You are currently browsing the category archive for the ‘non-technical’ category.

About a year ago, I was contacted by Masterclass (a subscription-based online education company) on the possibility of producing a series of classes with the premise of explaining mathematical ways of thinking (such as reducing a complex problem to simpler sub-problems, abstracting out inessential aspects of a problem, or applying transforms or analogies to find new ways of thinking about a problem). After a lot of discussion and planning, as well as a film shoot over the summer, the series is now completed. As per their business model, the full lecture series is only available to subscribers of their platform, but the above link does contain a trailer and some sample content.

As math educators, we often wish out loud that our students were more excited about mathematics. I finally came across a video that indicates what such a world might be like:

*[I am posting this advertisement in my capacity as chair of the Steering Committee for the UCLA Endowed Olga Radko Math Circle – T.]*

The Department of Mathematics at the University of California, Los Angeles, is inviting applications for the position of an Academic Administrator who will serve as the Director of the UCLA Endowed Olga Radko Math Circle (ORMC). The Academic Administrator will have the broad responsibility for administration of the ORMC, an outreach program with weekly activities for mathematically inclined students in grades K-12. Currently, over 300 children take part in the program each weekend. Instruction is delivered by a team of over 50 docents, the majority of whom are UCLA undergraduate and graduate students.

The Academic Administrator is required to teach three mathematics courses in the undergraduate curriculum per academic year as assigned by the Department. This is also intended to help with the recruitment of UCLA students as docents and instructors for the ORMC.

As the director of ORMC, the Academic Administrator will have primary responsibility for all aspects of ORMC operations:

- Determining the structure of ORMC, including the number and levels of groups
- Recruiting, training and supervising instructors, docents, and postdoctoral fellows associated with the ORMC
- Developing curricular materials and providing leadership in development of innovative ways of explaining mathematical ideas to school children
- Working with the Mathematics Department finance office to ensure timely payment of stipends and wages to ORMC instructors and docents, as appropriate
- Maintaining ORMC budget and budgetary projections, ensuring that the funds are used appropriately and efficiently for ORMC activities, and applying for grants as appropriate to fund the operations of ORMC
- Working with the Steering Committee and UCLA Development to raise funds for ORMC, both from families whose children participate in ORMC and other sources
- Admitting students to ORMC, ensuring appropriate placement, and working to maintain a collegial and inclusive atmosphere conducive to learning for all ORMC attendees
- Reporting to and working with the ORMC Steering Committee throughout the year

A competitive candidate should have leadership potential and experience with developing mathematical teaching materials for the use of gifted school children, as well as experience with teaching undergraduate mathematics courses. Candidates must have a Ph.D. degree (or equivalent) or expect to complete their Ph.D. by June 30, 2021.

Applications should be received by March 15, 2021. Further details on the position and the application process can be found at the application page.

*[The following statement is signed by several mathematicians at Stanford and MIT in support of one of their recently admitted graduate students, and I am happy to post it here on my blog. -T]*

We were saddened and horrified to learn that Ilya Dumanski, a brilliant young mathematician who has been admitted to our graduate programs at Stanford and MIT, has been imprisoned in Russia, along with several other mathematicians, for participation in a peaceful demonstration. Our thoughts are with them. We urge their rapid release, and failing that, that they be kept in humane conditions. A petition in their support has been started at

https://www.ipetitions.com/petition/a-call-for-immediate-release-of-arrested-students/

Signed,

Roman Bezrukavnikov (MIT)

Alexei Borodin (MIT)

Daniel Bump (Stanford)

Sourav Chatterjee (Stanford)

Otis Chodosh (Stanford)

Ralph Cohen (Stanford)

Henry Cohn (MIT)

Brian Conrad (Stanford)

Joern Dunkel (MIT)

Pavel Etingof (MIT)

Jacob Fox (Stanford)

Michel Goemans (MIT)

Eleny Ionel (Stanford)

Steven Kerckhoff (Stanford)

Jonathan Luk (Stanford)

Eugenia Malinnikova (Stanford)

Davesh Maulik (MIT)

Rafe Mazzeo (Stanford)

Haynes Miller (MIT)

Ankur Moitra (MIT)

