You are currently browsing the tag archive for the ‘Chowla conjecture’ tag.

The Chowla conjecture asserts, among other things, that one has the asymptotic

as for any distinct integers , where is the Liouville function. (The usual formulation of the conjecture also allows one to consider more general linear forms than the shifts , but for sake of discussion let us focus on the shift case.) This conjecture remains open for , though there are now some partial results when one averages either in or in the , as discussed in this recent post.

A natural generalisation of the Chowla conjecture is the Elliott conjecture. Its original formulation was basically as follows: one had

whenever were bounded completely multiplicative functions and were distinct integers, and one of the was “non-pretentious” in the sense that

for all Dirichlet characters and real numbers . It is easy to see that some condition like (2) is necessary; for instance if and has period then can be verified to be bounded away from zero as .

In a previous paper with Matomaki and Radziwill, we provided a counterexample to the original formulation of the Elliott conjecture, and proposed that (2) be replaced with the stronger condition

as for any Dirichlet character . To support this conjecture, we proved an averaged and non-asymptotic version of this conjecture which roughly speaking showed a bound of the form

whenever was an arbitrarily slowly growing function of , was sufficiently large (depending on and the rate at which grows), and one of the obeyed the condition

for some that was sufficiently large depending on , and all Dirichlet characters of period at most . As further support of this conjecture, I recently established the bound

under the same hypotheses, where is an arbitrarily slowly growing function of .

In view of these results, it is tempting to conjecture that the condition (4) for one of the should be sufficient to obtain the bound

when is large enough depending on . This may well be the case for . However, the purpose of this blog post is to record a simple counterexample for . Let’s take for simplicity. Let be a quantity much larger than but much smaller than (e.g. ), and set

For , Taylor expansion gives

and

and hence

and hence

On the other hand one can easily verify that all of the obey (4) (the restriction there prevents from getting anywhere close to ). So it seems the correct non-asymptotic version of the Elliott conjecture is the following:

Conjecture 1 (Non-asymptotic Elliott conjecture)Let be a natural number, and let be integers. Let , let be sufficiently large depending on , and let be sufficiently large depending on . Let be bounded multiplicative functions such that for some , one hasfor all Dirichlet characters of conductor at most . Then

The case of this conjecture follows from the work of Halasz; in my recent paper a logarithmically averaged version of the case of this conjecture is established. The requirement to take to be as large as does not emerge in the averaged Elliott conjecture in my previous paper with Matomaki and Radziwill; it thus seems that this averaging has concealed some of the subtler features of the Elliott conjecture. (However, this subtlety does not seem to affect the asymptotic version of the conjecture formulated in that paper, in which the hypothesis is of the form (3), and the conclusion is of the form (1).)

A similar subtlety arises when trying to control the maximal integral

In my previous paper with Matomaki and Radziwill, we could show that easier expression

was small (for a slowly growing function of ) if was bounded and completely multiplicative, and one had a condition of the form

for some large . However, to obtain an analogous bound for (5) it now appears that one needs to strengthen the above condition to

in order to address the counterexample in which for some between and . This seems to suggest that proving (5) (which is closely related to the case of the Chowla conjecture) could in fact be rather difficult; the estimation of (6) relied primarily of prior work of Matomaki and Radziwill which used the hypothesis (7), but as this hypothesis is not sufficient to conclude (5), some additional input must also be used.

I’ve just uploaded two related papers to the arXiv:

- The logarithmically averaged Chowla and Elliott conjectures for two-point correlations, submitted to Forum of Mathematics, Pi; and
- The Erdos discrepancy problem, submitted to the new arXiv overlay journal, Discrete Analysis (see this recent announcement on Tim Gowers’ blog).

This pair of papers is an outgrowth of these two recent blog posts and the ensuing discussion. In the first paper, we establish the following logarithmically averaged version of the Chowla conjecture (in the case of two-point correlations (or “pair correlations”)):

Theorem 1 (Logarithmically averaged Chowla conjecture)Let be natural numbers, and let be integers such that . Let be a quantity depending on that goes to infinity as . Let denote the Liouville function. Then one has

For comparison, the non-averaged Chowla conjecture would imply that

which is a strictly stronger estimate than (2), and remains open.

