You are currently browsing the category archive for the ‘polymath’ category.

In the tradition of “Polymath projects“, the problem posed in the previous two blog posts has now been solved, thanks to the cumulative effect of many small contributions by many participants (including, but not limited to, Sean Eberhard, Tobias Fritz, Siddharta Gadgil, Tobias Hartnick, Chris Jerdonek, Apoorva Khare, Antonio Machiavelo, Pace Nielsen, Andy Putman, Will Sawin, Alexander Shamov, Lior Silberman, and David Speyer). In this post I’ll write down a streamlined resolution, eliding a number of important but ultimately removable partial steps and insights made by the above contributors en route to the solution.

Theorem 1 Let ${G = (G,\cdot)}$ be a group. Suppose one has a “seminorm” function ${\| \|: G \rightarrow [0,+\infty)}$ which obeys the triangle inequality

$\displaystyle \|xy \| \leq \|x\| + \|y\|$

for all ${x,y \in G}$, with equality whenever ${x=y}$. Then the seminorm factors through the abelianisation map ${G \mapsto G/[G,G]}$.

Proof: By the triangle inequality, it suffices to show that ${\| [x,y]\| = 0}$ for all ${x,y \in G}$, where ${[x,y] := xyx^{-1}y^{-1}}$ is the commutator.

We first establish some basic facts. Firstly, by hypothesis we have ${\|x^2\| = 2 \|x\|}$, and hence ${\|x^n \| = n \|x\|}$ whenever ${n}$ is a power of two. On the other hand, by the triangle inequality we have ${\|x^n \| \leq n\|x\|}$ for all positive ${n}$, and hence by the triangle inequality again we also have the matching lower bound, thus

$\displaystyle \|x^n \| = n \|x\|$

for all ${n > 0}$. The claim is also true for ${n=0}$ (apply the preceding bound with ${x=1}$ and ${n=2}$). By replacing ${\|x\|}$ with ${\max(\|x\|, \|x^{-1}\|)}$ if necessary we may now also assume without loss of generality that ${\|x^{-1} \| = \|x\|}$, thus

$\displaystyle \|x^n \| = |n| \|x\| \ \ \ \ \ (1)$

for all integers ${n}$.

Next, for any ${x,y \in G}$, and any natural number ${n}$, we have

$\displaystyle \|yxy^{-1} \| = \frac{1}{n} \| (yxy^{-1})^n \|$

$\displaystyle = \frac{1}{n} \| y x^n y^{-1} \|$

$\displaystyle \leq \frac{1}{n} ( \|y\| + n \|x\| + \|y\|^{-1} )$

so on taking limits as ${n \rightarrow \infty}$ we have ${\|yxy^{-1} \| \leq \|x\|}$. Replacing ${x,y}$ by ${yxy^{-1},y^{-1}}$ gives the matching lower bound, thus we have the conjugation invariance

$\displaystyle \|yxy^{-1} \| = \|x\|. \ \ \ \ \ (2)$

Next, we observe that if ${x,y,z,w}$ are such that ${x}$ is conjugate to both ${wy}$ and ${zw^{-1}}$, then one has the inequality

$\displaystyle \|x\| \leq \frac{1}{2} ( \|y \| + \| z \| ). \ \ \ \ \ (3)$

Indeed, if we write ${x = swys^{-1} = t zw^{-1} t^{-1}}$ for some ${s,t \in G}$, then for any natural number ${n}$ one has

$\displaystyle \|x\| = \frac{1}{2n} \| x^n x^n \|$

$\displaystyle = \frac{1}{2n} \| swy \dots wy s^{-1}t zw^{-1} \dots zw^{-1} t^{-1} \|$

where the ${wy}$ and ${zw^{-1}}$ terms each appear ${n}$ times. From (2) we see that conjugation by ${w}$ does not affect the norm. Using this and the triangle inequality several times, we conclude that

$\displaystyle \|x\| \leq \frac{1}{2n} ( \|s\| + n \|y\| + \| s^{-1} t\| + n \|z\| + \|t^{-1} \| ),$

and the claim (3) follows by sending ${n \rightarrow \infty}$.