Elchanan Mossel (MIT)

Tomasz Mrowka (MIT)

Bjorn Poonen (MIT)

Alex Postnikov (MIT)

Lenya Ryzhik (Stanford)

Paul Seidel (MIT)

Mike Sipser (MIT)

Kannan Soundararajan (Stanford)

Gigliola Staffilani (MIT)

Nike Sun (MIT)

Richard Taylor (Stanford)

Ravi Vakil (Stanford)

Andras Vasy (Stanford)

Jan Vondrak (Stanford)

Brian White (Stanford)

Zhiwei Yun (MIT)

Just a short announcement that next quarter I will be continuing the recently concluded 246A complex analysis class as 246B. Topics I plan to cover:

- Schwartz-Christoffel transformations and the uniformisation theorem (using the remainder of the 246A notes);
- Jensen’s formula and factorisation theorems (particularly Weierstrass and Hadamard); the Gamma function;
- Connections with the Fourier transform on the real line;
- Elliptic functions and their relatives;
- (if time permits) the Riemann zeta function and the prime number theorem.

Notes for the later material will appear on this blog in due course.

Several years ago, I developed a public lecture on the cosmic distance ladder in astronomy from a historical perspective (and emphasising the role of mathematics in building the ladder). I previously blogged about the lecture here; the most recent version of the slides can be found here. Recently, I have begun working with Tanya Klowden (a long time friend with a background in popular writing on a variety of topics, including astronomy) to expand the lecture into a popular science book, with the tentative format being non-technical chapters interspersed with some more mathematical sections to give some technical details. We are still in the middle of the writing process, but we have produced a sample chapter (which deals with what we call the “fourth rung” of the distance ladder – the distances and orbits of the planets – and how the work of Copernicus, Brahe, Kepler and others led to accurate measurements of these orbits, as well as Kepler’s famous laws of planetary motion). As always, any feedback on the chapter is welcome. (Due to various pandemic-related uncertainties, we do not have a definite target deadline for when the book will be completed, but presumably this will occur sometime in the next year.)

The book is currently under contract with Yale University Press. My coauthor Tanya Klowden can be reached at tklowden@gmail.com.

Starting on Oct 2, I will be teaching Math 246A, the first course in the three-quarter graduate complex analysis sequence at the math department here at UCLA. This first course covers much of the same ground as an honours undergraduate complex analysis course, in particular focusing on the basic properties of holomorphic functions such as the Cauchy and residue theorems, the classification of singularities, and the maximum principle, but there will be more of an emphasis on rigour, generalisation and abstraction, and connections with other parts of mathematics. The main text I will be using for this course is Stein-Shakarchi (with Ahlfors as a secondary text), but I will also be using the blog lecture notes I wrote the last time I taught this course in 2016. At this time I do not expect to significantly deviate from my past lecture notes, though I do not know at present how different the pace will be this quarter when the course is taught remotely. As with my 247B course last spring, the lectures will be open to the public, though other coursework components will be restricted to enrolled students.

Vaughan Jones, who made fundamental contributions in operator algebras and knot theory (in particular developing a surprising connection between the two), died this week, aged 67.

Vaughan and I grew up in extremely culturally similar countries, worked in adjacent areas of mathematics, shared (as of this week) a coauthor in Dima Shylakhtenko, started out our career with the same postdoc position (as UCLA Hedrick Assistant Professors, sixteen years apart) and even ended up in sister campuses of the University of California, but surprisingly we only interacted occasionally, via chance meetings at conferences or emails on some committee business. I found him extremely easy to get along with when we did meet, though, perhaps because of our similar cultural upbringing.

