You are currently browsing the tag archive for the ‘Ben Green’ tag.
Emmanuel Breuillard, Ben Green, and I have just uploaded to the arXiv our paper “A note on approximate subgroups of and uniformly nonamenable groups“. In this short note, we obtain a new proof of a “noncommutative Freiman” type theorem in linear groups
. As discussed in earlier blog posts, a general question in additive (or multiplicative) combinatorics is to understand the structure of approximate groups – subsets
of genuine groups
which are a symmetric neighbourhood the identity (thus
and
whenever
), and such that the product set
is covered by
left (or right) translates of
for some bounded
. (The case
corresponds to the case of a genuine group.) Most of the focus in multiplicative combinatorics has been on the “discrete” case when
is a finite set, though continuous cases are also of interest (for instance, small balls around the identity in a Lie group are approximate groups).
In the discrete case, examples of approximate groups include:
- Finite groups;
- Balls in a discrete abelian group, or more generally a discrete nilpotent group, with boundedly many generators;
- Extensions of the latter type of balls by finite groups;
- Approximate groups
that are controlled by one of the previous examples
, in the sense that
has comparable cardinality to
, and can be covered by boundedly many translates of
.
It was conjectured independently by Helfgott and Lindenstrauss (private communication) that these are in fact the only examples of finite approximate groups. This conjecture is not yet settled in general (although we, with Tom Sanders, are making progress on this problem that we hope to be able to report on soon). However, many partial results are known. In particular, as part of the recent paper of Hrushovski in which model-theoretic techniques were introduced to study approximate groups, the following result was established:
Theorem 1 If
, then every approximate subgroup of
is controlled by a nilpotent approximate subgroup.
This result can be compared with Jordan’s theorem (discussed earlier on this blog) that every finite subgroup of is virtually abelian (with a uniform bound on the index of the abelian subgroup), or the special case of Gromov’s theorem for linear groups (which follows easily from the Tits alternative and the work of Milnor and of Wolf) that every finitely generated subgroup in
of polynomial growth is virtually nilpotent.
Hrushovski’s proof of the above argument was quite sophisticated; one first transplants the problem using model-theoretic techniques to an infinitary setting, in which the approximate group induces a locally compact topological group structure, which can be played off against the Lie group structure of using the machinery of a paper of Larsen and Pink, as discussed in this previous blog article.
Two further proofs of this theorem were obtained by ourselves, as well as in the most recent version of a similar preprint by Pyber and Szabo. The arguments used here are variants of those used in earlier papers of Helfgott, and are based on establishing expansion of sets that generated Zariski-dense subgroups of various Lie groups (such as ). Again, the machinery of Larsen and Pink (which controls how such approximate subgroups intersect with algebraic subgroups) plays a central role.
In this note we give a new proof of this theorem, based primarily on a different tool, namely the uniform Tits alternative of Breuillard. Recall that the Tits alternative asserts that a finitely generated subgroup of is either virtually solvable, or contains a copy of a free group on two generators. In other words, if
is a finite symmetric neighbourhood of the identity of
, then either
generates a virtually solvable subgroup, or else some power
of
contains two elements
that generate a free group. As stated,
may depend on
. However, the uniform Tits alternative makes the stronger assertion that one can take
to be uniform in
, and depend only on the dimension parameter
.
To use this alternative, we have the following simple observation, that asserts that multiplication by two elements that generate a free group forces a small amount of expansion:
Lemma 2 Let
be finite sets, such that
is symmetric and contains two elements
that generate a free group
. Then
.
We remark that this lemma immediately establishes the classical fact that any group that contains a copy of is not amenable, an observation initially made by von Neumann.
Proof: By foliating into cosets of
and translating, we may assume without loss of generality that
. Observe that for every element
in
, at least three of the four elements
has a longer word length than
, while lying in
. Furthermore, all such elements generated in this fashion are distinct (as one can recover the initial word
from the longer word by truncation). The claim follows.
This can be combined with a lemma of Sanders (also independently established by Croot and Sisask), that asserts that for any approximate group , and any
, one can find a smaller version
of
– also a symmetric neighbourhood of the identity – with the property that
, while
remains of comparable size to
. (One should think of
as being like a ball of some radius
, in which case
is analogous to a ball of radius
). In particular,
still has size comparable to
. Inspecting the size of the sets
, we conclude (if
is large enough) from the above lemma that
cannot contain two elements that generate a free group. Indeed, a slight modification of this argument shows that for any
, if we take
sufficiently large depending on
, that
does not contain two elements that generate a free group. Applying the uniform Tits alternative, this shows that
generates a virtually solvable subgroup of
. From the known product theory for such groups (due to Breuillard and Green),
(and hence
) is therefore controlled by a virtually nilpotent group, as desired.
