Chantal David, Andrew Granville, Emmanuel Kowalski, Phillipe Michel, Kannan Soundararajan, and I are running a program at MSRI in the Spring of 2017 (more precisely, from Jan 17, 2017 to May 26, 2017) in the area of analytic number theory, with the intention to bringing together many of the leading experts in all aspects of the subject and to present recent work on the many active areas of the subject (e.g. the distribution of the prime numbers, refinements of the circle method, a deeper understanding of the asymptotics of bounded multiplicative functions (and applications to Erdos discrepancy type problems!) and of the “pretentious” approach to analytic number theory, more “analysis-friendly” formulations of the theorems of Deligne and others involving trace functions over fields, and new subconvexity theorems for automorphic forms, to name a few).  Like any other semester MSRI program, there will be a number of workshops, seminars, and similar activities taking place while the members are in residence.  I’m personally looking forward to the program, which should be occurring in the midst of a particularly productive time for the subject.  Needless to say, I (and the rest of the organising committee) plan to be present for most of the program.

Applications for Postdoctoral Fellowships and Research Memberships for this program (and for other MSRI programs in this time period, namely the companion program in Harmonic Analysis and the Fall program in Geometric Group Theory, as well as the complementary program in all other areas of mathematics) remain open until Dec 1.  Applications are open to everyone, but require supporting documentation, such as a CV, statement of purpose, and letters of recommendation from other mathematicians; see the application page for more details.

Let {X_1,X_2,\dots} be iid copies of an absolutely integrable real scalar random variable {X}, and form the partial sums {S_n := X_1 + \dots + X_n}. As we saw in the last set of notes, the law of large numbers ensures that the empirical averages {S_n/n} converge (both in probability and almost surely) to a deterministic limit, namely the mean {\mu= {\bf E} X} of the reference variable {X}. Furthermore, under some additional moment hypotheses on the underlying variable {X}, we can obtain square root cancellation for the fluctuation {\frac{S_n}{n} - \mu} of the empirical average from the mean. To simplify the calculations, let us first restrict to the case {\mu=0, \sigma^2=1} of mean zero and variance one, thus

\displaystyle  {\bf E} X = 0


\displaystyle  {\bf Var}(X) = {\bf E} X^2 = 1.

Then, as computed in previous notes, the normalised fluctuation {S_n/\sqrt{n}} also has mean zero and variance one:

\displaystyle  {\bf E} \frac{S_n}{\sqrt{n}} = 0

\displaystyle  {\bf Var}(\frac{S_n}{\sqrt{n}}) = {\bf E} (\frac{S_n}{\sqrt{n}})^2 = 1.

This and Chebyshev’s inequality already indicates that the “typical” size of {S_n} is {O(\sqrt{n})}, thus for instance {\frac{S_n}{\sqrt{n} \omega(n)}} goes to zero in probability for any {\omega(n)} that goes to infinity as {n \rightarrow \infty}. If we also have a finite fourth moment {{\bf E} |X|^4 < \infty}, then the calculations of the previous notes also give a fourth moment estimate

\displaystyle  {\bf E} (\frac{S_n}{\sqrt{n}})^4 = 3 + O( \frac{{\bf E} |X|^4}{n} ).

From this and the Paley-Zygmund inequality (Exercise 42 of Notes 1) we also get some lower bound for {\frac{S_n}{\sqrt{n}}} of the form

\displaystyle  {\bf P}( |\frac{S_n}{\sqrt{n}}| \geq \varepsilon ) \geq \varepsilon

for some absolute constant {\varepsilon>0} and for {n} sufficiently large; this indicates in particular that {\frac{S_n \omega(n)}{\sqrt{n}}} does not converge in any reasonable sense to something finite for any {\omega(n)} that goes to infinity.

The question remains as to what happens to the ratio {S_n/\sqrt{n}} itself, without multiplying or dividing by any factor {\omega(n)}. A first guess would be that these ratios converge in probability or almost surely, but this is unfortunately not the case:

Proposition 1 Let {X_1,X_2,\dots} be iid copies of an absolutely integrable real scalar random variable {X} with mean zero, variance one, and finite fourth moment, and write {S_n := X_1 + \dots + X_n}. Then the random variables {S_n/\sqrt{n}} do not converge in probability or almost surely to any limit, and neither does any subsequence of these random variables.

Proof: Suppose for contradiction that some sequence {S_{n_j}/\sqrt{n_j}} converged in probability or almost surely to a limit {Y}. By passing to a further subsequence we may assume that the convergence is in the almost sure sense. Since all of the {S_{n_j}/\sqrt{n_j}} have mean zero, variance one, and bounded fourth moment, Theorem 24 of Notes 1 implies that the limit {Y} also has mean zero and variance one. On the other hand, {Y} is a tail random variable and is thus almost surely constant by the Kolmogorov zero-one law from Notes 3. Since constants have variance zero, we obtain the required contradiction. \Box

Nevertheless there is an important limit for the ratio {S_n/\sqrt{n}}, which requires one to replace the notions of convergence in probability or almost sure convergence by the weaker concept of convergence in distribution.

Definition 2 (Vague convergence and convergence in distribution) Let {R} be a locally compact Hausdorff topological space with the Borel {\sigma}-algebra. A sequence of finite measures {\mu_n} on {R} is said to converge vaguely to another finite measure {\mu} if one has

\displaystyle  \int_R G(x)\ d\mu_n(x) \rightarrow \int_R G(x)\ d\mu(x)

as {n \rightarrow \infty} for all continuous compactly supported functions {G: R \rightarrow {\bf R}}. (Vague convergence is also known as weak convergence, although strictly speaking the terminology weak-* convergence would be more accurate.) A sequence of random variables {X_n} taking values in {R} is said to converge in distribution (or converge weakly or converge in law) to another random variable {X} if the distributions {\mu_{X_n}} converge vaguely to the distribution {\mu_X}, or equivalently if

\displaystyle  {\bf E}G(X_n) \rightarrow {\bf E} G(X)

as {n \rightarrow \infty} for all continuous compactly supported functions {G: R \rightarrow {\bf R}}.

One could in principle try to extend this definition beyond the locally compact Hausdorff setting, but certain pathologies can occur when doing so (e.g. failure of the Riesz representation theorem), and we will never need to consider vague convergence in spaces that are not locally compact Hausdorff, so we restrict to this setting for simplicity.

Note that the notion of convergence in distribution depends only on the distribution of the random variables involved. One consequence of this is that convergence in distribution does not produce unique limits: if {X_n} converges in distribution to {X}, and {Y} has the same distribution as {X}, then {X_n} also converges in distribution to {Y}. However, limits are unique up to equivalence in distribution (this is a consequence of the Riesz representation theorem, discussed for instance in this blog post). As a consequence of the insensitivity of convergence in distribution to equivalence in distribution, we may also legitimately talk about convergence of distribution of a sequence of random variables {X_n} to another random variable {X} even when all the random variables {X_1,X_2,\dots} and {X} involved are being modeled by different probability spaces (e.g. each {X_n} is modeled by {\Omega_n}, and {X} is modeled by {\Omega}, with no coupling presumed between these spaces). This is in contrast to the stronger notions of convergence in probability or almost sure convergence, which require all the random variables to be modeled by a common probability space. Also, by an abuse of notation, we can say that a sequence {X_n} of random variables converges in distribution to a probability measure {\mu}, when {\mu_{X_n}} converges vaguely to {\mu}. Thus we can talk about a sequence of random variables converging in distribution to a uniform distribution, a gaussian distribution, etc..

From the dominated convergence theorem (available for both convergence in probability and almost sure convergence) we see that convergence in probability or almost sure convergence implies convergence in distribution. The converse is not true, due to the insensitivity of convergence in distribution to equivalence in distribution; for instance, if {X_1,X_2,\dots} are iid copies of a non-deterministic scalar random variable {X}, then the {X_n} trivially converge in distribution to {X}, but will not converge in probability or almost surely (as one can see from the zero-one law). However, there are some partial converses that relate convergence in distribution to convergence in probability; see Exercise 10 below.

Remark 3 The notion of convergence in distribution is somewhat similar to the notion of convergence in the sense of distributions that arises in distribution theory (discussed for instance in this previous blog post), however strictly speaking the two notions of convergence are distinct and should not be confused with each other, despite the very similar names.

The notion of convergence in distribution simplifies in the case of real scalar random variables:

Proposition 4 Let {X_1,X_2,\dots} be a sequence of scalar random variables, and let {X} be another scalar random variable. Then the following are equivalent:

  • (i) {X_n} converges in distribution to {X}.
  • (ii) {F_{X_n}(t)} converges to {F_X(t)} for each continuity point {t} of {F_X} (i.e. for all real numbers {t \in {\bf R}} at which {F_X} is continuous). Here {F_X(t) := {\bf P}(X \leq t)} is the cumulative distribution function of {X}.

Proof: First suppose that {X_n} converges in distribution to {X}, and {F_X} is continuous at {t}. For any {\varepsilon > 0}, one can find a {\delta} such that

\displaystyle  F_X(t) - \varepsilon \leq F_X(t') \leq F_X(t) + \varepsilon

for every {t' \in [t-\delta,t+\delta]}. One can also find an {N} larger than {|t|+\delta} such that {F_X(-N) \leq \varepsilon} and {F_X(N) \geq 1-\varepsilon}. Thus

\displaystyle  {\bf P} (|X| \geq N ) = O(\varepsilon)


\displaystyle  {\bf P} (|X - t| \leq \delta ) = O(\varepsilon).

Let {G: {\bf R} \rightarrow [0,1]} be a continuous function supported on {[-2N, t]} that equals {1} on {[-N, t-\delta]}. Then by the above discussion we have

\displaystyle  {\bf E} G(X) = F_X(t) + O(\varepsilon)

and hence

\displaystyle  {\bf E} G(X_n) = F_X(t) + O(\varepsilon)

for large enough {n}. In particular

\displaystyle  {\bf P}( X_n \leq t ) \geq F_X(t) - O(\varepsilon).