The arguments also extend to other completely multiplicative functions than the Liouville function. In particular, one obtains a slightly averaged version of the non-asymptotic Elliott conjecture that was shown in the previous blog post to imply a positive solution to the Erdos discrepancy problem. The averaged version of the conjecture established in this paper is slightly weaker than the one assumed in the previous blog post, but it turns out that the arguments there can be modified without much difficulty to accept this averaged Elliott conjecture as input. In particular, we obtain an unconditional solution to the Erdos discrepancy problem as a consequence; this is detailed in the second paper listed above. In fact we can also handle the vector-valued version of the Erdos discrepancy problem, in which the sequence takes values in the unit sphere of an arbitrary Hilbert space, rather than in .

Estimates such as (2) or (3) are known to be subject to the “parity problem” (discussed numerous times previously on this blog), which roughly speaking means that they cannot be proven solely using “linear” estimates on functions such as the von Mangoldt function. However, it is known that the parity problem can be circumvented using “bilinear” estimates, and this is basically what is done here.

We now describe in informal terms the proof of Theorem 1, focusing on the model case (2) for simplicity. Suppose for contradiction that the left-hand side of (2) was large and (say) positive. Using the multiplicativity , we conclude that

is also large and positive for all primes that are not too large; note here how the logarithmic averaging allows us to leave the constraint unchanged. Summing in , we conclude that

is large and positive for any given set of medium-sized primes. By a standard averaging argument, this implies that

is large for many choices of , where is a medium-sized parameter at our disposal to choose, and we take to be some set of primes that are somewhat smaller than . (A similar approach was taken in this recent paper of Matomaki, Radziwill, and myself to study sign patterns of the Möbius function.) To obtain the required contradiction, one thus wants to demonstrate significant cancellation in the expression (4). As in that paper, we view as a random variable, in which case (4) is essentially a bilinear sum of the random sequence along a random graph on , in which two vertices are connected if they differ by a prime in that divides . A key difficulty in controlling this sum is that for randomly chosen , the sequence and the graph need not be independent. To get around this obstacle we introduce a new argument which we call the “entropy decrement argument” (in analogy with the “density increment argument” and “energy increment argument” that appear in the literature surrounding Szemerédi’s theorem on arithmetic progressions, and also reminiscent of the “entropy compression argument” of Moser and Tardos, discussed in this previous post). This argument, which is a simple consequence of the Shannon entropy inequalities, can be viewed as a quantitative version of the standard subadditivity argument that establishes the existence of Kolmogorov-Sinai entropy in topological dynamical systems; it allows one to select a scale parameter (in some suitable range ) for which the sequence and the graph exhibit some weak independence properties (or more precisely, the mutual information between the two random variables is small).

Informally, the entropy decrement argument goes like this: if the sequence has significant mutual information with , then the entropy of the sequence for will grow a little slower than linearly, due to the fact that the graph has zero entropy (knowledge of more or less completely determines the shifts of the graph); this can be formalised using the classical Shannon inequalities for entropy (and specifically, the non-negativity of conditional mutual information). But the entropy cannot drop below zero, so by increasing as necessary, at some point one must reach a metastable region (cf. the finite convergence principle discussed in this previous blog post), within which very little mutual information can be shared between the sequence and the graph . Curiously, for the application it is not enough to have a purely quantitative version of this argument; one needs a quantitative bound (which gains a factor of a bit more than on the trivial bound for mutual information), and this is surprisingly delicate (it ultimately comes down to the fact that the series diverges, which is only barely true).

Once one locates a scale with the low mutual information property, one can use standard concentration of measure results such as the Hoeffding inequality to approximate (4) by the significantly simpler expression

The important thing here is that Hoeffding’s inequality gives exponentially strong bounds on the failure probability, which is needed to counteract the logarithms that are inevitably present whenever trying to use entropy inequalities. The expression (5) can then be controlled in turn by an application of the Hardy-Littlewood circle method and a non-trivial estimate

for averaged short sums of a modulated Liouville function established in another recent paper by Matomäki, Radziwill and myself.