Ben Green, Tamar Ziegler, and I have just uploaded to the arXiv our paper “An inverse theorem for the Gowers U^{s+1}[N] norm“, which was previously announced on this blog. We are still planning one final round of reviewing the preprint before submitting the paper, but it has gotten to the stage where we are comfortable with having the paper available on the arXiv.
The main result of the paper is to establish the inverse conjecture for the Gowers norm over the integers, which has a number of applications, in particular to counting solutions to various linear equations in primes. In spirit, the proof of the paper follows the 21-page announcement that was uploaded previously. However, for various rather annoying technical reasons, the 117-page paper has to devote a large amount of space to setting up various bits of auxiliary machinery (as well as a dozen or so pages worth of examples and discussion). For instance, the announcement motivates many of the steps of the argument by heuristically identifying nilsequences with bracket polynomial phases such as
. However, a rather significant amount of theory (which was already worked out to a large extent by Leibman) is needed to formalise the “bracket algebra” needed to manipulate such bracket polynomials and to connect them with nilsequences. Furthermore, the “piecewise smooth” nature of bracket polynomials causes some technical issues with the equidistribution theory for these sequences. Our original version of the paper (which was even longer than the current version) set out this theory. But we eventually decided that it was best to eschew almost all use of bracket polynomials (except as motivation and examples), and run the argument almost entirely within the language of nilsequences, to keep the argument a bit more notationally focused (and to make the equidistribution theory easier to establish). But this was not without a tradeoff; some statements that are almost trivially true for bracket polynomials, required some “nilpotent algebra” to convert to the language of nilsequences. Here are some examples of this:
- It is intuitively clear that a bracket polynomial phase e(P(n)) of degree k in one variable n can be “multilinearised” to a polynomial
of multi-degree
in k variables
, such that
and
agree modulo lower order terms. For instance, if
(so k=3), then one could take
. The analogue of this statement for nilsequences is true, but required a moderately complicated nilpotent algebra construction using the Baker-Campbell-Hausdorff formula.
- Suppose one has a bracket polynomial phase e(P_h(n)) of degree k in one variable n that depends on an additional parameter h, in such a way that exactly one of the coefficients in each monomial depends on h. Furthermore, suppose this dependence is bracket linear in h. Then it is intuitively clear that this phase can be rewritten (modulo lower order terms) as e( Q(h,n) ) where Q is a bracket polynomial of multidegree (1,k) in (h,n). For instance, if
and
, then we can take
. The nilpotent algebra analogue of this claim is true, but requires another moderately complicated nilpotent algebra construction based on semi-direct products.
- A bracket polynomial has a fairly visible concept of a “degree” (analogous to the corresponding notion for true polynomials), as well as a “rank” (which, roughly speaking measures the number of parentheses in the bracket monomials, plus one). Thus, for instance, the bracket monomial
has degree 7 and rank 3. Defining degree and rank for nilsequences requires one to generalise the notion of a (filtered) nilmanifold to one in which the lower central series is replaced by a filtration indexed by both the degree and the rank.
There are various other tradeoffs of this type in this paper. For instance, nonstandard analysis tools were introduced to eliminate what would otherwise be quite a large number of epsilons and regularity lemmas to manage, at the cost of some notational overhead; and the piecewise discontinuities mentioned earlier were eliminated by the use of vector-valued nilsequences, though this again caused some further notational overhead. These difficulties may be a sign that we do not yet have the “right” proof of this conjecture, but one will probably have to wait a few years before we get a proper amount of perspective and understanding on this circle of ideas and results.
Ben Green, Tamar Ziegler, and I have just uploaded to the arXiv the note “An inverse theorem for the Gowers norm (announcement)“, not intended for publication. This is an announcement of our forthcoming solution of the inverse conjecture for the Gowers norm, which roughly speaking asserts that
norm of a bounded function is large if and only if that function correlates with an
-step nilsequence of bounded complexity.