The following special case of (3) will be of particular interest. Let ${x,y \in G}$, and for any integers ${m,k}$, define the quantity

$\displaystyle f(m,k) := \| x^m [x,y]^k \|.$

Observe that ${x^m [x,y]^k}$ is conjugate to both ${x (x^{m-1} [x,y]^k)}$ and to ${(y^{-1} x^m [x,y]^{k-1} xy) x^{-1}}$, hence by (3) one has

$\displaystyle \| x^m [x,y]^k \| \leq \frac{1}{2} ( \| x^{m-1} [x,y]^k \| + \| y^{-1} x^{m} [x,y]^{k-1} xy \|)$

which by (2) leads to the recursive inequality

$\displaystyle f(m,k) \leq \frac{1}{2} (f(m-1,k) + f(m+1,k-1)).$

We can write this in probabilistic notation as

$\displaystyle f(m,k) \leq {\bf E} f( (m,k) + X )$

where ${X}$ is a random vector that takes the values ${(-1,0)}$ and ${(1,-1)}$ with probability ${1/2}$ each. Iterating this, we conclude in particular that for any large natural number ${n}$, one has

$\displaystyle f(0,n) \leq {\bf E} f( Z )$

where ${Z := (0,n) + X_1 + \dots + X_{2n}}$ and ${X_1,\dots,X_{2n}}$ are iid copies of ${X}$. We can write ${Z = (1,-1/2) (Y_1 + \dots + Y_{2n})}$ where $Y_1,\dots,Y_{2n} = \pm 1$ are iid signs.  By the triangle inequality, we thus have

$\displaystyle f( Z ) \leq |Y_1+\dots+Y_{2n}| (\|x\| + \frac{1}{2} \| [x,y] \|),$

noting that $Y_1+\dots+Y_{2n}$ is an even integer.  On the other hand, $Y_1+\dots+Y_{2n}$ has mean zero and variance $2n$, hence by Cauchy-Schwarz

$\displaystyle f(0,n) \leq \sqrt{2n}( \|x\| + \frac{1}{2} \| [x,y] \|).$

But by (1), the left-hand side is equal to ${n \| [x,y]\|}$. Dividing by ${n}$ and then sending ${n \rightarrow \infty}$, we obtain the claim. $\Box$

The above theorem reduces such seminorms to abelian groups. It is easy to see from (1) that any torsion element of such groups has zero seminorm, so we can in fact restrict to torsion-free groups, which we now write using additive notation ${G = (G,+)}$, thus for instance ${\| nx \| = |n| \|x\|}$ for ${n \in {\bf Z}}$. We think of ${G}$ as a ${{\bf Z}}$-module. One can then extend the seminorm to the associated ${{\bf Q}}$-vector space ${G \otimes_{\bf Z} {\bf Q}}$ by the formula ${\|\frac{a}{b} x\| := \frac{a}{b} \|x\|}$, and then to the associated ${{\bf R}}$-vector space ${G \otimes_{\bf Z} {\bf R}}$ by continuity, at which point it becomes a genuine seminorm (provided we have ensured the symmetry condition ${\|x\| = \|x^{-1}\|}$). Conversely, any seminorm on ${G \otimes_{\bf Z} {\bf R}}$ induces a seminorm on ${G}$. (These arguments also appear in this paper of Khare and Rajaratnam.)

Over on the polymath blog, I’ve posted (on behalf of Dinesh Thakur) a new polymath proposal, which is to explain some numerically observed identities involving the irreducible polynomials $P$ in the polynomial ring ${\bf F}_2[t]$ over the finite field of characteristic two, the simplest of which is

$\displaystyle \sum_P \frac{1}{1+P} = 0$

(expanded in terms of Taylor series in $u = 1/t$).  Comments on the problem should be placed in the polymath blog post; if there is enough interest, we can start a formal polymath project on it.

The Chowla conjecture asserts that all non-trivial correlations of the Liouville function are asymptotically negligible; for instance, it asserts that

$\displaystyle \sum_{n \leq X} \lambda(n) \lambda(n+h) = o(X)$

as ${X \rightarrow \infty}$ for any fixed natural number ${h}$. This conjecture remains open, though there are a number of partial results (e.g. these two previous results of Matomaki, Radziwill, and myself).

