest (namely, random matrix theory) is his ongoing work with many co-authors on modeling (both conjecturally and rigorously) the statistics of various key number-theoretic features of elliptic curves (such as their rank, their Selmer group, or their Tate-Shafarevich groups). For instance, with Kane, Lenstra, Poonen, and Rains, Manjul has proposed a very general random matrix model that predicts all of these statistics (for instance, predicting that the -component of the Tate-Shafarevich group is distributed like the cokernel of a certain random -adic matrix, very much in the spirit of the Cohen-Lenstra heuristics discussed in this previous post). But what is even more impressive is that Manjul and his coauthors have been able to *verify* several non-trivial fragments of this model (e.g. showing that certain moments have the predicted asymptotics), giving for the first time non-trivial upper and lower bounds for various statistics, for instance obtaining lower bounds on how often an elliptic curve has rank or rank , leading most recently (in combination with existing work of Gross-Zagier and of Kolyvagin, among others) to his amazing result with Skinner and Zhang that at least of all elliptic curves over (ordered by height) obey the Birch and Swinnerton-Dyer conjecture. Previously it was not even known that a positive proportion of curves obeyed the conjecture. This is still a fair ways from resolving the conjecture fully (in particular, the situation with the presumably small number of curves of rank and higher is still very poorly understood, and the theory of Gross-Zagier and Kolyvagin that this work relies on, which was initially only available for , has only been extended to totally real number fields thus far, by the work of Zhang), but it certainly does provide hope that the conjecture could be within reach in a statistical sense at least.

Martin Hairer works in at the interface between probability and partial differential equations, and in particular in the theory of stochastic differential equations (SDEs). The result of his that is closest to my own interests is his remarkable demonstration with Jonathan Mattingly of unique invariant measure for the two-dimensional stochastically forced Navier-Stokes equation

on the two-torus , where is a Gaussian field that forces a fixed set of frequencies. It is expected that for any reasonable choice of initial data, the solution to this equation should asymptotically be distributed according to Kolmogorov’s power law, as discussed in this previous post. This is still far from established rigorously (although there are some results in this direction for dyadic models, see e.g. this paper of Cheskidov, Shvydkoy, and Friedlander). However, Hairer and Mattingly were able to show that there was a unique probability distribution to almost every initial data would converge to asymptotically; by the ergodic theorem, this is equivalent to demonstrating the existence and uniqueness of an invariant measure for the flow. Existence can be established using standard methods, but uniqueness is much more difficult. One of the standard routes to uniqueness is to establish a “strong Feller property” that enforces some continuity on the transition operators; among other things, this would mean that two ergodic probability measures with intersecting supports would in fact have a non-trivial common component, contradicting the ergodic theorem (which forces different ergodic measures to be mutually singular). Since all ergodic measures for Navier-Stokes can be seen to contain the origin in their support, this would give uniqueness. Unfortunately, the strong Feller property is unlikely to hold in the infinite-dimensional phase space for Navier-Stokes; but Hairer and Mattingly develop a clean abstract substitute for this property, which they call the *asymptotic strong Feller* property, which is again a regularity property on the transition operator; this in turn is then demonstrated by a careful application of Malliavin calculus.

Maryam Mirzakhani has mostly focused on the geometry and dynamics of Teichmuller-type moduli spaces, such as the moduli space of Riemann surfaces with a fixed genus and a fixed number of cusps (or with a fixed number of boundaries that are geodesics of a prescribed length). These spaces have an incredibly rich structure, ranging from geometric structure (such as the Kahler geometry given by the Weil-Petersson metric), to dynamical structure (through the action of the mapping class group on this and related spaces), to algebraic structure (viewing these spaces as algebraic varieties), and are thus connected to many other objects of interest in geometry and dynamics. For instance, by developing a new recursive formula for the Weil-Petersson volume of this space, Mirzakhani was able to asymptotically count the number of *simple* prime geodesics of length up to some threshold in a hyperbolic surface (or more precisely, she obtained asymptotics for the number of such geodesics in a given orbit of the mapping class group); the answer turns out to be polynomial in , in contrast to the much larger class of *non-simple* prime geodesics, whose asymptotics are exponential in (the “prime number theorem for geodesics”, developed in a classic series of works by Delsart, Huber, Selberg, and Margulis); she also used this formula to establish a new proof of a conjecture of Witten on intersection numbers that was first proven by Kontsevich. More recently, in two lengthy papers with Eskin and with Eskin-Mohammadi, Mirzakhani established rigidity theorems for the action of on such moduli spaces that are close analogues of Ratner’s celebrated rigidity theorems for unipotently generated groups (discussed in this previous blog post). Ratner’s theorems are already notoriously difficult to prove, and rely very much on the polynomial stability properties of unipotent flows; in this even more complicated setting, the unipotent flows are no longer tractable, and Mirzakhani instead uses a recent “exponential drift” method of Benoist and Quint as a substitute. Ratner’s theorems are incredibly useful for all sorts of problems connected to homogeneous dynamics, and the analogous theorems established by Mirzakhani, Eskin, and Mohammadi have a similarly broad range of applications, for instance in counting periodic billiard trajectories in rational polygons.

## Recent Comments