A similar argument, replacing {G} with a continuous function supported on {[t,2N]} that equals {1} on {[t+\delta,N]} gives

\displaystyle  {\bf P}( X_n > t ) \geq 1 - F_X(t) - O(\varepsilon)

for {n} large enough. Putting the two estimates together gives

\displaystyle  F_{X_n}(t) = F_X(t) + O(\varepsilon)

for {n} large enough; sending {\varepsilon \rightarrow 0}, we obtain the claim.

Conversely, suppose that {F_{X_n}(t)} converges to {F_X(t)} at every continuity point {t} of {F_X}. Let {G: {\bf R} \rightarrow {\bf R}} be a continuous compactly supported function, then it is uniformly continuous. As {F_X} is monotone increasing, it can only have countably many points of discontinuity. From these two facts one can find, for any {\varepsilon>0}, a simple function {G_\varepsilon(t) = \sum_{i=1}^n c_i 1_{(t_i,t_{i+1}]}} for some {t_1 < \dots < t_n} that are points of continuity of {F_X}, and real numbers {c_i}, such that {|G(t) - G_\varepsilon(t)| \leq \varepsilon} for all {t}. Thus

\displaystyle  {\bf P} G(X_n) = {\bf P} G_\varepsilon(X_n) + O(\varepsilon)

\displaystyle  = \sum_{i=1}^n c_i(F_{X_n}(t_{i+1}) - F_{X_n}(t)) + O(\varepsilon).

Similarly for {X_n} replaced by {X}. Subtracting and taking limit superior, we conclude that

\displaystyle  \limsup_{n \rightarrow \infty} |{\bf P} G(X_n) - {\bf P} G(X)| = O(\varepsilon),

and on sending {\varepsilon \rightarrow 0}, we obtain that {X_n} converges in distribution to {X} as claimed. \Box

The restriction to continuity points of {t} is necessary. Consider for instance the deterministic random variables {X_n = 1/n}, then {X_n} converges almost surely (and hence in distribution) to {0}, but {F_{X_n}(0) = 0} does not converge to {F_X(0)=1}.

Example 5 For any natural number {n}, let {X_n} be a discrete random variable drawn uniformly from the finite set {\{0/n, 1/n, \dots, (n-1)/n\}}, and let {X} be the continuous random variable drawn uniformly from {[0,1]}. Then {X_n} converges in distribution to {X}. Thus we see that a continuous random variable can emerge as the limit of discrete random variables.

Example 6 For any natural number {n}, let {X_n} be a continuous random variable drawn uniformly from {[0,1/n]}, then {X_n} converges in distribution to the deterministic real number {0}. Thus we see that discrete (or even deterministic) random variables can emerge as the limit of continuous random variables.

Exercise 7 (Portmanteau theorem) Show that the properties (i) and (ii) in Proposition 4 are also equivalent to the following three statements:

  • (iii) One has {\limsup_{n \rightarrow \infty} {\bf P}( X_n \in K ) \leq {\bf P}(X \in K)} for all closed sets {K \subset {\bf R}}.
  • (iv) One has {\liminf_{n \rightarrow \infty} {\bf P}( X_n \in U ) \geq {\bf P}(X \in U)} for all open sets {U \subset {\bf R}}.
  • (v) For any Borel set {E \subset {\bf R}} whose topological boundary {\partial E} is such that {{\bf P}(X \in \partial E) = 0}, one has {\lim_{n \rightarrow \infty} {\bf P}(X_n \in E) = {\bf P}(X \in E)}.

(Note: to prove this theorem, you may wish to invoke Urysohn’s lemma. To deduce (iii) from (i), you may wish to start with the case of compact {K}.)

We can now state the famous central limit theorem:

Theorem 8 (Central limit theorem) Let {X_1,X_2,\dots} be iid copies of a scalar random variable {X} of finite mean {\mu := {\bf E} X} and finite non-zero variance {\sigma^2 := {\bf Var}(X)}. Let {S_n := X_1 + \dots + X_n}. Then the random variables {\frac{\sqrt{n}}{\sigma} (\frac{S_n}{n} - \mu)} converges in distribution to a random variable with the standard normal distribution {N(0,1)} (that is to say, a random variable with probability density function {x \mapsto \frac{1}{\sqrt{2\pi}} e^{-x^2/2}}). Thus, by abuse of notation

\displaystyle  \frac{\sqrt{n}}{\sigma} (\frac{S_n}{n} - \mu) \rightarrow N(0,1).

In the normalised case {\mu=0, \sigma^2=1} when {X} has mean zero and unit variance, this simplifies to

\displaystyle  \frac{S_n}{\sqrt{n}} \rightarrow N(0,1).

Using Proposition 4 (and the fact that the cumulative distribution function associated to {N(0,1)} is continuous, the central limit theorem is equivalent to asserting that

\displaystyle  {\bf P}( \frac{\sqrt{n}}{\sigma} (\frac{S_n}{n} - \mu) \leq t ) \rightarrow \frac{1}{\sqrt{2\pi}} \int_{-\infty}^t e^{-x^2/2}\ dx

as {n \rightarrow \infty} for any {t \in {\bf R}}, or equivalently that

\displaystyle  {\bf P}( a \leq \frac{\sqrt{n}}{\sigma} (\frac{S_n}{n} - \mu) \leq b ) \rightarrow \frac{1}{\sqrt{2\pi}} \int_{a}^b e^{-x^2/2}\ dx.

Informally, one can think of the central limit theorem as asserting that {S_n} approximately behaves like it has distribution {N( n \mu, n \sigma^2 )} for large {n}, where {N(\mu,\sigma^2)} is the normal distribution with mean {\mu} and variance {\sigma^2}, that is to say the distribution with probability density function {x \mapsto \frac{1}{\sqrt{2\pi} \sigma} e^{-(x-\mu)^2/2\sigma^2}}. The integrals {\frac{1}{\sqrt{2\pi}} \int_{-\infty}^t e^{-x^2/2}\ dx} can be written in terms of the error function {\hbox{erf}} as {\frac{1}{2} + \frac{1}{2} \hbox{erf}(t/\sqrt{2})}.

The central limit theorem is a basic example of the universality phenomenon in probability – many statistics involving a large system of many independent (or weakly dependent) variables (such as the normalised sums {\frac{\sqrt{n}}{\sigma}(\frac{S_n}{n}-\mu)}) end up having a universal asymptotic limit (in this case, the normal distribution), regardless of the precise makeup of the underlying random variable {X} that comprised that system. Indeed, the universality of the normal distribution is such that it arises in many other contexts than the fluctuation of iid random variables; the central limit theorem is merely the first place in probability theory where it makes a prominent appearance.

We will give several proofs of the central limit theorem in these notes; each of these proofs has their advantages and disadvantages, and can each extend to prove many further results beyond the central limit theorem. We first give Lindeberg’s proof of the central limit theorem, based on exchanging (or swapping) each component {X_1,\dots,X_n} of the sum {S_n} in turn. This proof gives an accessible explanation as to why there should be a universal limit for the central limit theorem; one then computes directly with gaussians to verify that it is the normal distribution which is the universal limit. Our second proof is the most popular one taught in probability texts, namely the Fourier-analytic proof based around the concept of the characteristic function {t \mapsto {\bf E} e^{itX}} of a real random variable {X}. Thanks to the powerful identities and other results of Fourier analysis, this gives a quite short and direct proof of the central limit theorem, although the arguments may seem rather magical to readers who are not already familiar with Fourier methods. Finally, we give a proof based on the moment method, in the spirit of the arguments in the previous notes; this argument is more combinatorial, but is straightforward and is particularly robust, in particular being well equipped to handle some dependencies between components; we will illustrate this by proving the Erdos-Kac law in number theory by this method. Some further discussion of the central limit theorem (including some further proofs, such as one based on Stein’s method) can be found in this blog post. Some further variants of the central limit theorem, such as local limit theorems, stable laws, and large deviation inequalities, will be discussed in the next (and final) set of notes.

The following exercise illustrates the power of the central limit theorem, by establishing combinatorial estimates which would otherwise require the use of Stirling’s formula to establish.

Exercise 9 (De Moivre-Laplace theorem) Let {X} be a Bernoulli random variable, taking values in {\{0,1\}} with {{\bf P}(X=0)={\bf P}(X=1)=1/2}, thus {X} has mean {1/2} and variance {1/4}. Let {X_1,X_2,\dots} be iid copies of {X}, and write {S_n := X_1+\dots+X_n}.

  • (i) Show that {S_n} takes values in {\{0,\dots,n\}} with {{\bf P}(S_n=i) = \frac{1}{2^n} \binom{n}{i}}. (This is an example of a binomial distribution.)
  • (ii) Assume Stirling’s formula

    \displaystyle  n! = (1+o(1)) \sqrt{2\pi n} n^n e^{-n} \ \ \ \ \ (1)

    where {o(1)} is a function of {n} that goes to zero as {n \rightarrow \infty}. (A proof of this formula may be found in this previous blog post.) Using this formula, and without using the central limit theorem, show that

    \displaystyle  {\bf P}( a \leq 2\sqrt{n} (\frac{S_n}{n} - \frac{1}{2}) \leq b ) \rightarrow \frac{1}{\sqrt{2\pi}} \int_{a}^b e^{-x^2/2}\ dx

    as {n \rightarrow \infty} for any fixed real numbers {a<b}.

The above special case of the central limit theorem was first established by de Moivre and Laplace.

We close this section with some basic facts about convergence of distribution that will be useful in the sequel.

Exercise 10 Let {X_1,X_2,\dots}, {Y_1,Y_2,\dots} be sequences of real random variables, and let {X,Y} be further real random variables.