A natural generalisation of Chowla’s conjecture was proposed by Elliott. For simplicity we will only consider Elliott’s conjecture for the pair correlations

$\displaystyle \sum_{n \leq X} g(n) \overline{g}(n+h).$

For such correlations, the conjecture was that one had

$\displaystyle \sum_{n \leq X} g(n) \overline{g}(n+h) = o(X) \ \ \ \ \ (1)$

as ${X \rightarrow \infty}$ for any natural number ${h}$, as long as ${g}$ was a completely multiplicative function with magnitude bounded by ${1}$, and such that

$\displaystyle \sum_p \hbox{Re} \frac{1 - g(p) \overline{\chi(p)} p^{-it}}{p} = +\infty \ \ \ \ \ (2)$

for any Dirichlet character ${\chi}$ and any real number ${t}$. In the language of “pretentious number theory”, as developed by Granville and Soundararajan, the hypothesis (2) asserts that the completely multiplicative function ${g}$ does not “pretend” to be like the completely multiplicative function ${n \mapsto \chi(n) n^{it}}$ for any character ${\chi}$ and real number ${t}$. A condition of this form is necessary; for instance, if ${g(n)}$ is precisely equal to ${\chi(n) n^{it}}$ and ${\chi}$ has period ${q}$, then ${g(n) \overline{g}(n+q)}$ is equal to ${1_{(n,q)=1} + o(1)}$ as ${n \rightarrow \infty}$ and (1) clearly fails. The prime number theorem in arithmetic progressions implies that the Liouville function obeys (2), and so the Elliott conjecture contains the Chowla conjecture as a special case.

As it turns out, Elliott’s conjecture is false as stated, with the counterexample ${g}$ having the property that ${g}$ “pretends” locally to be the function ${n \mapsto n^{it_j}}$ for ${n}$ in various intervals ${[1, X_j]}$, where ${X_j}$ and ${t_j}$ go to infinity in a certain prescribed sense. See this paper of Matomaki, Radziwill, and myself for details. However, we view this as a technicality, and continue to believe that certain “repaired” versions of Elliott’s conjecture still hold. For instance, our counterexample does not apply when ${g}$ is restricted to be real-valued rather than complex, and we believe that Elliott’s conjecture is valid in this setting. Returning to the complex-valued case, we still expect the asymptotic (1) provided that the condition (2) is replaced by the stronger condition

$\displaystyle \sup_{|t| \leq X} |\sum_{p \leq X} \hbox{Re} \frac{1 - g(p) \overline{\chi(p)} p^{-it}}{p}| \rightarrow +\infty$

as ${X \rightarrow +\infty}$ for all fixed Dirichlet characters ${\chi}$. In our paper we supported this claim by establishing a certain “averaged” version of this conjecture; see that paper for further details. (See also this recent paper of Frantzikinakis and Host which establishes a different averaged version of this conjecture.)

One can make a stronger “non-asymptotic” version of this corrected Elliott conjecture, in which the ${X}$ parameter does not go to infinity, or equivalently that the function ${g}$ is permitted to depend on ${X}$:

Conjecture 1 (Non-asymptotic Elliott conjecture) Let ${\varepsilon > 0}$, let ${A \geq 1}$ be sufficiently large depending on ${\varepsilon}$, and let ${X}$ be sufficiently large depending on ${A,\varepsilon}$. Suppose that ${g}$ is a completely multiplicative function with magnitude bounded by ${1}$, such that

$\displaystyle \inf_{|t| \leq AX} |\sum_{p \leq X} \hbox{Re} \frac{1 - g(p) \overline{\chi(p)} p^{-it}}{p}| \geq A$

for all Dirichlet characters ${\chi}$ of period at most ${A}$. Then one has

$\displaystyle |\sum_{n \leq X} g(n) \overline{g(n+h)}| \leq \varepsilon X$

for all natural numbers ${1 \leq h \leq 1/\varepsilon}$.

The ${\varepsilon}$-dependent factor ${A}$ in the constraint ${|t| \leq AX}$ is necessary, as can be seen by considering the completely multiplicative function ${g(n) := n^{2iX}}$ (for instance). Again, the results in my previous paper with Matomaki and Radziwill can be viewed as establishing an averaged version of this conjecture.

Meanwhile, we have the following conjecture that is the focus of the Polymath5 project:

Conjecture 2 (Erdös discrepancy conjecture) For any function ${f: {\bf N} \rightarrow \{-1,+1\}}$, the discrepancy

$\displaystyle \sup_{n,d \in {\bf N}} |\sum_{j=1}^n f(jd)|$

is infinite.