When one uses this method to study more general sums such as

one ends up having to consider expressions such as

where is the coefficient . When attacking this sum with the circle method, one soon finds oneself in the situation of wanting to locate the large Fourier coefficients of the exponential sum

In many cases (such as in the application to the Erdös discrepancy problem), the coefficient is identically , and one can understand this sum satisfactorily using the classical results of Vinogradov: basically, is large when lies in a “major arc” and is small when it lies in a “minor arc”. For more general functions , the coefficients are more or less arbitrary; the large values of are no longer confined to the major arc case. Fortunately, even in this general situation one can use a restriction theorem for the primes established some time ago by Ben Green and myself to show that there are still only a bounded number of possible locations (up to the uncertainty mandated by the Heisenberg uncertainty principle) where is large, and we can still conclude by using (6). (Actually, as recently pointed out to me by Ben, one does not need the full strength of our result; one only needs the restriction theorem for the primes, which can be proven fairly directly using Plancherel’s theorem and some sieve theory.)

It is tempting to also use the method to attack higher order cases of the (logarithmically) averaged Chowla conjecture, for instance one could try to prove the estimate

The above arguments reduce matters to obtaining some non-trivial cancellation for sums of the form

A little bit of “higher order Fourier analysis” (as was done for very similar sums in the ergodic theory context by Frantzikinakis-Host-Kra and Wooley-Ziegler) lets one control this sort of sum if one can establish a bound of the form

where goes to infinity and is a very slowly growing function of . This looks very similar to (6), but the fact that the supremum is now inside the integral makes the problem much more difficult. However it looks worth attacking (7) further, as this estimate looks like it should have many nice applications (beyond just the case of the logarithmically averaged Chowla or Elliott conjectures, which is already interesting).

For higher than , the same line of analysis requires one to replace the linear phase by more complicated phases, such as quadratic phases or even -step nilsequences. Given that (7) is already beyond the reach of current literature, these even more complicated expressions are also unavailable at present, but one can imagine that they will eventually become tractable, in which case we would obtain an averaged form of the Chowla conjecture for all , which would have a number of consequences (such as a logarithmically averaged version of Sarnak’s conjecture, as per this blog post).

It would of course be very nice to remove the logarithmic averaging, and be able to establish bounds such as (3). I did attempt to do so, but I do not see a way to use the entropy decrement argument in a manner that does not require some sort of averaging of logarithmic type, as it requires one to pick a scale that one cannot specify in advance, which is not a problem for logarithmic averages (which are quite stable with respect to dilations) but is problematic for ordinary averages. But perhaps the problem can be circumvented by some clever modification of the argument. One possible approach would be to start exploiting multiplicativity at products of primes, and not just individual primes, to try to keep the scale fixed, but this makes the concentration of measure part of the argument much more complicated as one loses some independence properties (coming from the Chinese remainder theorem) which allowed one to conclude just from the Hoeffding inequality.

Kaisa Matomäki, Maksym Radziwiłł, and I have just uploaded to the arXiv our paper “Sign patterns of the Liouville and Möbius functions“. This paper is somewhat similar to our previous paper in that it is using the recent breakthrough of Matomäki and Radziwiłł on mean values of multiplicative functions to obtain partial results towards the Chowla conjecture. This conjecture can be phrased, roughly speaking, as follows: if is a fixed natural number and is selected at random from a large interval , then the sign pattern becomes asymptotically equidistributed in in the limit . This remains open for . In fact even the significantly weaker statement that each of the sign patterns in is attained infinitely often is open for . However, in 1986, Hildebrand showed that for all sign patterns are indeed attained infinitely often. Our first result is a strengthening of Hildebrand’s, moving a little bit closer to Chowla’s conjecture:

Theorem 1Let . Then each of the sign patterns in is attained by the Liouville function for a set of natural numbers of positive lower density.

Thus for instance one has for a set of of positive lower density. The case of this theorem already appears in the original paper of Matomäki and Radziwiłł (and the significantly simpler case of the sign patterns and was treated previously by Harman, Pintz, and Wolke).