The full argument is quite lengthy (our most recent draft is about 90 pages long), but this is in large part due to the presence of various technical details which are necessary in order to make the argument fully rigorous. In this 20-page announcement, we instead sketch a heuristic proof of the conjecture, relying in a number of “cheats” to avoid the above-mentioned technical details. In particular:
- In the announcement, we rely on somewhat vaguely defined terms such as “bounded complexity” or “linearly independent with respect to bounded linear combinations” or “equivalent modulo lower step errors” without specifying them rigorously. In the full paper we will use the machinery of nonstandard analysis to rigorously and precisely define these concepts.
- In the announcement, we deal with the traditional linear nilsequences rather than the polynomial nilsequences that turn out to be better suited for finitary equidistribution theory, but require more notation and machinery in order to use.
- In a similar vein, we restrict attention to scalar-valued nilsequences in the announcement, though due to topological obstructions arising from the twisted nature of the torus bundles used to build nilmanifolds, we will have to deal instead with vector-valued nilsequences in the main paper.
- In the announcement, we pretend that nilsequences can be described by bracket polynomial phases, at least for the sake of making examples, although strictly speaking bracket polynomial phases only give examples of piecewise Lipschitz nilsequences rather than genuinely Lipschitz nilsequences.
With these cheats, it becomes possible to shorten the length of the argument substantially. Also, it becomes clearer that the main task is a cohomological one; in order to inductively deduce the inverse conjecture for a given step from the conjecture for the preceding step
, the basic problem is to show that a certain (quasi-)cocycle is necessarily a (quasi-)coboundary. This in turn requires a detailed analysis of the top order and second-to-top order terms in the cocycle, which requires a certain amount of nilsequence equidistribution theory and additive combinatorics, as well as a “sunflower decomposition” to arrange the various nilsequences one encounters into a usable “normal form”.
It is often the case in modern mathematics that the informal heuristic way to explain an argument looks quite different (and is significantly shorter) than the way one would formally present the argument with all the details. This seems to be particularly true in this case; at a superficial level, the full paper has a very different set of notation than the announcement, and a lot of space is invested in setting up additional machinery that one can quickly gloss over in the announcement. We hope though that the announcement can provide a “road map” to help navigate the much longer paper to come.
Emmanuel Breuillard, Ben Green, and I have just uploaded to the arXiv our paper “Approximate subgroups of linear groups“, submitted to GAFA. This paper contains (the first part) of the results announced previously by us; the second part of these results, concerning expander groups, will appear subsequently. The release of this paper has been coordinated with the release of a parallel paper by Pyber and Szabo (previously announced within an hour(!) of our own announcement).
Our main result describes (with polynomial accuracy) the “sufficiently Zariski dense” approximate subgroups of simple algebraic groups , or more precisely absolutely almost simple algebraic groups over
, such as
. More precisely, define a
-approximate subgroup of a genuine group
to be a finite symmetric neighbourhood of the identity
(thus
and
) such that the product set
can be covered by
left-translates (and equivalently,
right-translates) of
.
Let be a field, and let
be its algebraic closure. For us, an absolutely almost simple algebraic group over
is a linear algebraic group
defined over
(i.e. an algebraic subvariety of
for some
with group operations given by regular maps) which is connected (i.e. irreducible), and such that the completion
has no proper normal subgroups of positive dimension (i.e. the only normal subgroups are either finite, or are all of
. To avoid degeneracies we also require
to be non-abelian (i.e. not one-dimensional). These groups can be classified in terms of their associated finite-dimensional simple complex Lie algebra, which of course is determined by its Dynkin diagram, together with a choice of weight lattice (and there are only finitely many such choices once the Lie algebra is fixed). However, the exact classification of these groups is not directly used in our work.
Our first main theorem classifies the approximate subgroups of such a group
in the model case when
generates the entire group
, and
is finite; they are either very small or very large.
Theorem 1 (Approximate groups that generate) Let
be an absolutely almost simple algebraic group over
. If
is finite and
is a
-approximate subgroup of
that generates
, then either
or
, where the implied constants depend only on
.
The hypothesis that generates
cannot be removed completely, since if
was a proper subgroup of
of size intermediate between that of the trivial group and of
, then the conclusion would fail (with
). However, one can relax the hypothesis of generation to that of being sufficiently Zariski-dense in
. More precisely, we have
Theorem 2 (Zariski-dense approximate groups) Let
be an absolutely almost simple algebraic group over
. If
is a
-approximate group) is not contained in any proper algebraic subgroup of
of complexity at most
(where
is sufficiently large depending on
), then either
or
, where the implied constants depend only on
and
is the group generated by
.