  • (i) If {X} is deterministic, show that {X_n} converges in distribution to {X} if and only if {X_n} converges in probability to {X}.
  • (ii) Suppose that {X_n} is independent of {Y_n} for each {n}, and {X} independent of {Y}. Show that {X_n+iY_n} converges in distribution to {X+iY} if and only if {X_n} converges in distribution to {X} and {Y_n} converges in distribution to {Y}. (The shortest way to prove this is by invoking the Stone-Weierstrass theorem, but one can also proceed by proving some version of Proposition 4.) What happens if the independence hypothesis is dropped?
  • (iii) If {X_n} converges in distribution to {X}, show that for every {\varepsilon>0} there exists {K>0} such that {{\bf P}( |X_n| \geq K ) < \varepsilon} for all sufficiently large {n}. (That is to say, {X_n} is a tight sequence of random variables.)
  • (iv) Show that {X_n} converges in distribution to {X} if and only if, after extending the probability space model if necessary, one can find copies {Z_1,Z_2,\dots} and {Z} of {X_1,X_2,\dots} and {X} respectively such that {Z_n} converges almost surely to {Z}. (Hint: use the Skorohod representation, Exercise 29 of Notes 0.)
  • (v) If {X_1,X_2,\dots} converges in distribution to {X}, and {F: {\bf R} \rightarrow {\bf R}} is continuous, show that {F(X_1),F(X_2),\dots} converges in distribution to {F(X)}. Generalise this claim to the case when {X} takes values in an arbitrary locally compact Hausdorff space.
  • (vi) (Slutsky’s theorem) If {X_n} converges in distribution to {X}, and {Y_n} converges in probability to a deterministic limit {Y}, show that {X_n+Y_n} converges in distribution to {X+Y}, and {X_n Y_n} converges in distribution to {XY}. (Hint: either use (iv), or else use (iii) to control some error terms.) This statement combines particularly well with (i). What happens if {Y} is not assumed to be deterministic?
  • (vii) (Fatou lemma) If {G: {\bf R} \rightarrow [0,+\infty)} is continuous, and {X_n} converges in distribution to {X}, show that {\liminf_{n \rightarrow \infty} {\bf E} G(X_n) \geq {\bf E} G(X)}.
  • (viii) (Bounded convergence) If {G: {\bf R} \rightarrow {\bf R}} is continuous and bounded, and {X_n} converges in distribution to {X}, show that {\lim_{n \rightarrow \infty} {\bf E} G(X_n) = {\bf E} G(X)}.
  • (ix) (Dominated convergence) If {X_n} converges in distribution to {X}, and there is an absolutely integrable {Y} such that {|X_n| \leq Y} almost surely for all {n}, show that {\lim_{n \rightarrow \infty} {\bf E} X_n = {\bf E} X}.

For future reference we also mention (but will not prove) Prokhorov’s theorem that gives a partial converse to part (iii) of the above exercise:

Theorem 11 (Prokhorov’s theorem) Let {X_1,X_2,\dots} be a sequence of real random variables which is tight (that is, for every {\varepsilon>0} there exists {K>0} such that {{\bf P}(|X_n| \geq K) < \varepsilon} for all sufficiently large {n}). Then there exists a subsequence {X_{n_j}} which converges in distribution to some random variable {X} (which may possibly be modeled by a different probability space model than the {X_1,X_2,\dots}.)

The proof of this theorem relies on the Riesz representation theorem, and is beyond the scope of this course; but see for instance Exercise 29 of this previous blog post. (See also the closely related Helly selection theorem, covered in Exercise 30 of the same post.)

Read the rest of this entry »

The Chowla conjecture asserts, among other things, that one has the asymptotic

\displaystyle \frac{1}{X} \sum_{n \leq X} \lambda(n+h_1) \dots \lambda(n+h_k) = o(1)

as {X \rightarrow \infty} for any distinct integers {h_1,\dots,h_k}, where {\lambda} is the Liouville function. (The usual formulation of the conjecture also allows one to consider more general linear forms {a_i n + b_i} than the shifts {n+h_i}, but for sake of discussion let us focus on the shift case.) This conjecture remains open for {k \geq 2}, though there are now some partial results when one averages either in {x} or in the {h_1,\dots,h_k}, as discussed in this recent post.

A natural generalisation of the Chowla conjecture is the Elliott conjecture. Its original formulation was basically as follows: one had

\displaystyle \frac{1}{X} \sum_{n \leq X} g_1(n+h_1) \dots g_k(n+h_k) = o(1) \ \ \ \ \ (1)

whenever {g_1,\dots,g_k} were bounded completely multiplicative functions and {h_1,\dots,h_k} were distinct integers, and one of the {g_i} was “non-pretentious” in the sense that

\displaystyle \sum_p \frac{1 - \hbox{Re}( g_i(p) \overline{\chi(p)} p^{-it})}{p} = +\infty \ \ \ \ \ (2)

for all Dirichlet characters {\chi} and real numbers {t}. It is easy to see that some condition like (2) is necessary; for instance if {g(n) := \chi(n) n^{it}} and {\chi} has period {q} then {\frac{1}{X} \sum_{n \leq X} g(n+q) \overline{g(n)}} can be verified to be bounded away from zero as {X \rightarrow \infty}.

In a previous paper with Matomaki and Radziwill, we provided a counterexample to the original formulation of the Elliott conjecture, and proposed that (2) be replaced with the stronger condition

\displaystyle \inf_{|t| \leq X} \sum_{p \leq X} \frac{1 - \hbox{Re}( g_i(p) \overline{\chi(p)} p^{-it})}{p} \rightarrow +\infty \ \ \ \ \ (3)

as {X \rightarrow \infty} for any Dirichlet character {\chi}. To support this conjecture, we proved an averaged and non-asymptotic version of this conjecture which roughly speaking showed a bound of the form

\displaystyle \frac{1}{H^k} \sum_{h_1,\dots,h_k \leq H} |\frac{1}{X} \sum_{n \leq X} g_1(n+h_1) \dots g_k(n+h_k)| \leq \varepsilon

whenever {H} was an arbitrarily slowly growing function of {X}, {X} was sufficiently large (depending on {\varepsilon,k} and the rate at which {H} grows), and one of the {g_i} obeyed the condition

\displaystyle \inf_{|t| \leq AX} \sum_{p \leq X} \frac{1 - \hbox{Re}( g_i(p) \overline{\chi(p)} p^{-it})}{p} \geq A \ \ \ \ \ (4)

for some {A} that was sufficiently large depending on {k,\varepsilon}, and all Dirichlet characters {\chi} of period at most {A}. As further support of this conjecture, I recently established the bound

\displaystyle \frac{1}{\log \omega} |\sum_{X/\omega \leq n \leq X} \frac{g_1(n+h_1) g_2(n+h_2)}{n}| \leq \varepsilon

under the same hypotheses, where {\omega} is an arbitrarily slowly growing function of {X}.

In view of these results, it is tempting to conjecture that the condition (4) for one of the {g_i} should be sufficient to obtain the bound

\displaystyle |\frac{1}{X} \sum_{n \leq X} g_1(n+h_1) \dots g_k(n+h_k)| \leq \varepsilon

when {A} is large enough depending on {k,\varepsilon}. This may well be the case for {k=2}. However, the purpose of this blog post is to record a simple counterexample for {k>2}. Let’s take {k=3} for simplicity. Let {t_0} be a quantity much larger than {X} but much smaller than {X^2} (e.g. {t = X^{3/2}}), and set

\displaystyle g_1(n) := n^{it_0}; \quad g_2(n) := n^{-2it_0}; \quad g_3(n) := n^{it_0}.

For {X/2 \leq n \leq X}, Taylor expansion gives

\displaystyle (n+1)^{it} = n^{it_0} \exp( i t_0 / n ) + o(1)


\displaystyle (n+2)^{it} = n^{it_0} \exp( 2 i t_0 / n ) + o(1)

and hence

\displaystyle g_1(n) g_2(n+1) g_3(n+2) = 1 + o(1)

and hence

\displaystyle |\frac{1}{X} \sum_{X/2 \leq n \leq X} g_1(n) g_2(n+1) g_3(n+2)| \gg 1.

On the other hand one can easily verify that all of the {g_1,g_2,g_3} obey (4) (the restriction {|t| \leq AX} there prevents {t} from getting anywhere close to {t_0}). So it seems the correct non-asymptotic version of the Elliott conjecture is the following:

Conjecture 1 (Non-asymptotic Elliott conjecture) Let {k} be a natural number, and let {h_1,\dots,h_k} be integers. Let {\varepsilon > 0}, let {A} be sufficiently large depending on {k,\varepsilon,h_1,\dots,h_k}, and let {X} be sufficiently large depending on {k,\varepsilon,h_1,\dots,h_k,A}. Let {g_1,\dots,g_k} be bounded multiplicative functions such that for some {1 \leq i \leq k}, one has

\displaystyle \inf_{|t| \leq AX^{k-1}} \sum_{p \leq X} \frac{1 - \hbox{Re}( g_i(p) \overline{\chi(p)} p^{-it})}{p} \geq A

for all Dirichlet characters {\chi} of conductor at most {A}. Then

\displaystyle |\frac{1}{X} \sum_{n \leq X} g_1(n+h_1) \dots g_k(n+h_k)| \leq \varepsilon.

The {k=1} case of this conjecture follows from the work of Halasz; in my recent paper a logarithmically averaged version of the {k=2} case of this conjecture is established. The requirement to take {t} to be as large as {A X^{k-1}} does not emerge in the averaged Elliott conjecture in my previous paper with Matomaki and Radziwill; it thus seems that this averaging has concealed some of the subtler features of the Elliott conjecture. (However, this subtlety does not seem to affect the asymptotic version of the conjecture formulated in that paper, in which the hypothesis is of the form (3), and the conclusion is of the form (1).)

