You are currently browsing the tag archive for the ‘Bieberbach conjecture’ tag.

Previous set of notes: Notes 2. Next set of notes: Notes 4.
We now approach conformal maps from yet another perspective. Given an open subset ${U}$ of the complex numbers ${{\bf C}}$, define a univalent function on ${U}$ to be a holomorphic function ${f: U \rightarrow {\bf C}}$ that is also injective. We will primarily be studying this concept in the case when ${U}$ is the unit disk ${D(0,1) := \{ z \in {\bf C}: |z| < 1 \}}$.
Clearly, a univalent function ${f: D(0,1) \rightarrow {\bf C}}$ on the unit disk is a conformal map from ${D(0,1)}$ to the image ${f(D(0,1))}$; in particular, ${f(D(0,1))}$ is simply connected, and not all of ${{\bf C}}$ (since otherwise the inverse map ${f^{-1}: {\bf C} \rightarrow D(0,1)}$ would violate Liouville’s theorem). In the converse direction, the Riemann mapping theorem tells us that every open simply connected proper subset ${V \subsetneq {\bf C}}$ of the complex numbers is the image of a univalent function on ${D(0,1)}$. Furthermore, if ${V}$ contains the origin, then the univalent function ${f: D(0,1) \rightarrow {\bf C}}$ with this image becomes unique once we normalise ${f(0) = 0}$ and ${f'(0) > 0}$. Thus the Riemann mapping theorem provides a one-to-one correspondence between open simply connected proper subsets of the complex plane containing the origin, and univalent functions ${f: D(0,1) \rightarrow {\bf C}}$ with ${f(0)=0}$ and ${f'(0)>0}$. We will focus particular attention on the univalent functions ${f: D(0,1) \rightarrow {\bf C}}$ with the normalisation ${f(0)=0}$ and ${f'(0)=1}$; such functions will be called schlicht functions.
One basic example of a univalent function on ${D(0,1)}$ is the Cayley transform ${z \mapsto \frac{1+z}{1-z}}$, which is a Möbius transformation from ${D(0,1)}$ to the right half-plane ${\{ \mathrm{Re}(z) > 0 \}}$. (The slight variant ${z \mapsto \frac{1-z}{1+z}}$ is also referred to as the Cayley transform, as is the closely related map ${z \mapsto \frac{z-i}{z+i}}$, which maps ${D(0,1)}$ to the upper half-plane.) One can square this map to obtain a further univalent function ${z \mapsto \left( \frac{1+z}{1-z} \right)^2}$, which now maps ${D(0,1)}$ to the complex numbers with the negative real axis ${(-\infty,0]}$ removed. One can normalise this function to be schlicht to obtain the Koebe function

$\displaystyle f(z) := \frac{1}{4}\left( \left( \frac{1+z}{1-z} \right)^2 - 1\right) = \frac{z}{(1-z)^2}, \ \ \ \ \ (1)$

which now maps ${D(0,1)}$ to the complex numbers with the half-line ${(-\infty,-1/4]}$ removed. A little more generally, for any ${\theta \in {\bf R}}$ we have the rotated Koebe function

$\displaystyle f(z) := \frac{z}{(1 - e^{i\theta} z)^2} \ \ \ \ \ (2)$

that is a schlicht function that maps ${D(0,1)}$ to the complex numbers with the half-line ${\{ -re^{-i\theta}: r \geq 1/4\}}$ removed.
Every schlicht function ${f: D(0,1) \rightarrow {\bf C}}$ has a convergent Taylor expansion

$\displaystyle f(z) = a_1 z + a_2 z^2 + a_3 z^3 + \dots$

for some complex coefficients ${a_1,a_2,\dots}$ with ${a_1=1}$. For instance, the Koebe function has the expansion

$\displaystyle f(z) = z + 2 z^2 + 3 z^3 + \dots = \sum_{n=1}^\infty n z^n$

and similarly the rotated Koebe function has the expansion

$\displaystyle f(z) = z + 2 e^{i\theta} z^2 + 3 e^{2i\theta} z^3 + \dots = \sum_{n=1}^\infty n e^{(n-1)\theta} z^n.$

Intuitively, the Koebe function and its rotations should be the “largest” schlicht functions available. This is formalised by the famous Bieberbach conjecture, which asserts that for any schlicht function, the coefficients ${a_n}$ should obey the bound ${|a_n| \leq n}$ for all ${n}$. After a large number of partial results, this conjecture was eventually solved by de Branges; see for instance this survey of Korevaar or this survey of Koepf for a history.
It turns out that to resolve these sorts of questions, it is convenient to restrict attention to schlicht functions ${g: D(0,1) \rightarrow {\bf C}}$ that are odd, thus ${g(-z)=-g(z)}$ for all ${z}$, and the Taylor expansion now reads