Here, we say that an algebraic variety has complexity at most if it can be cut out of an ambient affine or projective space of dimension at most
by using at most
polynomials, each of degree at most
. (Note that this is not an intrinsic notion of complexity, but will depend on how one embeds the algebraic variety into an ambient space; but we are assuming that our algebraic group
is a linear group and thus comes with such an embedding.)
In the case when , the second option of this theorem cannot occur since
is infinite, leading to a satisfactory classification of the Zariski-dense approximate subgroups of almost simple connected algebraic groups over
. On the other hand, every approximate subgroup of
is Zariski-dense in some algebraic subgroup, which can be then split as an extension of a semisimple algebraic quotient group by a solvable algebraic group (the radical of the Zariski closure). Pursuing this idea (and glossing over some annoying technical issues relating to connectedness), together with the Freiman theory for solvable groups over
due to Breuillard and Green, we obtain our third theorem:
Theorem 3 (Freiman’s theorem in
) Let
be a
-approximate subgroup of
. Then there exists a nilpotent
-approximate subgroup
of size at most
, such that
is covered by
translates of
.
This can be compared with Gromov’s celebrated theorem that any finitely generated group of polynomial growth is virtually nilpotent. Indeed, the above theorem easily implies Gromov’s theorem in the case of finitely generated subgroups of .
By fairly standard arguments, the above classification theorems for approximate groups can be used to give bounds on the expansion and diameter of Cayley graphs, for instance one can establish a conjecture of Babai and Seress that connected Cayley graphs on absolutely almost simple groups over a finite field have polylogarithmic diameter at most. Applications to expanders include the result on Suzuki groups mentioned in a previous post; further applications will appear in a forthcoming paper.
Apart from the general structural theory of algebraic groups, and some quantitative analogues of the basic theory of algebraic geometry (which we chose to obtain via ultrafilters, as discussed in this post), we rely on two basic tools. Firstly, we use a version of the pivot argument developed first by Konyagin and Bourgain-Glibichuk-Konyagin in the setting of sum-product estimates, and generalised to more non-commutative settings by Helfgott; this is discussed in this previous post. Secondly, we adapt an argument of Larsen and Pink (which we learned from a paper of Hrushovski) to obtain a sharp bound on the extent to which a sufficiently Zariski-dense approximate groups can concentrate in a (bounded complexity) subvariety; this is discussed at the end of this blog post.
Ben Green, and I have just uploaded to the arXiv a short (six-page) paper “Yet another proof of Szemeredi’s theorem“, submitted to the 70th birthday conference proceedings for Endre Szemerédi. In this paper we put in print a folklore observation, namely that the inverse conjecture for the Gowers norm, together with the density increment argument, easily implies Szemerédi’s famous theorem on arithmetic progressions. This is unsurprising, given that Gowers’ proof of Szemerédi’s theorem proceeds through a weaker version of the inverse conjecture and a density increment argument, and also given that it is possible to derive Szemerédi’s theorem from knowledge of the characteristic factor for multiple recurrence (the ergodic theory analogue of the inverse conjecture, first established by Host and Kra), as was done by Bergelson, Leibman, and Lesigne (and also implicitly in the earlier paper of Bergelson, Host, and Kra); but to our knowledge the exact derivation of Szemerédi’s theorem from the inverse conjecture was not in the literature. Ordinarily this type of folklore might be considered too trifling (and too well known among experts in the field) to publish; but we felt that the venue of the Szemerédi birthday conference provided a natural venue for this particular observation.
The key point is that one can show (by an elementary argument relying primarily an induction on dimension argument and the Weyl recurrence theorem, i.e. that given any real and any integer
, that the expression
gets arbitrarily close to an integer) that given a (polynomial) nilsequence
, one can subdivide any long arithmetic progression (such as
) into a number of medium-sized progressions, where the nilsequence is nearly constant on each progression. As a consequence of this and the inverse conjecture for the Gowers norm, if a set has no arithmetic progressions, then it must have an elevated density on a subprogression; iterating this observation as per the usual density-increment argument as introduced long ago by Roth, one obtains the claim. (This is very close to the scheme of Gowers’ proof.)