A similar subtlety arises when trying to control the maximal integral

\displaystyle \frac{1}{X} \int_X^{2X} \sup_\alpha \frac{1}{H} |\sum_{x \leq n \leq x+H} g(n) e(\alpha n)|\ dx. \ \ \ \ \ (5)

In my previous paper with Matomaki and Radziwill, we could show that easier expression

\displaystyle \frac{1}{X} \sup_\alpha \int_X^{2X} \frac{1}{H} |\sum_{x \leq n \leq x+H} g(n) e(\alpha n)|\ dx. \ \ \ \ \ (6)

was small (for {H} a slowly growing function of {X}) if {g} was bounded and completely multiplicative, and one had a condition of the form

\displaystyle \inf_{|t| \leq AX} \sum_{p \leq X} \frac{1 - \hbox{Re}( g(p) \overline{\chi(p)} p^{-it})}{p} \geq A \ \ \ \ \ (7)

for some large {A}. However, to obtain an analogous bound for (5) it now appears that one needs to strengthen the above condition to

\displaystyle \inf_{|t| \leq AX^2} \sum_{p \leq X} \frac{1 - \hbox{Re}( g(p) \overline{\chi(p)} p^{-it})}{p} \geq A

in order to address the counterexample in which {g(n) = n^{it_0}} for some {t_0} between {X} and {X^2}. This seems to suggest that proving (5) (which is closely related to the {k=3} case of the Chowla conjecture) could in fact be rather difficult; the estimation of (6) relied primarily of prior work of Matomaki and Radziwill which used the hypothesis (7), but as this hypothesis is not sufficient to conclude (5), some additional input must also be used.

One of the major activities in probability theory is studying the various statistics that can be produced from a complex system with many components. One of the simplest possible systems one can consider is a finite sequence {X_1,\dots,X_n} or an infinite sequence {X_1,X_2,\dots} of jointly independent scalar random variables, with the case when the {X_i} are also identically distributed (i.e. the {X_i} are iid) being a model case of particular interest. (In some cases one may consider a triangular array {(X_{n,i})_{1 \leq i \leq n}} of scalar random variables, rather than a finite or infinite sequence.) There are many statistics of such sequences that one can study, but one of the most basic such statistics are the partial sums

\displaystyle S_n := X_1 + \dots + X_n.

The first fundamental result about these sums is the law of large numbers (or LLN for short), which comes in two formulations, weak (WLLN) and strong (SLLN). To state these laws, we first must define the notion of convergence in probability.

Definition 1 Let {X_n} be a sequence of random variables taking values in a separable metric space {R = (R,d)} (e.g. the {X_n} could be scalar random variables, taking values in {{\bf R}} or {{\bf C}}), and let {X} be another random variable taking values in {R}. We say that {X_n} converges in probability to {X} if, for every radius {\varepsilon > 0}, one has {{\bf P}( d(X_n,X) > \varepsilon ) \rightarrow 0} as {n \rightarrow \infty}. Thus, if {X_n, X} are scalar, we have {X_n} converging to {X} in probability if {{\bf P}( |X_n-X| > \varepsilon ) \rightarrow 0} as {n \rightarrow \infty} for any given {\varepsilon > 0}.

The measure-theoretic analogue of convergence in probability is convergence in measure.

It is instructive to compare the notion of convergence in probability with almost sure convergence. it is easy to see that {X_n} converges almost surely to {X} if and only if, for every radius {\varepsilon > 0}, one has {{\bf P}( \bigvee_{n \geq N} (d(X_n,X)>\varepsilon) ) \rightarrow 0} as {N \rightarrow \infty}; thus, roughly speaking, convergence in probability is good for controlling how a single random variable {X_n} is close to its putative limiting value {X}, while almost sure convergence is good for controlling how the entire tail {(X_n)_{n \geq N}} of a sequence of random variables is close to its putative limit {X}.

We have the following easy relationships between convergence in probability and almost sure convergence:

Exercise 2 Let {X_n} be a sequence of scalar random variables, and let {X} be another scalar random variable.

  • (i) If {X_n \rightarrow X} almost surely, show that {X_n \rightarrow X} in probability. Give a counterexample to show that the converse does not necessarily hold.
  • (ii) Suppose that {\sum_n {\bf P}( |X_n-X| > \varepsilon ) < \infty} for all {\varepsilon > 0}. Show that {X_n \rightarrow X} almost surely. Give a counterexample to show that the converse does not necessarily hold.
  • (iii) If {X_n \rightarrow X} in probability, show that there is a subsequence {X_{n_j}} of the {X_n} such that {X_{n_j} \rightarrow X} almost surely.
  • (iv) If {X_n,X} are absolutely integrable and {{\bf E} |X_n-X| \rightarrow 0} as {n \rightarrow \infty}, show that {X_n \rightarrow X} in probability. Give a counterexample to show that the converse does not necessarily hold.
  • (v) (Urysohn subsequence principle) Suppose that every subsequence {X_{n_j}} of {X_n} has a further subsequence {X_{n_{j_k}}} that converges to {X} in probability. Show that {X_n} also converges to {X} in probability.
  • (vi) Does the Urysohn subsequence principle still hold if “in probability” is replaced with “almost surely” throughout?
  • (vii) If {X_n} converges in probability to {X}, and {F: {\bf R} \rightarrow {\bf R}} or {F: {\bf C} \rightarrow {\bf C}} is continuous, show that {F(X_n)} converges in probability to {F(X)}. More generally, if for each {i=1,\dots,k}, {X^{(i)}_n} is a sequence of scalar random variables that converge in probability to {X^{(i)}}, and {F: {\bf R}^k \rightarrow {\bf R}} or {F: {\bf C}^k \rightarrow {\bf C}} is continuous, show that {F(X^{(1)}_n,\dots,X^{(k)}_n)} converges in probability to {F(X^{(1)},\dots,X^{(k)})}. (Thus, for instance, if {X_n} and {Y_n} converge in probability to {X} and {Y} respectively, then {X_n + Y_n} and {X_n Y_n} converge in probability to {X+Y} and {XY} respectively.
  • (viii) (Fatou’s lemma for convergence in probability) If {X_n} are non-negative and converge in probability to {X}, show that {{\bf E} X \leq \liminf_{n \rightarrow \infty} {\bf E} X_n}.
  • (ix) (Dominated convergence in probability) If {X_n} converge in probability to {X}, and one almost surely has {|X_n| \leq Y} for all {n} and some absolutely integrable {Y}, show that {{\bf E} X_n} converges to {{\bf E} X}.

Exercise 3 Let {X_1,X_2,\dots} be a sequence of scalar random variables converging in probability to another random variable {X}.

  • (i) Suppose that there is a random variable {Y} which is independent of {X_i} for each individual {i}. Show that {Y} is also independent of {X}.
  • (ii) Suppose that the {X_1,X_2,\dots} are jointly independent. Show that {X} is almost surely constant (i.e. there is a deterministic scalar {c} such that {X=c} almost surely).

We can now state the weak and strong law of large numbers, in the model case of iid random variables.

Theorem 4 (Law of large numbers, model case) Let {X_1, X_2, \dots} be an iid sequence of copies of an absolutely integrable random variable {X} (thus the {X_i} are independent and all have the same distribution as {X}). Write {\mu := {\bf E} X}, and for each natural number {n}, let {S_n} denote the random variable {S_n := X_1 + \dots + X_n}.

  • (i) (Weak law of large numbers) The random variables {S_n/n} converge in probability to {\mu}.
  • (ii) (Strong law of large numbers) The random variables {S_n/n} converge almost surely to {\mu}.

Informally: if {X_1,\dots,X_n} are iid with mean {\mu}, then {X_1 + \dots + X_n \approx \mu n} for {n} large. Clearly the strong law of large numbers implies the weak law, but the weak law is easier to prove (and has somewhat better quantitative estimates). There are several variants of the law of large numbers, for instance when one drops the hypothesis of identical distribution, or when the random variable {X} is not absolutely integrable, or if one seeks more quantitative bounds on the rate of convergence; we will discuss some of these variants below the fold.

It is instructive to compare the law of large numbers with what one can obtain from the Kolmogorov zero-one law, discussed in Notes 2. Observe that if the {X_n} are real-valued, then the limit superior {\limsup_{n \rightarrow \infty} S_n/n} and {\liminf_{n \rightarrow \infty} S_n/n} are tail random variables in the sense that they are not affected if one changes finitely many of the {X_n}; in particular, events such as {\limsup_{n \rightarrow \infty} S_n/n > t} are tail events for any {t \in {\bf R}}. From this and the zero-one law we see that there must exist deterministic quantities {-\infty \leq \mu_- \leq \mu_+ \leq +\infty} such that {\limsup_{n \rightarrow \infty} S_n/n = \mu_+} and {\liminf_{n \rightarrow \infty} S_n/n = \mu_-} almost surely. The strong law of large numbers can then be viewed as the assertion that {\mu_- = \mu_+ = \mu} when {X} is absolutely integrable. On the other hand, the zero-one law argument does not require absolute integrability (and one can replace the denominator {n} by other functions of {n} that go to infinity as {n \rightarrow \infty}).

The law of large numbers asserts, roughly speaking, that the theoretical expectation {\mu} of a random variable {X} can be approximated by taking a large number of independent samples {X_1,\dots,X_n} of {X} and then forming the empirical mean {S_n/n = \frac{X_1+\dots+X_n}{n}}. This ability to approximate the theoretical statistics of a probability distribution through empirical data is one of the basic starting points for mathematical statistics, though this is not the focus of the course here. The tendency of statistics such as {S_n/n} to cluster closely around their mean value {\mu} is the simplest instance of the concentration of measure phenomenon, which is of tremendous significance not only within probability, but also in applications of probability to disciplines such as statistics, theoretical computer science, combinatorics, random matrix theory and high dimensional geometry. We will not discuss these topics much in this course, but see this previous blog post for some further discussion.

There are several ways to prove the law of large numbers (in both forms). One basic strategy is to use the moment method – controlling statistics such as {S_n/n} by computing moments such as the mean {{\bf E} S_n/n}, variance {{\bf E} |S_n/n - {\bf E} S_n/n|^2}, or higher moments such as {{\bf E} |S_n/n - {\bf E} S_n/n|^k} for {k = 4, 6, \dots}. The joint independence of the {X_i} make such moments fairly easy to compute, requiring only some elementary combinatorics. A direct application of the moment method typically requires one to make a finite moment assumption such as {{\bf E} |X|^k < \infty}, but as we shall see, one can reduce fairly easily to this case by a truncation argument.