It is instructive to compute some near-counterexamples to Conjecture 2 that illustrate the difficulty of the Erdös discrepancy problem. The first near-counterexample is that of a non-principal Dirichlet character ${f(n) = \chi(n)}$ that takes values in ${\{-1,0,+1\}}$ rather than ${\{-1,+1\}}$. For this function, one has from the complete multiplicativity of ${\chi}$ that

$\displaystyle |\sum_{j=1}^n f(jd)| = |\sum_{j=1}^n \chi(j) \chi(d)|$

$\displaystyle \leq |\sum_{j=1}^n \chi(j)|.$

If ${q}$ denotes the period of ${\chi}$, then ${\chi}$ has mean zero on every interval of length ${q}$, and thus

$\displaystyle |\sum_{j=1}^n f(jd)| \leq |\sum_{j=1}^n \chi(j)| \leq q.$

Thus ${\chi}$ has bounded discrepancy.

Of course, this is not a true counterexample to Conjecture 2 because ${\chi}$ can take the value ${0}$. Let us now consider the following variant example, which is the simplest member of a family of examples studied by Borwein, Choi, and Coons. Let ${\chi = \chi_3}$ be the non-principal Dirichlet character of period ${3}$ (thus ${\chi(n)}$ equals ${+1}$ when ${n=1 \hbox{ mod } 3}$, ${-1}$ when ${n = 2 \hbox{ mod } 3}$, and ${0}$ when ${n = 0 \hbox{ mod } 3}$), and define the completely multiplicative function ${f = \tilde \chi: {\bf N} \rightarrow \{-1,+1\}}$ by setting ${\tilde \chi(p) := \chi(p)}$ when ${p \neq 3}$ and ${\tilde \chi(3) = +1}$. This is about the simplest modification one can make to the previous near-counterexample to eliminate the zeroes. Now consider the sum

$\displaystyle \sum_{j=1}^n \tilde \chi(j)$

with ${n := 1 + 3 + 3^2 + \dots + 3^k}$ for some large ${k}$. Writing ${j = 3^a m}$ with ${m}$ coprime to ${3}$ and ${a}$ at most ${k}$, we can write this sum as

$\displaystyle \sum_{a=0}^k \sum_{1 \leq m \leq n/3^j} \tilde \chi(3^a m).$

Now observe that ${\tilde \chi(3^a m) = \tilde \chi(3)^a \tilde \chi(m) = \chi(m)}$. The function ${\chi}$ has mean zero on every interval of length three, and ${\lfloor n/3^j\rfloor}$ is equal to ${1}$ mod ${3}$, and thus

$\displaystyle \sum_{1 \leq m \leq n/3^j} \tilde \chi(3^a m) = 1$

for every ${a=0,\dots,k}$, and thus

$\displaystyle \sum_{j=1}^n \tilde \chi(j) = k+1 \gg \log n.$

Thus ${\tilde \chi}$ also has unbounded discrepancy, but only barely so (it grows logarithmically in ${n}$). These examples suggest that the main “enemy” to proving Conjecture 2 comes from completely multiplicative functions ${f}$ that somehow “pretend” to be like a Dirichlet character but do not vanish at the zeroes of that character. (Indeed, the special case of Conjecture 2 when ${f}$ is completely multiplicative is already open, appears to be an important subcase.)

All of these conjectures remain open. However, I would like to record in this blog post the following striking connection, illustrating the power of the Elliott conjecture (particularly in its nonasymptotic formulation):

Theorem 3 (Elliott conjecture implies unbounded discrepancy) Conjecture 1 implies Conjecture 2.

The argument relies heavily on two observations that were previously made in connection with the Polymath5 project. The first is a Fourier-analytic reduction that replaces the Erdos Discrepancy Problem with an averaged version for completely multiplicative functions ${g}$. An application of Cauchy-Schwarz then shows that any counterexample to that version will violate the conclusion of Conjecture 1, so if one assumes that conjecture then ${g}$ must pretend to be like a function of the form ${n \mapsto \chi(n) n^{it}}$. One then uses (a generalisation) of a second argument from Polymath5 to rule out this case, basically by reducing matters to a more complicated version of the Borwein-Choi-Coons analysis. Details are provided below the fold.