The basic strategy in all of these arguments is to assume for sake of contradiction that a certain sign pattern occurs extremely rarely, and then exploit the complete multiplicativity of (which implies in particular that , , and for all ) together with some combinatorial arguments (vaguely analogous to solving a Sudoku puzzle!) to establish more complex sign patterns for the Liouville function, that are either inconsistent with each other, or with results such as the Matomäki-Radziwiłł result. To illustrate this, let us give some examples, arguing a little informally to emphasise the combinatorial aspects of the argument. First suppose that the sign pattern almost never occurs. The prime number theorem tells us that and are each equal to about half of the time, which by inclusion-exclusion implies that the sign pattern almost never occurs. In other words, we have for almost all . But from the multiplicativity property this implies that one should have

and

for almost all . But the above three statements are contradictory, and the claim follows.

Similarly, if we assume that the sign pattern almost never occurs, then a similar argument to the above shows that for any fixed , one has for almost all . But this means that the mean is abnormally large for most , which (for large enough) contradicts the results of Matomäki and Radziwiłł. Here we see that the “enemy” to defeat is the scenario in which only changes sign very rarely, in which case one rarely sees the pattern .

It turns out that similar (but more combinatorially intricate) arguments work for sign patterns of length three (but are unlikely to work for most sign patterns of length four or greater). We give here one fragment of such an argument (due to Hildebrand) which hopefully conveys the Sudoku-type flavour of the combinatorics. Suppose for instance that the sign pattern almost never occurs. Now suppose is a typical number with . Since we almost never have the sign pattern , we must (almost always) then have . By multiplicativity this implies that

We claim that this (almost always) forces . For if , then by the lack of the sign pattern , this (almost always) forces , which by multiplicativity forces , which by lack of (almost always) forces , which by multiplicativity contradicts . Thus we have ; a similar argument gives almost always, which by multiplicativity gives , a contradiction. Thus we almost never have , which by the inclusion-exclusion argument mentioned previously shows that for almost all .

One can continue these Sudoku-type arguments and conclude eventually that for almost all . To put it another way, if denotes the non-principal Dirichlet character of modulus , then is almost always constant away from the multiples of . (Conversely, if changed sign very rarely outside of the multiples of three, then the sign pattern would never occur.) Fortunately, the main result of Matomäki and Radziwiłł shows that this scenario cannot occur, which establishes that the sign pattern must occur rather frequently. The other sign patterns are handled by variants of these arguments.

Excluding a sign pattern of length three leads to useful implications like “if , then ” which turn out are just barely strong enough to quite rigidly constrain the Liouville function using Sudoku-like arguments. In contrast, excluding a sign pattern of length four only gives rise to implications like “`if , then “, and these seem to be much weaker for this purpose (the hypothesis in these implications just isn’t satisfied nearly often enough). So a different idea seems to be needed if one wishes to extend the above theorem to larger values of .

Our second theorem gives an analogous result for the Möbius function (which takes values in rather than ), but the analysis turns out to be remarkably difficult and we are only able to get up to :

Theorem 2Let . Then each of the sign patterns in is attained by the Möbius function for a set of positive lower density.

It turns out that the prime number theorem and elementary sieve theory can be used to handle the case and all the cases that involve at least one , leaving only the four sign patterns to handle. It is here that the zeroes of the Möbius function cause a significant new obstacle. Suppose for instance that the sign pattern almost never occurs for the Möbius function. The same arguments that were used in the Liouville case then show that will be almost always equal to , *provided that are both square-free*. One can try to chain this together as before to create a long string where the Möbius function is constant, but this cannot work for any larger than three, because the Möbius function vanishes at every multiple of four.

The constraints we assume on the Möbius function can be depicted using a graph on the squarefree natural numbers, in which any two adjacent squarefree natural numbers are connected by an edge. The main difficulty is then that this graph is highly disconnected due to the multiples of four not being squarefree.

To get around this, we need to enlarge the graph. Note from multiplicativity that if is almost always equal to when are squarefree, then is almost always equal to when are squarefree and is divisible by . We can then form a graph on the squarefree natural numbers by connecting to whenever are squarefree and is divisible by . If this graph is “locally connected” in some sense, then will be constant on almost all of the squarefree numbers in a large interval, which turns out to be incompatible with the results of Matomäki and Radziwiłł. Because of this, matters are reduced to establishing the connectedness of a certain graph. More precisely, it turns out to be sufficient to establish the following claim:

Theorem 3For each prime , let be a residue class chosen uniformly at random. Let be the random graph whose vertices consist of those integers not equal to for any , and whose edges consist of pairs in with . Then with probability , the graph is connected.