For the strong law of large numbers, one can also use methods relating to the theory of martingales, such as stopping time arguments and maximal inequalities; we present some classical arguments of Kolmogorov in this regard.

Read the rest of this entry »

In the previous set of notes, we constructed the measure-theoretic notion of the Lebesgue integral, and used this to set up the probabilistic notion of expectation on a rigorous footing. In this set of notes, we will similarly construct the measure-theoretic concept of a product measure (restricting to the case of probability measures to avoid unnecessary techncialities), and use this to set up the probabilistic notion of independence on a rigorous footing. (To quote Durrett: “measure theory ends and probability theory begins with the definition of independence.”) We will be able to take virtually any collection of random variables (or probability distributions) and couple them together to be independent via the product measure construction, though for infinite products there is the slight technicality (a requirement of the Kolmogorov extension theorem) that the random variables need to range in standard Borel spaces. This is not the only way to couple together such random variables, but it is the simplest and the easiest to compute with in practice, as we shall see in the next few sets of notes.

Read the rest of this entry »

I recently learned about a curious operation on square matrices known as sweeping, which is used in numerical linear algebra (particularly in applications to statistics), as a useful and more robust variant of the usual Gaussian elimination operations seen in undergraduate linear algebra courses. Given an {n \times n} matrix {A := (a_{ij})_{1 \leq i,j \leq n}} (with, say, complex entries) and an index {1 \leq k \leq n}, with the entry {a_{kk}} non-zero, the sweep {\hbox{Sweep}_k[A] = (\hat a_{ij})_{1 \leq i,j \leq n}} of {A} at {k} is the matrix given by the formulae

\displaystyle  \hat a_{ij} := a_{ij} - \frac{a_{ik} a_{kj}}{a_{kk}}

\displaystyle  \hat a_{ik} := \frac{a_{ik}}{a_{kk}}

\displaystyle  \hat a_{kj} := \frac{a_{kj}}{a_{kk}}

\displaystyle  \hat a_{kk} := \frac{-1}{a_{kk}}

for all {i,j \in \{1,\dots,n\} \backslash \{k\}}. Thus for instance if {k=1}, and {A} is written in block form as

\displaystyle  A = \begin{pmatrix} a_{11} & X \\ Y & B \end{pmatrix} \ \ \ \ \ (1)

for some {1 \times n-1} row vector {X}, {n-1 \times 1} column vector {Y}, and {n-1 \times n-1} minor {B}, one has

\displaystyle  \hbox{Sweep}_1[A] = \begin{pmatrix} -1/a_{11} & X / a_{11} \\ Y/a_{11} & B - a_{11}^{-1} YX \end{pmatrix}. \ \ \ \ \ (2)

The inverse sweep operation {\hbox{Sweep}_k^{-1}[A] = (\check a_{ij})_{1 \leq i,j \leq n}} is given by a nearly identical set of formulae:

\displaystyle  \check a_{ij} := a_{ij} - \frac{a_{ik} a_{kj}}{a_{kk}}

\displaystyle  \check a_{ik} := -\frac{a_{ik}}{a_{kk}}

\displaystyle  \check a_{kj} := -\frac{a_{kj}}{a_{kk}}

\displaystyle  \check a_{kk} := \frac{-1}{a_{kk}}

for all {i,j \in \{1,\dots,n\} \backslash \{k\}}. One can check that these operations invert each other. Actually, each sweep turns out to have order {4}, so that {\hbox{Sweep}_k^{-1} = \hbox{Sweep}_k^3}: an inverse sweep performs the same operation as three forward sweeps. Sweeps also preserve the space of symmetric matrices (allowing one to cut down computational run time in that case by a factor of two), and behave well with respect to principal minors; a sweep of a principal minor is a principal minor of a sweep, after adjusting indices appropriately.

Remarkably, the sweep operators all commute with each other: {\hbox{Sweep}_k \hbox{Sweep}_l = \hbox{Sweep}_l \hbox{Sweep}_k}. If {1 \leq k \leq n} and we perform the first {k} sweeps (in any order) to a matrix

\displaystyle  A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}

with {A_{11}} a {k \times k} minor, {A_{12}} a {k \times n-k} matrix, {A_{12}} a {n-k \times k} matrix, and {A_{22}} a {n-k \times n-k} matrix, one obtains the new matrix

\displaystyle  \hbox{Sweep}_1 \dots \hbox{Sweep}_k[A] = \begin{pmatrix} -A_{11}^{-1} & A_{11}^{-1} A_{12} \\ A_{21} A_{11}^{-1} & A_{22} - A_{21} A_{11}^{-1} A_{12} \end{pmatrix}.

Note the appearance of the Schur complement in the bottom right block. Thus, for instance, one can essentially invert a matrix {A} by performing all {n} sweeps:

\displaystyle  \hbox{Sweep}_1 \dots \hbox{Sweep}_n[A] = -A^{-1}.

If a matrix has the form

\displaystyle  A = \begin{pmatrix} B & X \\ Y & a \end{pmatrix}

for a {n-1 \times n-1} minor {B}, {n-1 \times 1} column vector {X}, {1 \times n-1} row vector {Y}, and scalar {a}, then performing the first {n-1} sweeps gives

\displaystyle  \hbox{Sweep}_1 \dots \hbox{Sweep}_{n-1}[A] = \begin{pmatrix} -B^{-1} & B^{-1} X \\ Y B^{-1} & a - Y B^{-1} X \end{pmatrix}

and all the components of this matrix are usable for various numerical linear algebra applications in statistics (e.g. in least squares regression). Given that sweeps behave well with inverses, it is perhaps not surprising that sweeps also behave well under determinants: the determinant of {A} can be factored as the product of the entry {a_{kk}} and the determinant of the {n-1 \times n-1} matrix formed from {\hbox{Sweep}_k[A]} by removing the {k^{th}} row and column. As a consequence, one can compute the determinant of {A} fairly efficiently (so long as the sweep operations don’t come close to dividing by zero) by sweeping the matrix for {k=1,\dots,n} in turn, and multiplying together the {kk^{th}} entry of the matrix just before the {k^{th}} sweep for {k=1,\dots,n} to obtain the determinant.

It turns out that there is a simple geometric explanation for these seemingly magical properties of the sweep operation. Any {n \times n} matrix {A} creates a graph {\hbox{Graph}[A] := \{ (X, AX): X \in {\bf R}^n \}} (where we think of {{\bf R}^n} as the space of column vectors). This graph is an {n}-dimensional subspace of {{\bf R}^n \times {\bf R}^n}. Conversely, most subspaces of {{\bf R}^n \times {\bf R}^n} arises as graphs; there are some that fail the vertical line test, but these are a positive codimension set of counterexamples.

We use {e_1,\dots,e_n,f_1,\dots,f_n} to denote the standard basis of {{\bf R}^n \times {\bf R}^n}, with {e_1,\dots,e_n} the standard basis for the first factor of {{\bf R}^n} and {f_1,\dots,f_n} the standard basis for the second factor. The operation of sweeping the {k^{th}} entry then corresponds to a ninety degree rotation {\hbox{Rot}_k: {\bf R}^n \times {\bf R}^n \rightarrow {\bf R}^n \times {\bf R}^n} in the {e_k,f_k} plane, that sends {f_k} to {e_k} (and {e_k} to {-f_k}), keeping all other basis vectors fixed: thus we have

\displaystyle  \hbox{Graph}[ \hbox{Sweep}_k[A] ] = \hbox{Rot}_k \hbox{Graph}[A]

for generic {n \times n} {A} (more precisely, those {A} with non-vanishing entry {a_{kk}}). For instance, if {k=1} and {A} is of the form (1), then {\hbox{Graph}[A]} is the set of tuples {(r,R,s,S) \in {\bf R} \times {\bf R}^{n-1} \times {\bf R} \times {\bf R}^{n-1}} obeying the equations

\displaystyle  a_{11} r + X R = s

\displaystyle  Y r + B R = S.

The image of {(r,R,s,S)} under {\hbox{Rot}_1} is {(s, R, -r, S)}. Since we can write the above system of equations (for {a_{11} \neq 0}) as

\displaystyle  \frac{-1}{a_{11}} s + \frac{X}{a_{11}} R = -r

\displaystyle  \frac{Y}{a_{11}} s + (B - a_{11}^{-1} YX) R = S

we see from (2) that {\hbox{Rot}_1 \hbox{Graph}[A]} is the graph of {\hbox{Sweep}_1[A]}. Thus the sweep operation is a multidimensional generalisation of the high school geometry fact that the line {y = mx} in the plane becomes {y = \frac{-1}{m} x} after applying a ninety degree rotation.

It is then an instructive exercise to use this geometric interpretation of the sweep operator to recover all the remarkable properties about these operations listed above. It is also useful to compare the geometric interpretation of sweeping as rotation of the graph to that of Gaussian elimination, which instead shears and reflects the graph by various elementary transformations (this is what is going on geometrically when one performs Gaussian elimination on an augmented matrix). Rotations are less distorting than shears, so one can see geometrically why sweeping can produce fewer numerical artefacts than Gaussian elimination.

In Notes 0, we introduced the notion of a measure space {\Omega = (\Omega, {\mathcal F}, \mu)}, which includes as a special case the notion of a probability space. By selecting one such probability space {(\Omega,{\mathcal F},\mu)} as a sample space, one obtains a model for random events and random variables, with random events {E} being modeled by measurable sets {E_\Omega} in {{\mathcal F}}, and random variables {X} taking values in a measurable space {R} being modeled by measurable functions {X_\Omega: \Omega \rightarrow R}. We then defined some basic operations on these random events and variables:

  • Given events {E,F}, we defined the conjunction {E \wedge F}, the disjunction {E \vee F}, and the complement {\overline{E}}. For countable families {E_1,E_2,\dots} of events, we similarly defined {\bigwedge_{n=1}^\infty E_n} and {\bigvee_{n=1}^\infty E_n}. We also defined the empty event {\emptyset} and the sure event {\overline{\emptyset}}, and what it meant for two events to be equal.
  • Given random variables {X_1,\dots,X_n} in ranges {R_1,\dots,R_n} respectively, and a measurable function {F: R_1 \times \dots \times R_n \rightarrow S}, we defined the random variable {F(X_1,\dots,X_n)} in range {S}. (As the special case {n=0} of this, every deterministic element {s} of {S} was also a random variable taking values in {S}.) Given a relation {P: R_1 \times \dots \times R_n \rightarrow \{\hbox{true}, \hbox{false}\}}, we similarly defined the event {P(X_1,\dots,X_n)}. Conversely, given an event {E}, we defined the indicator random variable {1_E}. Finally, we defined what it meant for two random variables to be equal.
  • Given an event {E}, we defined its probability {{\bf P}(E)}.