There is some hope that the Chowla and Elliott conjectures can be attacked, as the parity barrier which is so impervious to attack for the twin prime conjecture seems to be more permeable in this setting. (For instance, in my previous post I raised a possible approach, based on establishing expander properties of a certain random graph, which seems to get around the parity problem, in principle at least.)

(Update, Sep 25: fixed some treatment of error terms, following a suggestion of Andrew Granville.)

The (presumably) final article arising from the Polymath8 project has now been uploaded to the arXiv as “The “bounded gaps between primes” Polymath project – a retrospective“.  This article, submitted to the Newsletter of the European Mathematical Society, consists of personal contributions from ten different participants (at varying levels of stage of career, and intensity of participation) on their own experiences with the project, and some thoughts as to what lessons to draw for any subsequent Polymath projects.  (At present, I do not know of any such projects being proposed, but from recent experience I would imagine that some opportunity suitable for a Polymath approach will present itself at some point in the near future.)

This post will also serve as the latest (and probably last) of the Polymath8 threads (rolling over this previous post), to wrap up any remaining discussion about any aspect of this project.

I’ve just uploaded to the arXiv the D.H.J. Polymath paper “Variants of the Selberg sieve, and bounded intervals containing many primes“, which is the second paper to be produced from the Polymath8 project (the first one being discussed here). We’ll refer to this latter paper here as the Polymath8b paper, and the former as the Polymath8a paper. As with Polymath8a, the Polymath8b paper is concerned with the smallest asymptotic prime gap

$\displaystyle H_1 := \liminf_{n \rightarrow \infty}(p_{n+1}-p_n),$

where ${p_n}$ denotes the ${n^{th}}$ prime, as well as the more general quantities

$\displaystyle H_m := \liminf_{n \rightarrow \infty}(p_{n+m}-p_n).$

In the breakthrough paper of Goldston, Pintz, and Yildirim, the bound ${H_1 \leq 16}$ was obtained under the strong hypothesis of the Elliott-Halberstam conjecture. An unconditional bound on ${H_1}$, however, remained elusive until the celebrated work of Zhang last year, who showed that

$\displaystyle H_1 \leq 70{,}000{,}000.$

The Polymath8a paper then improved this to ${H_1 \leq 4{,}680}$. After that, Maynard introduced a new multidimensional Selberg sieve argument that gave the substantial improvement

$\displaystyle H_1 \leq 600$

unconditionally, and ${H_1 \leq 12}$ on the Elliott-Halberstam conjecture; furthermore, bounds on ${H_m}$ for higher ${m}$ were obtained for the first time, and specifically that ${H_m \ll m^3 e^{4m}}$ for all ${m \geq 1}$, with the improvements ${H_2 \leq 600}$ and ${H_m \ll m^3 e^{2m}}$ on the Elliott-Halberstam conjecture. (I had independently discovered the multidimensional sieve idea, although I did not obtain Maynard’s specific numerical results, and my asymptotic bounds were a bit weaker.)

In Polymath8b, we obtain some further improvements. Unconditionally, we have ${H_1 \leq 246}$ and ${H_m \ll m e^{(4 - \frac{28}{157}) m}}$, together with some explicit bounds on ${H_2,H_3,H_4,H_5}$; on the Elliott-Halberstam conjecture we have ${H_m \ll m e^{2m}}$ and some numerical improvements to the ${H_2,H_3,H_4,H_5}$ bounds; and assuming the generalised Elliott-Halberstam conjecture we have the bound ${H_1 \leq 6}$, which is best possible from sieve-theoretic methods thanks to the parity problem obstruction.

