You are currently browsing the tag archive for the ‘Chowla conjecture’ tag.

Given a function {f: {\bf N} \rightarrow \{-1,+1\}} on the natural numbers taking values in {+1, -1}, one can invoke the Furstenberg correspondence principle to locate a measure preserving system {T \circlearrowright (X, \mu)} – a probability space {(X,\mu)} together with a measure-preserving shift {T: X \rightarrow X} (or equivalently, a measure-preserving {{\bf Z}}-action on {(X,\mu)}) – together with a measurable function (or “observable”) {F: X \rightarrow \{-1,+1\}} that has essentially the same statistics as {f} in the sense that

\displaystyle \lim \inf_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N f(n+h_1) \dots f(n+h_k)

\displaystyle \leq \int_X F(T^{h_1} x) \dots F(T^{h_k} x)\ d\mu(x)

\displaystyle \leq \lim \sup_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N f(n+h_1) \dots f(n+h_k)

for any integers {h_1,\dots,h_k}. In particular, one has

\displaystyle \int_X F(T^{h_1} x) \dots F(T^{h_k} x)\ d\mu(x) = \lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N f(n+h_1) \dots f(n+h_k) \ \ \ \ \ (1)


whenever the limit on the right-hand side exists. We will refer to the system {T \circlearrowright (X,\mu)} together with the designated function {F} as a Furstenberg limit ot the sequence {f}. These Furstenberg limits capture some, but not all, of the asymptotic behaviour of {f}; roughly speaking, they control the typical “local” behaviour of {f}, involving correlations such as {\frac{1}{N} \sum_{n=1}^N f(n+h_1) \dots f(n+h_k)} in the regime where {h_1,\dots,h_k} are much smaller than {N}. However, the control on error terms here is usually only qualitative at best, and one usually does not obtain non-trivial control on correlations in which the {h_1,\dots,h_k} are allowed to grow at some significant rate with {N} (e.g. like some power {N^\theta} of {N}).

The correspondence principle is discussed in these previous blog posts. One way to establish the principle is by introducing a Banach limit {p\!-\!\lim: \ell^\infty({\bf N}) \rightarrow {\bf R}} that extends the usual limit functional on the subspace of {\ell^\infty({\bf N})} consisting of convergent sequences while still having operator norm one. Such functionals cannot be constructed explicitly, but can be proven to exist (non-constructively and non-uniquely) using the Hahn-Banach theorem; one can also use a non-principal ultrafilter here if desired. One can then seek to construct a system {T \circlearrowright (X,\mu)} and a measurable function {F: X \rightarrow \{-1,+1\}} for which one has the statistics

\displaystyle \int_X F(T^{h_1} x) \dots F(T^{h_k} x)\ d\mu(x) = p\!-\!\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N f(n+h_1) \dots f(n+h_k) \ \ \ \ \ (2)


for all {h_1,\dots,h_k}. One can explicitly construct such a system as follows. One can take {X} to be the Cantor space {\{-1,+1\}^{\bf Z}} with the product {\sigma}-algebra and the shift

\displaystyle T ( (x_n)_{n \in {\bf Z}} ) := (x_{n+1})_{n \in {\bf Z}}

with the function {F: X \rightarrow \{-1,+1\}} being the coordinate function at zero:

\displaystyle F( (x_n)_{n \in {\bf Z}} ) := x_0

(so in particular {F( T^h (x_n)_{n \in {\bf Z}} ) = x_h} for any {h \in {\bf Z}}). The only thing remaining is to construct the invariant measure {\mu}. In order to be consistent with (2), one must have

\displaystyle \mu( \{ (x_n)_{n \in {\bf Z}}: x_{h_j} = \epsilon_j \forall 1 \leq j \leq k \} )

\displaystyle = p\!-\!\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N 1_{f(n+h_1)=\epsilon_1} \dots 1_{f(n+h_k)=\epsilon_k}

for any distinct integers {h_1,\dots,h_k} and signs {\epsilon_1,\dots,\epsilon_k}. One can check that this defines a premeasure on the Boolean algebra of {\{-1,+1\}^{\bf Z}} defined by cylinder sets, and the existence of {\mu} then follows from the Hahn-Kolmogorov extension theorem (or the closely related Kolmogorov extension theorem). One can then check that the correspondence (2) holds, and that {\mu} is translation-invariant; the latter comes from the translation invariance of the (Banach-)Césaro averaging operation {f \mapsto p\!-\!\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N f(n)}. A variant of this construction shows that the Furstenberg limit is unique up to equivalence if and only if all the limits appearing in (1) actually exist.