Technically, one might call this the shortest proof of Szemerédi’s theorem in the literature (and would be something like the sixteenth such genuinely distinct proof, by our count), but that would be cheating quite a bit, primarily due to the fact that it assumes the inverse conjecture for the Gowers norm, our current proof of which is checking in at about 100 pages…
Ben Green, and I have just uploaded to the arXiv our paper “An arithmetic regularity lemma, an associated counting lemma, and applications“, submitted (a little behind schedule) to the 70th birthday conference proceedings for Endre Szemerédi. In this paper we describe the general-degree version of the arithmetic regularity lemma, which can be viewed as the counterpart of the Szemerédi regularity lemma, in which the object being regularised is a function on a discrete interval
rather than a graph, and the type of patterns one wishes to count are additive patterns (such as arithmetic progressions
) rather than subgraphs. Very roughly speaking, this regularity lemma asserts that all such functions can be decomposed as a degree
nilsequence (or more precisely, a variant of a nilsequence that we call an virtual irrational nilsequence), plus a small error, plus a third error which is extremely tiny in the Gowers uniformity norm
. In principle, at least, the latter two errors can be readily discarded in applications, so that the regularity lemma reduces many questions in additive combinatorics to questions concerning (virtual irrational) nilsequences. To work with these nilsequences, we also establish a arithmetic counting lemma that gives an integral formula for counting additive patterns weighted by such nilsequences.
The regularity lemma is a manifestation of the “dichotomy between structure and randomness”, as discussed for instance in my ICM article or FOCS article. In the degree case
, this result is essentially due to Green. It is powered by the inverse conjecture for the Gowers norms, which we and Tamar Ziegler have recently established (paper to be forthcoming shortly; the
case of our argument is discussed here). The counting lemma is established through the quantitative equidistribution theory of nilmanifolds, which Ben and I set out in this paper.
The regularity and counting lemmas are designed to be used together, and in the paper we give three applications of this combination. Firstly, we give a new proof of Szemerédi’s theorem, which proceeds via an energy increment argument rather than a density increment one. Secondly, we establish a conjecture of Bergelson, Host, and Kra, namely that if has density
, and
, then there exist
shifts
for which
contains at least
arithmetic progressions of length
of spacing
. (The
case of this conjecture was established earlier by Green; the
case is false, as was shown by Ruzsa in an appendix to the Bergelson-Host-Kra paper.) Thirdly, we establish a variant of a recent result of Gowers-Wolf, showing that the true complexity of a system of linear forms over
indeed matches the conjectured value predicted in their first paper.
In all three applications, the scheme of proof can be described as follows:
- Apply the arithmetic regularity lemma, and decompose a relevant function
into three pieces,
.
- The uniform part
is so tiny in the Gowers uniformity norm that its contribution can be easily dealt with by an appropriate “generalised von Neumann theorem”.
- The contribution of the (virtual, irrational) nilsequence
can be controlled using the arithmetic counting lemma.
- Finally, one needs to check that the contribution of the small error
does not overwhelm the main term
. This is the trickiest bit; one often needs to use the counting lemma again to show that one can find a set of arithmetic patterns for
that is so sufficiently “equidistributed” that it is not impacted by the small error.
To illustrate the last point, let us give the following example. Suppose we have a set of some positive density (say
) and we have managed to prove that
contains a reasonable number of arithmetic progressions of length
(say), e.g. it contains at least
such progressions. Now we perturb
by deleting a small number, say
, elements from
to create a new set
. Can we still conclude that the new set
contains any arithmetic progressions of length
?
Unfortunately, the answer could be no; conceivably, all of the arithmetic progressions in
could be wiped out by the
elements removed from
, since each such element of
could be associated with up to
(or even
) arithmetic progressions in
.
But suppose we knew that the arithmetic progressions in
were equidistributed, in the sense that each element in
belonged to the same number of such arithmetic progressions, namely
. Then each element deleted from
only removes at most
progressions, and so one can safely remove
elements from
and still retain some arithmetic progressions. The same argument works if the arithmetic progressions are only approximately equidistributed, in the sense that the number of progressions that a given element
belongs to concentrates sharply around its mean (for instance, by having a small variance), provided that the equidistribution is sufficiently strong. Fortunately, the arithmetic regularity and counting lemmas are designed to give precisely such a strong equidistribution result.
A succinct (but slightly inaccurate) summation of the regularity+counting lemma strategy would be that in order to solve a problem in additive combinatorics, it “suffices to check it for nilsequences”. But this should come with a caveat, due to the issue of the small error above; in addition to checking it for nilsequences, the answer in the nilsequence case must be sufficiently “dispersed” in a suitable sense, so that it can survive the addition of a small (but not completely negligible) perturbation.