I have not had much occasion to directly use much of Vaughan’s mathematical contributions, but I did very much enjoy reading his influential 1999 preprint on planar algebras (which, for some odd reason has never been formally published). Traditional algebra notation is one-dimensional in nature, with algebraic expressions being described by strings of mathematical symbols; a linear operator , for instance, might appear in the middle of such a string, taking in an input on the right and returning an output on its left that might then be fed into some other operation. There are a few mathematical notations which are two-dimensional, such as the commutative diagrams in homological algebra, the tree expansions of solutions to nonlinear PDE (particularly stochastic nonlinear PDE), or the Feynman diagrams and Penrose graphical notations from physics, but these are the exception rather than the rule, and the notation is often still concentrated on a one-dimensional complex of vertices and edges (or arrows) in the plane. Planar algebras, by contrast, fully exploit the topological nature of the plane; a planar “operator” (or “operad”) inhabits some punctured region of the plane, such as an annulus, with “inputs” entering from the inner boundaries of the region and “outputs” emerging from the outer boundary. These algebras arose for Vaughan in both operator theory and knot theory, and have since been used in some other areas of mathematics such as representation theory and homology. I myself have not found a direct use for this type of algebra in my own work, but nevertheless I found the mere possibility of higher dimensional notation being the natural choice for a given mathematical problem to be conceptually liberating.

I was greatly saddened to learn that John Conway died yesterday from COVID-19, aged 82.

My own mathematical areas of expertise are somewhat far from Conway’s; I have played for instance with finite simple groups on occasion, but have not studied his work on moonshine and the monster group. But I have certainly encountered his results every so often in surprising contexts; most recently, when working on the Collatz conjecture, I looked into Conway’s wonderfully preposterous FRACTRAN language, which can encode any Turing machine as an iteration of a Collatz-type map, showing in particular that there are generalisations of the Collatz conjecture that are undecidable in axiomatic frameworks such as ZFC. [EDIT: also, my belief that the Navier-Stokes equations admit solutions that blow up in finite time is also highly influenced by the ability of Conway’s game of life to generate self-replicating “von Neumann machines“.]

I first met John as an incoming graduate student in Princeton in 1992; indeed, a talk he gave, on “Extreme proofs” (proofs that are in some sense “extreme points” in the “convex hull” of all proofs of a given result), may well have been the first research-level talk I ever attended, and one that set a high standard for all the subsequent talks I went to, with Conway’s ability to tease out deep and interesting mathematics from seemingly frivolous questions making a particular impact on me. (Some version of this talk eventually became this paper of Conway and Shipman many years later.)

Conway was fond of hanging out in the Princeton graduate lounge at the time of my studies there, often tinkering with some game or device, and often enlisting any nearby graduate students to assist him with some experiment or other. I have a vague memory of being drafted into holding various lengths of cloth with several other students in order to compute some element of a braid group; on another occasion he challenged me to a board game he recently invented (now known as “Phutball“) with Elwyn Berlekamp and Richard Guy (who, by sad coincidence, both also passed away in the last 12 months). I still remember being repeatedly obliterated in that game, which was a healthy and needed lesson in humility for me (and several of my fellow graduate students) at the time. I also recall Conway spending several weeks trying to construct a strange periscope-type device to try to help him visualize four-dimensional objects by giving his eyes vertical parallax in addition to the usual horizontal parallax, although he later told me that the only thing the device made him experience was a headache.

About ten years ago we ran into each other at some large mathematics conference, and lacking any other plans, we had a pleasant dinner together at the conference hotel. We talked a little bit of math, but mostly the conversation was philosophical. I regrettably do not remember precisely what we discussed, but it was very refreshing and stimulating to have an extremely frank and heartfelt interaction with someone with Conway’s level of insight and intellectual clarity.

Conway was arguably an extreme point in the convex hull of all mathematicians. He will very much be missed.

My student, Jaume de Dios, has set up a web site to collect upcoming mathematics seminars from any institution that are open online. (For instance, it has a talk that I will be giving in an hour.) There is a form for adding further talks to the site; please feel free to contribute (or make other suggestions) in order to make the seminar list more useful.

UPDATE: Here are some other lists of mathematical seminars online:

- Online seminars (curated by Ao Sun and Mingchen Xia at MIT)
- Algebraic Combinatorics Online Seminars (maybe using the same data set as the preceding link?)
- Online mathematics seminars (curated by Dan Isaksen at Wayne State University)
- Math seminars (run by Edgar Costa and David Roe at MIT)

Perhaps further links of this type could be added in the comments. It would perhaps make sense to somehow unify these lists into a single one that can be updated through crowdsourcing.

EDIT: See also IPAM’s advice page on running virtual seminars.

## Recent Comments