You are currently browsing the tag archive for the ‘canonical neighbourhoods’ tag.

In the previous lecture, we studied high curvature regions of Ricci flows on some time interval , and concluded that (as long as a mild topological condition was obeyed) they all had canonical neighbourhoods. This is enough control to now study the limits of such flows as one approaches the singularity time T. It turns out that one can subdivide the manifold M into a *continuing region* C in which the geometry remains well behaved (for instance, the curvature does not blow up, and in fact converges smoothly to an (incomplete) limit), and a *disappearing region* D, whose topology is well controlled. (For instance, the interface between C and D will be a finite union of disjoint surfaces homeomorphic to .) This allows one (at the topological level, at least) to perform surgery on the interface , removing the disappearing region D and replacing them with a finite number of “caps” homeomorphic to the 3-ball . The relationship between the topology of the post-surgery manifold and pre-surgery manifold is as is described way back in Lecture 2.

However, once surgery is completed, one needs to restart the Ricci flow process, at which point further singularities can occur. In order to apply surgery to these further singularities, we need to check that all the properties we have been exploiting about Ricci flows – notably the Hamilton-Ivey pinching property, the -noncollapsing property, and the existence of canonical neighbourhoods for every point of high curvature – persist even in the presence of a large number of surgeries (indeed, with the way the constants are structured, all quantitative bounds on a fixed time interval [0,T] have to be uniform in the number of surgery times, although we will of course need the set of such times to be discrete). To ensure that surgeries do not disrupt any of these properties, it turns out that one has to perform these surgeries deep in certain -horns of the Ricci flow at the singular time, in which the geometry is extremely close to being cylindrical (in particular, it should be a -neck and not just a -neck, where the surgery control parameter is much smaller than ; selection of this parameter can get a little tricky if one wants to evolve Ricci flow with surgery indefinitely, although for the purposes of the Poincaré conjecture the situation is simpler as there is a fixed upper bound on the time for which one needs to evolve the flow). Furthermore, the geometry of the manifolds one glues in to replace the disappearing regions has to be carefully chosen (in particular, it has to not disrupt the pinching condition, and the geometry of these glued in regions has to resemble a -cap for a significant amount of (rescaled) time). The construction of the “standard solution” needed to achieve all these properties is somewhat delicate, although we will not discuss this issue much here.

In this, the final lecture, we shall present these issues from a high-level perspective; due to lack of time and space we will not cover the finer details of the surgery procedure. More detailed versions of the material here can be found in Perelman’s second paper, the notes of Kleiner-Lott, the book of Morgan-Tian, and the paper of Cao-Zhu. (See also a forthcoming paper of Bessières, Besson, Boileau, Maillot, and Porti.)

Having characterised the structure of -solutions, we now use them to describe the structure of high curvature regions of Ricci flow, as promised back in Lecture 12, in particular controlling their geometry and topology to the extent that surgery will be applied, which we will discuss in the next (and final) lecture of this class.

The material here is drawn largely from Morgan-Tian’s book and Perelman’s first and second papers; see also Kleiner-Lott’s notes and Cao-Zhu’s paper for closely related material. Due to lack of time, some details here may be a little sketchy.

In previous lectures, we have established (modulo some technical details) two significant components of the proof of the Poincaré conjecture: finite time extinction of Ricci flow with surgery (Theorem 4 of Lecture 2), and a -noncollapsing of Ricci flows with surgery (which, except for the surgery part, is Theorem 2 of Lecture 7). Now we come to the heart of the entire argument: the topological and geometric control of the high curvature regions of a Ricci flow, which is absolutely essential in order for one to define surgery on these regions in order to move the flow past singularities. This control is intimately tied to the study of a special type of Ricci flow, the *-solutions* to the Ricci flow equation; we will be able to use compactness arguments (as well as the -noncollapsing results already obtained) to deduce control of high curvature regions of arbitrary Ricci flows from similar control of -solutions. A secondary compactness argument lets us obtain that control of -solutions from control of an even more special type of solution, the *gradient shrinking solitons* that we already encountered in Lecture 8.

[Even once one has this control of high curvature regions, the proof of the Poincaré conjecture is still not finished; there is significant work required to properly define the surgery procedure, and then one has to show that the surgeries do not accumulate in time, and also do not disrupt the various monotonicity formulae that we are using to deduce finite time extinction, -noncollapsing, etc. But the control of high curvature regions is arguably the largest single task one has to establish in the entire proof.]

The next few lectures will be devoted to the analysis of -solutions, culminating in Perelman’s topological and geometric classification (or near-classification) of such solutions (which in particular leads to the *canonical neighbourhood theorem* for these solutions, which we will briefly discuss below). In this lecture we shall formally define the notion of a -solution, and indicate informally why control of such solutions should lead to control of high curvature regions of Ricci flows. We’ll also outline the various types of results that we will prove about -solutions.

Our treatment here is based primarily on the book of Morgan and Tian.

## Recent Comments