One last “production note”. Like our previous paper with Emmanuel Breuillard, we used Subversion to write this paper, which turned out to be a significant efficiency boost as we could work on different parts of the paper simultaneously (this was particularly important this time round as the paper was somewhat lengthy and complicated, and there was a submission deadline). When doing so, we found it convenient to split the paper into a dozen or so pieces (one for each section of the paper, basically) in order to avoid conflicts, and to help coordinate the writing process. I’m also looking into git (a more advanced version control system), and am planning to use it for another of my joint projects; I hope to be able to comment on the relative strengths of these systems (and with plain old email) in the future.
Emmanuel Breuillard, Ben Green, and I have just uploaded to the arXiv our announcement “Linear approximate groups“, submitted to Electronic Research Announcements.
The main result is a step towards the classification of -approximate groups, in the specific setting of simple and semisimple Lie groups (with some partial results for more general Lie groups). For
, define a
-approximate group to be a finite subset
of a group
which is a symmetric neighbourhood of the origin (thus
and
is equal to
), and such that the product set
is covered by
left-translates (or equivalently,
right-translates) of
. For
, this is the same concept as a finite subgroup of
, but for larger values of
, one also gets some interesting objects which are close to, but not exactly groups, such as geometric progressions
for some
and
.
The expectation is that -approximate groups are
-controlled by “structured” objects, such as actual groups and progressions, though the precise formulation of this has not yet been finalised. (We say that one finite set
-controls another
if
is at most
times larger than
in cardinality, and
can be covered by at most
left translates or right translates of
.) The task of stating and proving this statement is the noncommutative Freiman theorem problem, discussed in these earlier blog posts.
While this problem remains unsolved for general groups, significant progress has been made in special groups, notably abelian, nilpotent, and solvable groups. Furthermore, the work of Chang (over ) and Helfgott (over
) has established the important special cases of the special linear groups
and
:
Theorem 1 (Helfgott’s theorem) Let
and let
be either
or
for some prime
. Let
be a
-approximate subgroup of
.
- If
generates the entire group
(which is only possible in the finite case
), then
is either controlled by the trivial group or the whole group.
- If
, then
is
-controlled by a solvable
-approximate subgroup
of
, or by
itself. If
, the latter possibility cannot occur, and
must be abelian.
Our main result is an extension of Helfgott’s theorem to for general
. In fact, we obtain an analogous result for any simple (or almost simple) Chevalley group over an arbitrary finite field (not necessarily of prime order), or over
. (Standard embedding arguments then allow us to in fact handle arbitrary fields.) The results from simple groups can also be extended to (almost) semisimple Lie groups by an approximate version of Goursat’s lemma. Given that general Lie groups are known to split as extensions of (almost) semisimple Lie groups by solvable Lie groups, and Freiman-type theorems are known for solvable groups also, this in principle gives a Freiman-type theorem for arbitrary Lie groups; we have already established this in the characteristic zero case
, but there are some technical issues in the finite characteristic case
that we are currently in the process of resolving.
We remark that a qualitative version of this result (with the polynomial bounds replaced by an ineffective bound
) was also recently obtained by Hrushovski.
Our arguments are based in part on Helfgott’s arguments, in particular maximal tori play a major role in our arguments for much the same reason they do in Helfgott’s arguments. Our main new ingredient is a surprisingly simple argument, which we call the pivot argument, which is an analogue of a corresponding argument of Konyagin and Bourgain-Glibichuk-Konyagin that was used to prove a sum-product estimate. Indeed, it seems that Helfgott-type results in these groups can be viewed as a manifestation of a product-conjugation phenomenon analogous to the sum-product phenomenon. Namely, the sum-product phenomenon asserts that it is difficult for a subset of a field to be simultaneously approximately closed under sums and products, without being close to an actual field; similarly, the product-conjugation phenomenon asserts that it is difficult for a union of (subsets of) tori to be simultaneously approximately closed under products and conjugations, unless it is coming from a genuine group. In both cases, the key is to exploit a sizeable gap between the behaviour of two types of “pivots” (which are scaling parameters in the sum-product case, and tori in the product-conjugation case): ones which interact strongly with the underlying set
, and ones which do not interact at all. The point is that there is no middle ground of pivots which only interact weakly with the set. This separation between interacting (or “involved”) and non-interacting (or “non-involved”) pivots can then be exploited to bootstrap approximate algebraic structure into exact algebraic structure. (Curiously, a similar argument is used all the time in PDE, where it goes under the name of the “bootstrap argument”.)