There were a variety of methods used to establish these results. Maynard’s paper obtained a criterion for bounding ${H_m}$ which reduced to finding a good solution to a certain multidimensional variational problem. When the dimension parameter ${k}$ was relatively small (e.g. ${k \leq 100}$), we were able to obtain good numerical solutions both by continuing the method of Maynard (using a basis of symmetric polynomials), or by using a Krylov iteration scheme. For large ${k}$, we refined the asymptotics and obtained near-optimal solutions of the variational problem. For the ${H_1}$ bounds, we extended the reach of the multidimensional Selberg sieve (particularly under the assumption of the generalised Elliott-Halberstam conjecture) by allowing the function ${F}$ in the multidimensional variational problem to extend to a larger region of space than was previously admissible, albeit with some tricky new constraints on ${F}$ (and penalties in the variational problem). This required some unusual sieve-theoretic manipulations, notably an “epsilon trick”, ultimately relying on the elementary inequality ${(a+b)^2 \geq a^2 + 2ab}$, that allowed one to get non-trivial lower bounds for sums such as ${\sum_n (a(n)+b(n))^2}$ even if the sum ${\sum_n b(n)^2}$ had no non-trivial estimates available; and a way to estimate divisor sums such as ${\sum_{n\leq x} \sum_{d|n} \lambda_d}$ even if ${d}$ was permitted to be comparable to or even exceed ${x}$, by using the fundamental theorem of arithmetic to factorise ${n}$ (after restricting to the case when ${n}$ is almost prime). I hope that these sieve-theoretic tricks will be useful in future work in the subject.

With this paper, the Polymath8 project is almost complete; there is still a little bit of scope to push our methods further and get some modest improvement for instance to the ${H_1 \leq 246}$ bound, but this would require a substantial amount of effort, and it is probably best to instead wait for some new breakthrough in the subject to come along. One final task we are performing is to write up a retrospective article on both the 8a and 8b experiences, an incomplete writeup of which can be found here. If anyone wishes to contribute some commentary on these projects (whether you were an active contributor, an occasional contributor, or a silent “lurker” in the online discussion), please feel free to do so in the comments to this post.

This should be the final thread (for now, at least) for the Polymath8 project (encompassing the original Polymath8a paper, the nearly finished Polymath8b paper, and the retrospective paper), superseding the previous Polymath8b thread (which was quite full) and the Polymath8a/retrospective thread (which was more or less inactive).

On Polymath8a: I talked briefly with Andrew Granville, who is handling the paper for Algebra & Number Theory, and he said that a referee report should be coming in soon.  Apparently length of the paper is a bit of an issue (not surprising, as it is 163 pages long) and there will be some suggestions to trim the size down a bit.

In view of the length issue at A&NT, I’m now leaning towards taking up Ken Ono’s offer to submit the Polymath8b paper to the new open access journal “Research in the Mathematical Sciences“.  I think the paper is almost ready to be submitted (after the current participants sign off on it, of course), but it might be worth waiting on the Polymath8a referee report in case the changes suggested impact the 8b paper.

Finally, it is perhaps time to start working on the retrospective article, and collect some impressions from participants.  I wrote up a quick draft of my own experiences, and also pasted in Pace Nielsen’s thoughts, as well as a contribution from an undergraduate following the project (Andrew Gibson).  Hopefully we can collect a few more (either through comments on this blog, through email, or through Dropbox), and then start working on editing them together and finding some suitable concluding points to make about the Polymath8 project, and what lessons we can take from it for future projects of this type.

This is the eleventh thread for the Polymath8b project to obtain new bounds for the quantity

$H_m := \liminf_{n \to\infty} p_{n+m} - p_n$;

the previous thread may be found here.

The main focus is now on writing up the results, with a draft paper close to completion here (with the directory of source files here).    Most of the sections are now written up more or less completely, with the exception of the appendix on narrow admissible tuples, which was awaiting the bounds on such tuples to stabilise.  There is now also an acknowledgments section (linking to the corresponding page on the wiki, which participants should check to see if their affiliations etc. are posted correctly), and in the final remarks section there is now also some discussion about potential improvements to the $H_m$ bounds.  I’ve also added some mention of a recent paper of Banks, Freiberg and Maynard which makes use of some of our results (in particular, that $M_{50,1/25} > 4$).  On the other hand, the portions of the writeup relating to potential improvements to the MPZ estimates have been commented out, as it appears that one cannot easily obtain the exponential sum estimates required to make those go through.  (Perhaps, if there are significant new developments, one could incorporate them into a putative Polymath8c project, although at present I think there’s not much urgency to start over once again.)

Regarding the numerics in Section 7 of the paper, one thing which is missing at present is some links to code in case future readers wish to verify the results; alternatively one could include such code and data into the arXiv submission.