These operations obey various axioms; for instance, the boolean operations on events obey the axioms of a Boolean algebra, and the probabilility function {E \mapsto {\bf P}(E)} obeys the Kolmogorov axioms. However, we will not focus on the axiomatic approach to probability theory here, instead basing the foundations of probability theory on the sample space models as discussed in Notes 0. (But see this previous post for a treatment of one such axiomatic approach.)

It turns out that almost all of the other operations on random events and variables we need can be constructed in terms of the above basic operations. In particular, this allows one to safely extend the sample space in probability theory whenever needed, provided one uses an extension that respects the above basic operations; this is an important operation when one needs to add new sources of randomness to an existing system of events and random variables, or to couple together two separate such systems into a joint system that extends both of the original systems. We gave a simple example of such an extension in the previous notes, but now we give a more formal definition:

Definition 1 Suppose that we are using a probability space {\Omega = (\Omega, {\mathcal F}, \mu)} as the model for a collection of events and random variables. An extension of this probability space is a probability space {\Omega' = (\Omega', {\mathcal F}', \mu')}, together with a measurable map {\pi: \Omega' \rightarrow \Omega} (sometimes called the factor map) which is probability-preserving in the sense that

\displaystyle  \mu'( \pi^{-1}(E) ) = \mu(E) \ \ \ \ \ (1)

for all {E \in {\mathcal F}}. (Caution: this does not imply that {\mu(\pi(F)) = \mu'(F)} for all {F \in {\mathcal F}'} – why not?)

An event {E} which is modeled by a measurable subset {E_\Omega} in the sample space {\Omega}, will be modeled by the measurable set {E_{\Omega'} := \pi^{-1}(E_\Omega)} in the extended sample space {\Omega'}. Similarly, a random variable {X} taking values in some range {R} that is modeled by a measurable function {X_\Omega: \Omega \rightarrow R} in {\Omega}, will be modeled instead by the measurable function {X_{\Omega'} := X_\Omega \circ \pi} in {\Omega'}. We also allow the extension {\Omega'} to model additional events and random variables that were not modeled by the original sample space {\Omega} (indeed, this is one of the main reasons why we perform extensions in probability in the first place).

Thus, for instance, the sample space {\Omega'} in Example 3 of the previous post is an extension of the sample space {\Omega} in that example, with the factor map {\pi: \Omega' \rightarrow \Omega} given by the first coordinate projection {\pi(i,j) := i}. One can verify that all of the basic operations on events and random variables listed above are unaffected by the above extension (with one caveat, see remark below). For instance, the conjunction {E \wedge F} of two events can be defined via the original model {\Omega} by the formula

\displaystyle  (E \wedge F)_\Omega := E_\Omega \cap F_\Omega

or via the extension {\Omega'} via the formula

\displaystyle  (E \wedge F)_{\Omega'} := E_{\Omega'} \cap F_{\Omega'}.

The two definitions are consistent with each other, thanks to the obvious set-theoretic identity

\displaystyle  \pi^{-1}( E_\Omega \cap F_\Omega ) = \pi^{-1}(E_\Omega) \cap \pi^{-1}(F_\Omega).

Similarly, the assumption (1) is precisely what is needed to ensure that the probability {\mathop{\bf P}(E)} of an event remains unchanged when one replaces a sample space model with an extension. We leave the verification of preservation of the other basic operations described above under extension as exercises to the reader.

Remark 2 There is one minor exception to this general rule if we do not impose the additional requirement that the factor map {\pi} is surjective. Namely, for non-surjective {\pi}, it can become possible that two events {E, F} are unequal in the original sample space model, but become equal in the extension (and similarly for random variables), although the converse never happens (events that are equal in the original sample space always remain equal in the extension). For instance, let {\Omega} be the discrete probability space {\{a,b\}} with {p_a=1} and {p_b=0}, and let {\Omega'} be the discrete probability space {\{ a'\}} with {p'_{a'}=1}, and non-surjective factor map {\pi: \Omega' \rightarrow \Omega} defined by {\pi(a') := a}. Then the event modeled by {\{b\}} in {\Omega} is distinct from the empty event when viewed in {\Omega}, but becomes equal to that event when viewed in {\Omega'}. Thus we see that extending the sample space by a non-surjective factor map can identify previously distinct events together (though of course, being probability preserving, this can only happen if those two events were already almost surely equal anyway). This turns out to be fairly harmless though; while it is nice to know if two given events are equal, or if they differ by a non-null event, it is almost never useful to know that two events are unequal if they are already almost surely equal. Alternatively, one can add the additional requirement of surjectivity in the definition of an extension, which is also a fairly harmless constraint to impose (this is what I chose to do in this previous set of notes).

Roughly speaking, one can define probability theory as the study of those properties of random events and random variables that are model-independent in the sense that they are preserved by extensions. For instance, the cardinality {|E_\Omega|} of the model {E_\Omega} of an event {E} is not a concept within the scope of probability theory, as it is not preserved by extensions: continuing Example 3 from Notes 0, the event {E} that a die roll {X} is even is modeled by a set {E_\Omega = \{2,4,6\}} of cardinality {3} in the original sample space model {\Omega}, but by a set {E_{\Omega'} = \{2,4,6\} \times \{1,2,3,4,5,6\}} of cardinality {18} in the extension. Thus it does not make sense in the context of probability theory to refer to the “cardinality of an event {E}“.

On the other hand, the supremum {\sup_n X_n} of a collection of random variables {X_n} in the extended real line {[-\infty,+\infty]} is a valid probabilistic concept. This can be seen by manually verifying that this operation is preserved under extension of the sample space, but one can also see this by defining the supremum in terms of existing basic operations. Indeed, note from Exercise 24 of Notes 0 that a random variable {X} in the extended real line is completely specified by the threshold events {(X \leq t)} for {t \in {\bf R}}; in particular, two such random variables {X,Y} are equal if and only if the events {(X \leq t)} and {(Y \leq t)} are surely equal for all {t}. From the identity

\displaystyle  (\sup_n X_n \leq t) = \bigwedge_{n=1}^\infty (X_n \leq t)

we thus see that one can completely specify {\sup_n X_n} in terms of {X_n} using only the basic operations provided in the above list (and in particular using the countable conjunction {\bigwedge_{n=1}^\infty}.) Of course, the same considerations hold if one replaces supremum, by infimum, limit superior, limit inferior, or (if it exists) the limit.

In this set of notes, we will define some further important operations on scalar random variables, in particular the expectation of these variables. In the sample space models, expectation corresponds to the notion of integration on a measure space. As we will need to use both expectation and integration in this course, we will thus begin by quickly reviewing the basics of integration on a measure space, although we will then translate the key results of this theory into probabilistic language.

As the finer details of the Lebesgue integral construction are not the core focus of this probability course, some of the details of this construction will be left to exercises. See also Chapter 1 of Durrett, or these previous blog notes, for a more detailed treatment.

Read the rest of this entry »

Starting this week, I will be teaching an introductory graduate course (Math 275A) on probability theory here at UCLA. While I find myself using probabilistic methods routinely nowadays in my research (for instance, the probabilistic concept of Shannon entropy played a crucial role in my recent paper on the Chowla and Elliott conjectures, and random multiplicative functions similarly played a central role in the paper on the Erdos discrepancy problem), this will actually be the first time I will be teaching a course on probability itself (although I did give a course on random matrix theory some years ago that presumed familiarity with graduate-level probability theory). As such, I will be relying primarily on an existing textbook, in this case Durrett’s Probability: Theory and Examples. I still need to prepare lecture notes, though, and so I thought I would continue my practice of putting my notes online, although in this particular case they will be less detailed or complete than with other courses, as they will mostly be focusing on those topics that are not already comprehensively covered in the text of Durrett. Below the fold are my first such set of notes, concerning the classical measure-theoretic foundations of probability. (I wrote on these foundations also in this previous blog post, but in that post I already assumed that the reader was familiar with measure theory and basic probability, whereas in this course not every student will have a strong background in these areas.)

Note: as this set of notes is primarily concerned with foundational issues, it will contain a large number of pedantic (and nearly trivial) formalities and philosophical points. We dwell on these technicalities in this set of notes primarily so that they are out of the way in later notes, when we work with the actual mathematics of probability, rather than on the supporting foundations of that mathematics. In particular, the excessively formal and philosophical language in this set of notes will not be replicated in later notes.

Read the rest of this entry »

Let {X} and {Y} be two random variables taking values in the same (discrete) range {R}, and let {E} be some subset of {R}, which we think of as the set of “bad” outcomes for either {X} or {Y}. If {X} and {Y} have the same probability distribution, then clearly

\displaystyle  {\bf P}( X \in E ) = {\bf P}( Y \in E ).

In particular, if it is rare for {Y} to lie in {E}, then it is also rare for {X} to lie in {E}.

If {X} and {Y} do not have exactly the same probability distribution, but their probability distributions are close to each other in some sense, then we can expect to have an approximate version of the above statement. For instance, from the definition of the total variation distance {\delta(X,Y)} between two random variables (or more precisely, the total variation distance between the probability distributions of two random variables), we see that

\displaystyle  {\bf P}(Y \in E) - \delta(X,Y) \leq {\bf P}(X \in E) \leq {\bf P}(Y \in E) + \delta(X,Y) \ \ \ \ \ (1)

for any {E \subset R}. In particular, if it is rare for {Y} to lie in {E}, and {X,Y} are close in total variation, then it is also rare for {X} to lie in {E}.