Below the fold we give more details of this crucial pivot argument.
One piece of trivia about the writing of this paper: this was the first time any of us had used modern version control software to collaboratively write a paper; specifically, we used Subversion, with the repository being hosted online by xp-dev. (See this post at the Secret Blogging Seminar for how to get started with this software.) There were a certain number of technical glitches in getting everything to install and run smoothly, but once it was set up, it was significantly easier to use than our traditional system of emailing draft versions of the paper back and forth, as one could simply download and upload the most recent versions whenever one wished, with all changes merged successfully. I had a positive impression of this software and am likely to try it again in future collaborations, particularly those involving at least three people. (It would also work well for polymath projects, modulo the technical barrier of every participant having to install some software.)
This is an adaptation of a talk I gave recently for a program at IPAM. In this talk, I gave a (very informal and non-rigorous) overview of Hrushovski’s use of model-theoretic techniques to establish new Freiman-type theorems in non-commutative groups, and some recent work in progress of Ben Green, Tom Sanders and myself to establish combinatorial proofs of some of Hrushovski’s results.
Ben Green, Tamar Ziegler and I have just uploaded to the arXiv our paper “An inverse theorem for the Gowers norm“. This paper establishes the next case of the inverse conjecture for the Gowers norm for the integers (after the
case, which was done by Ben and myself a few years ago). This conjecture has a number of combinatorial and number-theoretic consequences, for instance by combining this new inverse theorem with previous results, one can now get the correct asymptotic for the number of arithmetic progressions of primes of length five in any large interval
.
To state the inverse conjecture properly requires a certain amount of notation. Given a function and a shift
, define the multiplicative derivative
and then define the Gowers norm of a function
to (essentially) be the quantity
where we extend f by zero outside of . (Actually, we use a slightly different normalisation to ensure that the function 1 has a
norm of 1, but never mind this for now.)
Informally, the Gowers norm measures the amount of bias present in the
multiplicative derivatives of
. In particular, if
for some polynomial
, then the
derivative of
is identically 1, and so is the Gowers norm.
However, polynomial phases are not the only functions with large Gowers norm. For instance, consider the function , which is what we call a quadratic bracket polynomial phase. This function isn’t quite quadratic, but it is close enough to being quadratic (because one has the approximate linearity relationship
holding a good fraction of the time) that it turns out that third derivative is trivial fairly often, and the Gowers norm
is comparable to 1. This bracket polynomial phase can be modeled as a nilsequence
, where
is a polynomial orbit on a nilmanifold
, which in this case has step 2. (The function F is only piecewise smooth, due to the discontinuity in the floor function
, so strictly speaking we would classify this as an almost nilsequence rather than a nilsequence, but let us ignore this technical issue here.) In fact, there is a very close relationship between nilsequences and bracket polynomial phases, but I will detail this in a later post.
The inverse conjecture for the Gowers norm, GI(s), asserts that such nilsequences are the only obstruction to the Gowers norm being small. Roughly speaking, it goes like this:
Inverse conjecture, GI(s). (Informal statement) Suppose that
is bounded but has large
norm. Then there is an s-step nilsequence
of “bounded complexity” that correlates with f.
This conjecture is trivial for s=0, is a short consequence of Fourier analysis when s=1, and was proven for s=2 by Ben and myself. In this paper we establish the s=3 case. An equivalent formulation in this case is that any bounded function of large
norm must correlate with a “bracket cubic phase”, which is the product of a bounded number of phases from the following list
(*)
for various real numbers .
It appears that our methods also work in higher step, though for technical reasons it is convenient to make a number of adjustments to our arguments to do so, most notably a switch from standard analysis to non-standard analysis, about which I hope to say more later. But there are a number of simplifications available on the s=3 case which make the argument significantly shorter, and so we will be writing the higher s argument in a separate paper.
The arguments largely follow those for the s=2 case (which in turn are based on this paper of Gowers). Two major new ingredients are a deployment of a normal form and equidistribution theory for bracket quadratic phases, and a combinatorial decomposition of frequency space which we call the sunflower decomposition. I will sketch these ideas below the fold.
Recent Comments