It’s about time to discuss possible journals to submit the paper to.  Ken Ono has invited us to submit to his new journal, “Research in the Mathematical Sciences“.  Another option would be to submit to the same journal “Algebra & Number Theory” that is currently handling our Polymath8a paper (no news on the submission there, but it is a very long paper), although I think the papers are independent enough that it is not absolutely necessary to place them in the same journal.  A third natural choice is “Mathematics of Computation“, though I should note that when the Polymath4 paper was submitted there, the editors required us to use our real names instead of the D.H.J. Polymath pseudonym as it would have messed up their metadata system otherwise.  (But I can check with the editor there before submitting to see if there is some workaround now, perhaps their policies have changed.)  At present I have no strong preferences regarding journal selection, and would welcome further thoughts and proposals.  (It is perhaps best to avoid the journals that I am editor or associate editor of, namely Amer. J. Math, Forum of Mathematics, Analysis & PDE, and Dynamics and PDE, due to conflict of interest (and in the latter two cases, specialisation to a different area of mathematics)).

This is the tenth thread for the Polymath8b project to obtain new bounds for the quantity

$H_m := \liminf_{n \to\infty} p_{n+m} - p_n$;

the previous thread may be found here.

Numerical progress on these bounds have slowed in recent months, although we have very recently lowered the unconditional bound on $H_1$ from 252 to 246 (see the wiki page for more detailed results).  While there may still be scope for further improvement (particularly with respect to bounds for $H_m$ with $m=2,3,4,5$, which we have not focused on for a while, it looks like we have reached the point of diminishing returns, and it is time to turn to the task of writing up the results.

A draft version of the paper so far may be found here (with the directory of source files here).  Currently, the introduction and the sieve-theoretic portions of the paper are written up, although the sieve-theoretic arguments are surprisingly lengthy, and some simplification (or other reorganisation) may well be possible.  Other portions of the paper that have not yet been written up include the asymptotic analysis of $M_k$ for large k (leading in particular to results for m=2,3,4,5), and a description of the quadratic programming that is used to estimate $M_k$ for small and medium k.  Also we will eventually need an appendix to summarise the material from Polymath8a that we would use to generate various narrow admissible tuples.

One issue here is that our current unconditional bounds on $H_m$ for m=2,3,4,5 rely on a distributional estimate on the primes which we believed to be true in Polymath8a, but never actually worked out (among other things, there was some delicate algebraic geometry issues concerning the vanishing of certain cohomology groups that was never resolved).  This issue does not affect the m=1 calculations, which only use the Bombieri-Vinogradov theorem or else assume the generalised Elliott-Halberstam conjecture.  As such, we will have to rework the computations for these $H_m$, given that the task of trying to attain the conjectured distributional estimate on the primes would be a significant amount of work that is rather disjoint from the rest of the Polymath8b writeup.  One could simply dust off the old maple code for this (e.g. one could tweak the code here, with the constraint  1080*varpi/13+ 330*delta/13<1  being replaced by 600*varpi/7+180*delta/7<1), but there is also a chance that our asymptotic bounds for $M_k$ (currently given in messy detail here) could be sharpened.  I plan to look at this issue fairly soon.

Also, there are a number of smaller observations (e.g. the parity problem barrier that prevents us from ever getting a better bound on $H_1$ than 6) that should also go into the paper at some point; the current outline of the paper as given in the draft is not necessarily comprehensive.

This is the ninth thread for the Polymath8b project to obtain new bounds for the quantity

$\displaystyle H_m := \liminf_{n \rightarrow\infty} (p_{n+m} - p_n),$

either for small values of ${m}$ (in particular ${m=1,2}$) or asymptotically as ${m \rightarrow \infty}$. The previous thread may be found here. The currently best known bounds on ${H_m}$ can be found at the wiki page.