We were able to show the connectedness of this graph, though it turned out to be remarkably tricky to do so. Roughly speaking (and suppressing a number of technicalities), the main steps in the argument were as follows.

- (Early stage) Pick a large number (in our paper we take to be odd, but I’ll ignore this technicality here). Using a moment method to explore neighbourhoods of a single point in , one can show that a vertex in is almost always connected to at least numbers in , using relatively short paths of short diameter. (This is the most computationally intensive portion of the argument.)
- (Middle stage) Let be a typical number in , and let be a scale somewhere between and . By using paths involving three primes, and using a variant of Vinogradov’s theorem and some routine second moment computations, one can show that with quite high probability, any “good” vertex in is connected to a “good” vertex in by paths of length three, where the definition of “good” is somewhat technical but encompasses almost all of the vertices in .
- (Late stage) Combining the two previous results together, we can show that most vertices will be connected to a vertex in for any in . In particular, will be connected to a set of vertices in . By tracking everything carefully, one can control the length and diameter of the paths used to connect to this set, and one can also control the parity of the elements in this set.
- (Final stage) Now if we have two vertices at a distance apart. By the previous item, one can connect to a large set of vertices in , and one can similarly connect to a large set of vertices in . Now, by using a Vinogradov-type theorem and second moment calculations again (and ensuring that the elements of and have opposite parity), one can connect many of the vertices in to many of the vertices by paths of length three, which then connects to , and gives the claim.

It seems of interest to understand random graphs like further. In particular, the graph on the integers formed by connecting to for all in a randomly selected residue class mod for each prime is particularly interesting (it is to the Liouville function as is to the Möbius function); if one could show some “local expander” properties of this graph , then one would have a chance of modifying the above methods to attack the first unsolved case of the Chowla conjecture, namely that has asymptotic density zero (perhaps working with logarithmic density instead of natural density to avoids some technicalities).

One of the basic general problems in analytic number theory is to understand as much as possible the fluctuations of the Möbius function , defined as when is the product of distinct primes, and zero otherwise. For instance, as takes values in , we have the trivial bound

and the seemingly slight improvement

is already equivalent to the prime number theorem, as observed by Landau (see e.g. this previous blog post for a proof), while the much stronger (and still open) improvement

is equivalent to the notorious Riemann hypothesis.

There is a general *Möbius pseudorandomness heuristic* that suggests that the sign pattern behaves so randomly (or pseudorandomly) that one should expect a substantial amount of cancellation in sums that involve the sign fluctuation of the Möbius function in a nontrivial fashion, with the amount of cancellation present comparable to the amount that an analogous random sum would provide; cf. the probabilistic heuristic discussed in this recent blog post. There are a number of ways to make this heuristic precise. As already mentioned, the Riemann hypothesis can be considered one such manifestation of the heuristic. Another manifestation is the following old conjecture of Chowla:

Conjecture 1 (Chowla’s conjecture)For any fixed integer and exponents , with at least one of the odd (so as not to completely destroy the sign cancellation), we have

Note that as for any , we can reduce to the case when the take values in here. When only one of the are odd, this is essentially the prime number theorem in arithmetic progressions (after some elementary sieving), but with two or more of the are odd, the problem becomes completely open. For instance, the estimate

is morally very close to the conjectured asymptotic

for the von Mangoldt function , where is the twin prime constant; this asymptotic in turn implies the twin prime conjecture. (To formally deduce estimates for von Mangoldt from estimates for Möbius, though, typically requires some better control on the error terms than , in particular gains of some power of are usually needed. See this previous blog post for more discussion.)