$\displaystyle g(z) = b_1 z + b_3 z^3 + b_5 z^5 + \dots$

for some complex coefficients ${b_1,b_3,\dots}$ with ${b_1=1}$. One can transform a general schlicht function ${f: D(0,1) \rightarrow {\bf C}}$ to an odd schlicht function ${g: D(0,1) \rightarrow {\bf C}}$ by observing that the function ${f(z^2)/z^2: D(0,1) \rightarrow {\bf C}}$, after removing the singularity at zero, is a non-zero function that equals ${1}$ at the origin, and thus (as ${D(0,1)}$ is simply connected) has a unique holomorphic square root ${(f(z^2)/z^2)^{1/2}}$ that also equals ${1}$ at the origin. If one then sets

$\displaystyle g(z) := z (f(z^2)/z^2)^{1/2} \ \ \ \ \ (3)$

it is not difficult to verify that ${g}$ is an odd schlicht function which additionally obeys the equation

$\displaystyle f(z^2) = g(z)^2. \ \ \ \ \ (4)$

Conversely, given an odd schlicht function ${g}$, the formula (4) uniquely determines a schlicht function ${f}$.
For instance, if ${f}$ is the Koebe function (1), ${g}$ becomes

$\displaystyle g(z) = \frac{z}{1-z^2} = z + z^3 + z^5 + \dots, \ \ \ \ \ (5)$

which maps ${D(0,1)}$ to the complex numbers with two slits ${\{ \pm iy: y > 1/2 \}}$ removed, and if ${f}$ is the rotated Koebe function (2), ${g}$ becomes

$\displaystyle g(z) = \frac{z}{1- e^{i\theta} z^2} = z + e^{i\theta} z^3 + e^{2i\theta} z^5 + \dots. \ \ \ \ \ (6)$

De Branges established the Bieberbach conjecture by first proving an analogous conjecture for odd schlicht functions known as Robertson’s conjecture. More precisely, we have

Theorem 1 (de Branges’ theorem) Let ${n \geq 1}$ be a natural number.

• (i) (Robertson conjecture) If ${g(z) = b_1 z + b_3 z^3 + b_5 z^5 + \dots}$ is an odd schlicht function, then

$\displaystyle \sum_{k=1}^n |b_{2k-1}|^2 \leq n.$

• (ii) (Bieberbach conjecture) If ${f(z) = a_1 z + a_2 z^2 + a_3 z^3 + \dots}$ is a schlicht function, then

$\displaystyle |a_n| \leq n.$

It is easy to see that the Robertson conjecture for a given value of ${n}$ implies the Bieberbach conjecture for the same value of ${n}$. Indeed, if ${f(z) = a_1 z + a_2 z^2 + a_3 z^3 + \dots}$ is schlicht, and ${g(z) = b_1 z + b_3 z^3 + b_5 z^5 + \dots}$ is the odd schlicht function given by (3), then from extracting the ${z^{2n}}$ coefficient of (4) we obtain a formula

$\displaystyle a_n = \sum_{j=1}^n b_{2j-1} b_{2(n+1-j)-1}$

for the coefficients of ${f}$ in terms of the coefficients of ${g}$. Applying the Cauchy-Schwarz inequality, we derive the Bieberbach conjecture for this value of ${n}$ from the Robertson conjecture for the same value of ${n}$. We remark that Littlewood and Paley had conjectured a stronger form ${|b_{2k-1}| \leq 1}$ of Robertson’s conjecture, but this was disproved for ${k=3}$ by Fekete and Szegö.
To prove the Robertson and Bieberbach conjectures, one first takes a logarithm and deduces both conjectures from a similar conjecture about the Taylor coefficients of ${\log \frac{f(z)}{z}}$, known as the Milin conjecture. Next, one continuously enlarges the image ${f(D(0,1))}$ of the schlicht function to cover all of ${{\bf C}}$; done properly, this places the schlicht function ${f}$ as the initial function ${f = f_0}$ in a sequence ${(f_t)_{t \geq 0}}$ of univalent maps ${f_t: D(0,1) \rightarrow {\bf C}}$ known as a Loewner chain. The functions ${f_t}$ obey a useful differential equation known as the Loewner equation, that involves an unspecified forcing term ${\mu_t}$ (or ${\theta(t)}$, in the case that the image is a slit domain) coming from the boundary; this in turn gives useful differential equations for the Taylor coefficients of ${f(z)}$, ${g(z)}$, or ${\log \frac{f(z)}{z}}$. After some elementary calculus manipulations to “integrate” this equations, the Bieberbach, Robertson, and Milin conjectures are then reduced to establishing the non-negativity of a certain explicit hypergeometric function, which is non-trivial to prove (and will not be done here, except for small values of ${n}$) but for which several proofs exist in the literature.
The theory of Loewner chains subsequently became fundamental to a more recent topic in complex analysis, that of the Schramm-Loewner equation (SLE), which is the focus of the next and final set of notes.
Read the rest of this entry »