The focus is now on bounding ${H_1}$ unconditionally (in particular, without resorting to the Elliott-Halberstam conjecture or its generalisations). We can bound ${H_1 \leq H(k)}$ whenever one can find a symmetric square-integrable function ${F}$ supported on the simplex ${{\cal R}_k := \{ (t_1,\dots,t_k) \in [0,+\infty)^k: t_1+\dots+t_k \leq 1 \}}$ such that

$\displaystyle k \int_{{\cal R}_{k-1}} (\int_0^\infty F(t_1,\dots,t_k)\ dt_k)^2\ dt_1 \dots dt_{k-1} \ \ \ \ \ (1)$

$\displaystyle > 4 \int_{{\cal R}_{k}} F(t_1,\dots,t_k)^2\ dt_1 \dots dt_{k-1} dt_k.$

Our strategy for establishing this has been to restrict ${F}$ to be a linear combination of symmetrised monomials ${[t_1^{a_1} \dots t_k^{a_k}]_{sym}}$ (restricted of course to ${{\cal R}_k}$), where the degree ${a_1+\dots+a_k}$ is small; actually, it seems convenient to work with the slightly different basis ${(1-t_1-\dots-t_k)^i [t_1^{a_1} \dots t_k^{a_k}]_{sym}}$ where the ${a_i}$ are restricted to be even. The criterion (1) then becomes a large quadratic program with explicit but complicated rational coefficients. This approach has lowered ${k}$ down to ${54}$, which led to the bound ${H_1 \leq 270}$.

Actually, we know that the more general criterion

$\displaystyle k \int_{(1-\epsilon) \cdot {\cal R}_{k-1}} (\int_0^\infty F(t_1,\dots,t_k)\ dt_k)^2\ dt_1 \dots dt_{k-1} \ \ \ \ \ (2)$

$\displaystyle > 4 \int F(t_1,\dots,t_k)^2\ dt_1 \dots dt_{k-1} dt_k$

will suffice, whenever ${0 \leq \epsilon < 1}$ and ${F}$ is supported now on ${2 \cdot {\cal R}_k}$ and obeys the vanishing marginal condition ${\int_0^\infty F(t_1,\dots,t_k)\ dt_k = 0}$ whenever ${t_1+\dots+t_k > 1+\epsilon}$. The latter is in particular obeyed when ${F}$ is supported on ${(1+\epsilon) \cdot {\cal R}_k}$. A modification of the preceding strategy has lowered ${k}$ slightly to ${53}$, giving the bound ${H_1 \leq 264}$ which is currently our best record.

However, the quadratic programs here have become extremely large and slow to run, and more efficient algorithms (or possibly more computer power) may be required to advance further.

This is the eighth thread for the Polymath8b project to obtain new bounds for the quantity

$\displaystyle H_m := \liminf_{n \rightarrow\infty} (p_{n+m} - p_n),$

either for small values of ${m}$ (in particular ${m=1,2}$) or asymptotically as ${m \rightarrow \infty}$. The previous thread may be found here. The currently best known bounds on ${H_m}$ can be found at the wiki page.

The big news since the last thread is that we have managed to obtain the (sieve-theoretically) optimal bound of ${H_1 \leq 6}$ assuming the generalised Elliott-Halberstam conjecture (GEH), which pretty much closes off that part of the story. Unconditionally, our bound on ${H_1}$ is still ${H_1 \leq 270}$. This bound was obtained using the “vanilla” Maynard sieve, in which the cutoff ${F}$ was supported in the original simplex ${\{ t_1+\dots+t_k \leq 1\}}$, and only Bombieri-Vinogradov was used. In principle, we can enlarge the sieve support a little bit further now; for instance, we can enlarge to ${\{ t_1+\dots+t_k \leq \frac{k}{k-1} \}}$, but then have to shrink the J integrals to ${\{t_1+\dots+t_{k-1} \leq 1-\epsilon\}}$, provided that the marginals vanish for ${\{ t_1+\dots+t_{k-1} \geq 1+\epsilon \}}$. However, we do not yet know how to numerically work with these expanded problems.

Given the substantial progress made so far, it looks like we are close to the point where we should declare victory and write up the results (though we should take one last look to see if there is any room to improve the ${H_1 \leq 270}$ bounds). There is actually a fair bit to write up:

• Improvements to the Maynard sieve (pushing beyond the simplex, the epsilon trick, and pushing beyond the cube);
• Asymptotic bounds for ${M_k}$ and hence ${H_m}$;
• Explicit bounds for ${H_m, m \geq 2}$ (using the Polymath8a results)
• ${H_1 \leq 270}$;
• ${H_1 \leq 6}$ on GEH (and parity obstructions to any further improvement).

I will try to create a skeleton outline of such a paper in the Polymath8 Dropbox folder soon. It shouldn’t be nearly as big as the Polymath8a paper, but it will still be quite sizeable.