A basic inequality in information theory is Pinsker’s inequality

\displaystyle  \delta(X,Y) \leq \sqrt{\frac{1}{2} D_{KL}(X||Y)}

where the Kullback-Leibler divergence {D_{KL}(X||Y)} is defined by the formula

\displaystyle  D_{KL}(X||Y) = \sum_{x \in R} {\bf P}( X=x ) \log \frac{{\bf P}(X=x)}{{\bf P}(Y=x)}.

(See this previous blog post for a proof of this inequality.) A standard application of Jensen’s inequality reveals that {D_{KL}(X||Y)} is non-negative (Gibbs’ inequality), and vanishes if and only if {X}, {Y} have the same distribution; thus one can think of {D_{KL}(X||Y)} as a measure of how close the distributions of {X} and {Y} are to each other, although one should caution that this is not a symmetric notion of distance, as {D_{KL}(X||Y) \neq D_{KL}(Y||X)} in general. Inserting Pinsker’s inequality into (1), we see for instance that

\displaystyle  {\bf P}(X \in E) \leq {\bf P}(Y \in E) + \sqrt{\frac{1}{2} D_{KL}(X||Y)}.

Thus, if {X} is close to {Y} in the Kullback-Leibler sense, and it is rare for {Y} to lie in {E}, then it is rare for {X} to lie in {E} as well.

We can specialise this inequality to the case when {Y} a uniform random variable {U} on a finite range {R} of some cardinality {N}, in which case the Kullback-Leibler divergence {D_{KL}(X||U)} simplifies to

\displaystyle  D_{KL}(X||U) = \log N - {\bf H}(X)


\displaystyle  {\bf H}(X) := \sum_{x \in R} {\bf P}(X=x) \log \frac{1}{{\bf P}(X=x)}

is the Shannon entropy of {X}. Again, a routine application of Jensen’s inequality shows that {{\bf H}(X) \leq \log N}, with equality if and only if {X} is uniformly distributed on {R}. The above inequality then becomes

\displaystyle  {\bf P}(X \in E) \leq {\bf P}(U \in E) + \sqrt{\frac{1}{2}(\log N - {\bf H}(X))}. \ \ \ \ \ (2)

Thus, if {E} is a small fraction of {R} (so that it is rare for {U} to lie in {E}), and the entropy of {X} is very close to the maximum possible value of {\log N}, then it is rare for {X} to lie in {E} also.

The inequality (2) is only useful when the entropy {{\bf H}(X)} is close to {\log N} in the sense that {{\bf H}(X) = \log N - O(1)}, otherwise the bound is worse than the trivial bound of {{\bf P}(X \in E) \leq 1}. In my recent paper on the Chowla and Elliott conjectures, I ended up using a variant of (2) which was still non-trivial when the entropy {{\bf H}(X)} was allowed to be smaller than {\log N - O(1)}. More precisely, I used the following simple inequality, which is implicit in the arguments of that paper but which I would like to make more explicit in this post:

Lemma 1 (Pinsker-type inequality) Let {X} be a random variable taking values in a finite range {R} of cardinality {N}, let {U} be a uniformly distributed random variable in {R}, and let {E} be a subset of {R}. Then

\displaystyle  {\bf P}(X \in E) \leq \frac{(\log N - {\bf H}(X)) + \log 2}{\log 1/{\bf P}(U \in E)}.

Proof: Consider the conditional entropy {{\bf H}(X | 1_{X \in E} )}. On the one hand, we have

\displaystyle  {\bf H}(X | 1_{X \in E} ) = {\bf H}(X, 1_{X \in E}) - {\bf H}(1_{X \in E} )

\displaystyle  = {\bf H}(X) - {\bf H}(1_{X \in E})

\displaystyle  \geq {\bf H}(X) - \log 2

by Jensen’s inequality. On the other hand, one has

\displaystyle  {\bf H}(X | 1_{X \in E} ) = {\bf P}(X \in E) {\bf H}(X | X \in E )

\displaystyle  + (1-{\bf P}(X \in E)) {\bf H}(X | X \not \in E)

\displaystyle  \leq {\bf P}(X \in E) \log |E| + (1-{\bf P}(X \in E)) \log N

\displaystyle  = \log N - {\bf P}(X \in E) \log \frac{N}{|E|}

\displaystyle  = \log N - {\bf P}(X \in E) \log \frac{1}{{\bf P}(U \in E)},

where we have again used Jensen’s inequality. Putting the two inequalities together, we obtain the claim. \Box

Remark 2 As noted in comments, this inequality can be viewed as a special case of the more general inequality

\displaystyle  {\bf P}(X \in E) \leq \frac{D(X||Y) + \log 2}{\log 1/{\bf P}(Y \in E)}

for arbitrary random variables {X,Y} taking values in the same discrete range {R}, which follows from the data processing inequality

\displaystyle  D( f(X)||f(Y)) \leq D(X|| Y)

for arbitrary functions {f}, applied to the indicator function {f = 1_E}. Indeed one has

\displaystyle  D( 1_E(X) || 1_E(Y) ) = {\bf P}(X \in E) \log \frac{{\bf P}(X \in E)}{{\bf P}(Y \in E)}

\displaystyle + {\bf P}(X \not \in E) \log \frac{{\bf P}(X \not \in E)}{{\bf P}(Y \not \in E)}

\displaystyle  \geq {\bf P}(X \in E) \log \frac{1}{{\bf P}(Y \in E)} - h( {\bf P}(X \in E) )

\displaystyle  \geq {\bf P}(X \in E) \log \frac{1}{{\bf P}(Y \in E)} - \log 2

where {h(u) := u \log \frac{1}{u} + (1-u) \log \frac{1}{1-u}} is the entropy function.

Thus, for instance, if one has

\displaystyle  {\bf H}(X) \geq \log N - o(K)


\displaystyle  {\bf P}(U \in E) \leq \exp( - K )

for some {K} much larger than {1} (so that {1/K = o(1)}), then

\displaystyle  {\bf P}(X \in E) = o(1).

More informally: if the entropy of {X} is somewhat close to the maximum possible value of {\log N}, and it is exponentially rare for a uniform variable to lie in {E}, then it is still somewhat rare for {X} to lie in {E}. The estimate given is close to sharp in this regime, as can be seen by calculating the entropy of a random variable {X} which is uniformly distributed inside a small set {E} with some probability {p} and uniformly distributed outside of {E} with probability {1-p}, for some parameter {0 \leq p \leq 1}.

It turns out that the above lemma combines well with concentration of measure estimates; in my paper, I used one of the simplest such estimates, namely Hoeffding’s inequality, but there are of course many other estimates of this type (see e.g. this previous blog post for some others). Roughly speaking, concentration of measure inequalities allow one to make approximations such as

\displaystyle  F(U) \approx {\bf E} F(U)

with exponentially high probability, where {U} is a uniform distribution and {F} is some reasonable function of {U}. Combining this with the above lemma, we can then obtain approximations of the form

\displaystyle  F(X) \approx {\bf E} F(U) \ \ \ \ \ (3)

with somewhat high probability, if the entropy of {X} is somewhat close to maximum. This observation, combined with an “entropy decrement argument” that allowed one to arrive at a situation in which the relevant random variable {X} did have a near-maximum entropy, is the key new idea in my recent paper; for instance, one can use the approximation (3) to obtain an approximation of the form

\displaystyle  \sum_{j=1}^H \sum_{p \in {\mathcal P}} \lambda(n+j) \lambda(n+j+p) 1_{p|n+j}

\displaystyle  \approx \sum_{j=1}^H \sum_{p \in {\mathcal P}} \frac{\lambda(n+j) \lambda(n+j+p)}{p}

for “most” choices of {n} and a suitable choice of {H} (with the latter being provided by the entropy decrement argument). The left-hand side is tied to Chowla-type sums such as {\sum_{n \leq x} \frac{\lambda(n)\lambda(n+1)}{n}} through the multiplicativity of {\lambda}, while the right-hand side, being a linear correlation involving two parameters {j,p} rather than just one, has “finite complexity” and can be treated by existing techniques such as the Hardy-Littlewood circle method. One could hope that one could similarly use approximations such as (3) in other problems in analytic number theory or combinatorics.

I’ve just uploaded two related papers to the arXiv:

This pair of papers is an outgrowth of these two recent blog posts and the ensuing discussion. In the first paper, we establish the following logarithmically averaged version of the Chowla conjecture (in the case {k=2} of two-point correlations (or “pair correlations”)):

Theorem 1 (Logarithmically averaged Chowla conjecture) Let {a_1,a_2} be natural numbers, and let {b_1,b_2} be integers such that {a_1 b_2 - a_2 b_1 \neq 0}. Let {1 \leq \omega(x) \leq x} be a quantity depending on {x} that goes to infinity as {x \rightarrow \infty}. Let {\lambda} denote the Liouville function. Then one has

\displaystyle  \sum_{x/\omega(x) < n \leq x} \frac{\lambda(a_1 n + b_1) \lambda(a_2 n+b_2)}{n} = o( \log \omega(x) ) \ \ \ \ \ (1)

as {x \rightarrow \infty}.

Thus for instance one has

\displaystyle  \sum_{n \leq x} \frac{\lambda(n) \lambda(n+1)}{n} = o(\log x). \ \ \ \ \ (2)

For comparison, the non-averaged Chowla conjecture would imply that

\displaystyle  \sum_{n \leq x} \lambda(n) \lambda(n+1) = o(x) \ \ \ \ \ (3)

which is a strictly stronger estimate than (2), and remains open.