Remark 1The Chowla conjecture resembles an assertion that, for chosen randomly and uniformly from to , the random variables become asymptotically independent of each other (in the probabilistic sense) as . However, this is not quite accurate, because some moments (namely those with all exponents even) have the “wrong” asymptotic value, leading to some unwanted correlation between the two variables. For instance, the events and have a strong correlation with each other, basically because they are both strongly correlated with the event of being divisible by . A more accurate interpretation of the Chowla conjecture is that the random variables are asymptoticallyconditionallyindependent of each other, after conditioning on the zero pattern ; thus, it is thesignof the Möbius function that fluctuates like random noise, rather than the zero pattern. (The situation is a bit cleaner if one works instead with the Liouville function instead of the Möbius function , as this function never vanishes, but we will stick to the traditional Möbius function formalism here.)

A more recent formulation of the Möbius randomness heuristic is the following conjecture of Sarnak. Given a bounded sequence , define the *topological entropy* of the sequence to be the least exponent with the property that for any fixed , and for going to infinity the set of can be covered by balls of radius . (If arises from a minimal topological dynamical system by , the above notion is equivalent to the usual notion of the topological entropy of a dynamical system.) For instance, if the sequence is a bit sequence (i.e. it takes values in ), then there are only -bit patterns that can appear as blocks of consecutive bits in this sequence. As a special case, a Turing machine with bounded memory that had access to a random number generator at the rate of one random bit produced every units of time, but otherwise evolved deterministically, would have an output sequence that had a topological entropy of at most . A bounded sequence is said to be *deterministic* if its topological entropy is zero. A typical example is a polynomial sequence such as for some fixed ; the -blocks of such polynomials sequence have covering numbers that only grow polynomially in , rather than exponentially, thus yielding the zero entropy. Unipotent flows, such as the horocycle flow on a compact hyperbolic surface, are another good source of deterministic sequences.

Conjecture 2 (Sarnak’s conjecture)Let be a deterministic bounded sequence. Then

This conjecture in general is still quite far from being solved. However, special cases are known:

- For constant sequences, this is essentially the prime number theorem (1).
- For periodic sequences, this is essentially the prime number theorem in arithmetic progressions.
- For quasiperiodic sequences such as for some continuous , this follows from the work of Davenport.
- For nilsequences, this is a result of Ben Green and myself.
- For horocycle flows, this is a result of Bourgain, Sarnak, and Ziegler.
- For the Thue-Morse sequence, this is a result of Dartyge-Tenenbaum (with a stronger error term obtained by Maduit-Rivat). A subsequent result of Bourgain handles all bounded rank one sequences (though the Thue-Morse sequence is actually of rank two), and a related result of Green establishes asymptotic orthogonality of the Möbius function to bounded depth circuits, although such functions are not necessarily deterministic in nature.
- For the Rudin-Shapiro sequence, I sketched out an argument at this MathOverflow post.
- The Möbius function is known to itself be non-deterministic, because its square (i.e. the indicator of the square-free functions) is known to be non-deterministic (indeed, its topological entropy is ). (The corresponding question for the Liouville function , however, remains open, as the square has zero entropy.)
- In the converse direction, it is easy to construct sequences of arbitrarily small positive entropy that correlate with the Möbius function (a rather silly example is for some fixed large (squarefree) , which has topological entropy at most but clearly correlates with ).

See this survey of Sarnak for further discussion of this and related topics.

In this post I wanted to give a very nice argument of Sarnak that links the above two conjectures:

Proposition 3The Chowla conjecture implies the Sarnak conjecture.

The argument does not use any number-theoretic properties of the Möbius function; one could replace in both conjectures by any other function from the natural numbers to and obtain the same implication. The argument consists of the following ingredients:

- To show that , it suffices to show that the expectation of the random variable , where is drawn uniformly at random from to , can be made arbitrary small by making large (and even larger).
- By the union bound and the zero topological entropy of , it suffices to show that for any bounded
*deterministic*coefficients , the random variable concentrates with exponentially high probability. - Finally, this exponentially high concentration can be achieved by the moment method, using a slight variant of the moment method proof of the large deviation estimates such as the Chernoff inequality or Hoeffding inequality (as discussed in this blog post).

As is often the case, though, while the “top-down” order of steps presented above is perhaps the clearest way to think *conceptually* about the argument, in order to *present* the argument formally it is more convenient to present the arguments in the reverse (or “bottom-up”) order. This is the approach taken below the fold.

## Recent Comments