The arguments also extend to other completely multiplicative functions than the Liouville function. In particular, one obtains a slightly averaged version of the non-asymptotic Elliott conjecture that was shown in the previous blog post to imply a positive solution to the Erdos discrepancy problem. The averaged version of the conjecture established in this paper is slightly weaker than the one assumed in the previous blog post, but it turns out that the arguments there can be modified without much difficulty to accept this averaged Elliott conjecture as input. In particular, we obtain an unconditional solution to the Erdos discrepancy problem as a consequence; this is detailed in the second paper listed above. In fact we can also handle the vector-valued version of the Erdos discrepancy problem, in which the sequence {f(1), f(2), \dots} takes values in the unit sphere of an arbitrary Hilbert space, rather than in {\{-1,+1\}}.

Estimates such as (2) or (3) are known to be subject to the “parity problem” (discussed numerous times previously on this blog), which roughly speaking means that they cannot be proven solely using “linear” estimates on functions such as the von Mangoldt function. However, it is known that the parity problem can be circumvented using “bilinear” estimates, and this is basically what is done here.

We now describe in informal terms the proof of Theorem 1, focusing on the model case (2) for simplicity. Suppose for contradiction that the left-hand side of (2) was large and (say) positive. Using the multiplicativity {\lambda(pn) = -\lambda(n)}, we conclude that

\displaystyle  \sum_{n \leq x} \frac{\lambda(n) \lambda(n+p) 1_{p|n}}{n}

is also large and positive for all primes {p} that are not too large; note here how the logarithmic averaging allows us to leave the constraint {n \leq x} unchanged. Summing in {p}, we conclude that

\displaystyle  \sum_{n \leq x} \frac{ \sum_{p \in {\mathcal P}} \lambda(n) \lambda(n+p) 1_{p|n}}{n}

is large and positive for any given set {{\mathcal P}} of medium-sized primes. By a standard averaging argument, this implies that

\displaystyle  \frac{1}{H} \sum_{j=1}^H \sum_{p \in {\mathcal P}} \lambda(n+j) \lambda(n+p+j) 1_{p|n+j} \ \ \ \ \ (4)

is large for many choices of {n}, where {H} is a medium-sized parameter at our disposal to choose, and we take {{\mathcal P}} to be some set of primes that are somewhat smaller than {H}. (A similar approach was taken in this recent paper of Matomaki, Radziwill, and myself to study sign patterns of the Möbius function.) To obtain the required contradiction, one thus wants to demonstrate significant cancellation in the expression (4). As in that paper, we view {n} as a random variable, in which case (4) is essentially a bilinear sum of the random sequence {(\lambda(n+1),\dots,\lambda(n+H))} along a random graph {G_{n,H}} on {\{1,\dots,H\}}, in which two vertices {j, j+p} are connected if they differ by a prime {p} in {{\mathcal P}} that divides {n+j}. A key difficulty in controlling this sum is that for randomly chosen {n}, the sequence {(\lambda(n+1),\dots,\lambda(n+H))} and the graph {G_{n,H}} need not be independent. To get around this obstacle we introduce a new argument which we call the “entropy decrement argument” (in analogy with the “density increment argument” and “energy increment argument” that appear in the literature surrounding Szemerédi’s theorem on arithmetic progressions, and also reminiscent of the “entropy compression argument” of Moser and Tardos, discussed in this previous post). This argument, which is a simple consequence of the Shannon entropy inequalities, can be viewed as a quantitative version of the standard subadditivity argument that establishes the existence of Kolmogorov-Sinai entropy in topological dynamical systems; it allows one to select a scale parameter {H} (in some suitable range {[H_-,H_+]}) for which the sequence {(\lambda(n+1),\dots,\lambda(n+H))} and the graph {G_{n,H}} exhibit some weak independence properties (or more precisely, the mutual information between the two random variables is small).

Informally, the entropy decrement argument goes like this: if the sequence {(\lambda(n+1),\dots,\lambda(n+H))} has significant mutual information with {G_{n,H}}, then the entropy of the sequence {(\lambda(n+1),\dots,\lambda(n+H'))} for {H' > H} will grow a little slower than linearly, due to the fact that the graph {G_{n,H}} has zero entropy (knowledge of {G_{n,H}} more or less completely determines the shifts {G_{n+kH,H}} of the graph); this can be formalised using the classical Shannon inequalities for entropy (and specifically, the non-negativity of conditional mutual information). But the entropy cannot drop below zero, so by increasing {H} as necessary, at some point one must reach a metastable region (cf. the finite convergence principle discussed in this previous blog post), within which very little mutual information can be shared between the sequence {(\lambda(n+1),\dots,\lambda(n+H))} and the graph {G_{n,H}}. Curiously, for the application it is not enough to have a purely quantitative version of this argument; one needs a quantitative bound (which gains a factor of a bit more than {\log H} on the trivial bound for mutual information), and this is surprisingly delicate (it ultimately comes down to the fact that the series {\sum_{j \geq 2} \frac{1}{j \log j \log\log j}} diverges, which is only barely true).

Once one locates a scale {H} with the low mutual information property, one can use standard concentration of measure results such as the Hoeffding inequality to approximate (4) by the significantly simpler expression

\displaystyle  \frac{1}{H} \sum_{j=1}^H \sum_{p \in {\mathcal P}} \frac{\lambda(n+j) \lambda(n+p+j)}{p}. \ \ \ \ \ (5)

The important thing here is that Hoeffding’s inequality gives exponentially strong bounds on the failure probability, which is needed to counteract the logarithms that are inevitably present whenever trying to use entropy inequalities. The expression (5) can then be controlled in turn by an application of the Hardy-Littlewood circle method and a non-trivial estimate

\displaystyle  \sup_\alpha \frac{1}{X} \int_X^{2X} |\frac{1}{H} \sum_{x \leq n \leq x+H} \lambda(n) e(\alpha n)|\ dx = o(1) \ \ \ \ \ (6)

for averaged short sums of a modulated Liouville function established in another recent paper by Matomäki, Radziwill and myself.

When one uses this method to study more general sums such as

\displaystyle  \sum_{n \leq x} \frac{g_1(n) g_2(n+1)}{n},

one ends up having to consider expressions such as

\displaystyle  \frac{1}{H} \sum_{j=1}^H \sum_{p \in {\mathcal P}} c_p \frac{g_1(n+j) g_2(n+p+j)}{p}.

where {c_p} is the coefficient {c_p := \overline{g_1}(p) \overline{g_2}(p)}. When attacking this sum with the circle method, one soon finds oneself in the situation of wanting to locate the large Fourier coefficients of the exponential sum

\displaystyle  S(\alpha) := \sum_{p \in {\mathcal P}} \frac{c_p}{p} e^{2\pi i \alpha p}.

In many cases (such as in the application to the Erdös discrepancy problem), the coefficient {c_p} is identically {1}, and one can understand this sum satisfactorily using the classical results of Vinogradov: basically, {S(\alpha)} is large when {\alpha} lies in a “major arc” and is small when it lies in a “minor arc”. For more general functions {g_1,g_2}, the coefficients {c_p} are more or less arbitrary; the large values of {S(\alpha)} are no longer confined to the major arc case. Fortunately, even in this general situation one can use a restriction theorem for the primes established some time ago by Ben Green and myself to show that there are still only a bounded number of possible locations {\alpha} (up to the uncertainty mandated by the Heisenberg uncertainty principle) where {S(\alpha)} is large, and we can still conclude by using (6). (Actually, as recently pointed out to me by Ben, one does not need the full strength of our result; one only needs the {L^4} restriction theorem for the primes, which can be proven fairly directly using Plancherel’s theorem and some sieve theory.)

It is tempting to also use the method to attack higher order cases of the (logarithmically) averaged Chowla conjecture, for instance one could try to prove the estimate

\displaystyle  \sum_{n \leq x} \frac{\lambda(n) \lambda(n+1) \lambda(n+2)}{n} = o(\log x).

The above arguments reduce matters to obtaining some non-trivial cancellation for sums of the form

\displaystyle  \frac{1}{H} \sum_{j=1}^H \sum_{p \in {\mathcal P}} \frac{\lambda(n+j) \lambda(n+p+j) \lambda(n+2p+j)}{p}.

A little bit of “higher order Fourier analysis” (as was done for very similar sums in the ergodic theory context by Frantzikinakis-Host-Kra and Wooley-Ziegler) lets one control this sort of sum if one can establish a bound of the form

\displaystyle  \frac{1}{X} \int_X^{2X} \sup_\alpha |\frac{1}{H} \sum_{x \leq n \leq x+H} \lambda(n) e(\alpha n)|\ dx = o(1) \ \ \ \ \ (7)

where {X} goes to infinity and {H} is a very slowly growing function of {X}. This looks very similar to (6), but the fact that the supremum is now inside the integral makes the problem much more difficult. However it looks worth attacking (7) further, as this estimate looks like it should have many nice applications (beyond just the {k=3} case of the logarithmically averaged Chowla or Elliott conjectures, which is already interesting).

For higher {k} than {k=3}, the same line of analysis requires one to replace the linear phase {e(\alpha n)} by more complicated phases, such as quadratic phases {e(\alpha n^2 + \beta n)} or even {k-2}-step nilsequences. Given that (7) is already beyond the reach of current literature, these even more complicated expressions are also unavailable at present, but one can imagine that they will eventually become tractable, in which case we would obtain an averaged form of the Chowla conjecture for all {k}, which would have a number of consequences (such as a logarithmically averaged version of Sarnak’s conjecture, as per this blog post).

It would of course be very nice to remove the logarithmic averaging, and be able to establish bounds such as (3). I did attempt to do so, but I do not see a way to use the entropy decrement argument in a manner that does not require some sort of averaging of logarithmic type, as it requires one to pick a scale {H} that one cannot specify in advance, which is not a problem for logarithmic averages (which are quite stable with respect to dilations) but is problematic for ordinary averages. But perhaps the problem can be circumvented by some clever modification of the argument. One possible approach would be to start exploiting multiplicativity at products of primes, and not just individual primes, to try to keep the scale fixed, but this makes the concentration of measure part of the argument much more complicated as one loses some independence properties (coming from the Chinese remainder theorem) which allowed one to conclude just from the Hoeffding inequality.


RSS Google+ feed

  • An error has occurred; the feed is probably down. Try again later.

Get every new post delivered to your Inbox.

Join 5,636 other followers