One can obtain a slightly tighter correspondence by using a smoother average than the Césaro average. For instance, one can use the logarithmic Césaro averages {\lim_{N \rightarrow \infty} \frac{1}{\log N}\sum_{n=1}^N \frac{f(n)}{n}} in place of the Césaro average {\sum_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N f(n)}, thus one replaces (2) by

\displaystyle \int_X F(T^{h_1} x) \dots F(T^{h_k} x)\ d\mu(x)

\displaystyle = p\!-\!\lim_{N \rightarrow \infty} \frac{1}{\log N} \sum_{n=1}^N \frac{f(n+h_1) \dots f(n+h_k)}{n}.

Whenever the Césaro average of a bounded sequence {f: {\bf N} \rightarrow {\bf R}} exists, then the logarithmic Césaro average exists and is equal to the Césaro average. Thus, a Furstenberg limit constructed using logarithmic Banach-Césaro averaging still obeys (1) for all {h_1,\dots,h_k} when the right-hand side limit exists, but also obeys the more general assertion

\displaystyle \int_X F(T^{h_1} x) \dots F(T^{h_k} x)\ d\mu(x)

\displaystyle = \lim_{N \rightarrow \infty} \frac{1}{\log N} \sum_{n=1}^N \frac{f(n+h_1) \dots f(n+h_k)}{n}

whenever the limit of the right-hand side exists.

In a recent paper of Frantizinakis, the Furstenberg limits of the Liouville function {\lambda} (with logarithmic averaging) were studied. Some (but not all) of the known facts and conjectures about the Liouville function can be interpreted in the Furstenberg limit. For instance, in a recent breakthrough result of Matomaki and Radziwill (discussed previously here), it was shown that the Liouville function exhibited cancellation on short intervals in the sense that

\displaystyle \lim_{H \rightarrow \infty} \limsup_{X \rightarrow \infty} \frac{1}{X} \int_X^{2X} \frac{1}{H} |\sum_{x \leq n \leq x+H} \lambda(n)|\ dx = 0.

In terms of Furstenberg limits of the Liouville function, this assertion is equivalent to the assertion that

\displaystyle \lim_{H \rightarrow \infty} \int_X |\frac{1}{H} \sum_{h=1}^H F(T^h x)|\ d\mu(x) = 0

for all Furstenberg limits {T \circlearrowright (X,\mu), F} of Liouville (including those without logarithmic averaging). Invoking the mean ergodic theorem (discussed in this previous post), this assertion is in turn equivalent to the observable {F} that corresponds to the Liouville function being orthogonal to the invariant factor {L^\infty(X,\mu)^{\bf Z} = \{ g \in L^\infty(X,\mu): g \circ T = g \}} of {X}; equivalently, the first Gowers-Host-Kra seminorm {\|F\|_{U^1(X)}} of {F} (as defined for instance in this previous post) vanishes. The Chowla conjecture, which asserts that

\displaystyle \lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \lambda(n+h_1) \dots \lambda(n+h_k) = 0

for all distinct integers {h_1,\dots,h_k}, is equivalent to the assertion that all the Furstenberg limits of Liouville are equivalent to the Bernoulli system ({\{-1,+1\}^{\bf Z}} with the product measure arising from the uniform distribution on {\{-1,+1\}}, with the shift {T} and observable {F} as before). Similarly, the logarithmically averaged Chowla conjecture

\displaystyle \lim_{N \rightarrow \infty} \frac{1}{\log N} \sum_{n=1}^N \frac{\lambda(n+h_1) \dots \lambda(n+h_k)}{n} = 0

is equivalent to the assertion that all the Furstenberg limits of Liouville with logarithmic averaging are equivalent to the Bernoulli system. Recently, I was able to prove the two-point version

\displaystyle \lim_{N \rightarrow \infty} \frac{1}{\log N} \sum_{n=1}^N \frac{\lambda(n) \lambda(n+h)}{n} = 0 \ \ \ \ \ (3)


of the logarithmically averaged Chowla conjecture, for any non-zero integer {h}; this is equivalent to the perfect strong mixing property

\displaystyle \int_X F(x) F(T^h x)\ d\mu(x) = 0

for any Furstenberg limit of Liouville with logarithmic averaging, and any {h \neq 0}.

The situation is more delicate with regards to the Sarnak conjecture, which is equivalent to the assertion that

\displaystyle \lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \lambda(n) f(n) = 0

for any zero-entropy sequence {f: {\bf N} \rightarrow {\bf R}} (see this previous blog post for more discussion). Morally speaking, this conjecture should be equivalent to the assertion that any Furstenberg limit of Liouville is disjoint from any zero entropy system, but I was not able to formally establish an implication in either direction due to some technical issues regarding the fact that the Furstenberg limit does not directly control long-range correlations, only short-range ones. (There are however ergodic theoretic interpretations of the Sarnak conjecture that involve the notion of generic points; see this paper of El Abdalaoui, Lemancyk, and de la Rue.) But the situation is currently better with the logarithmically averaged Sarnak conjecture

\displaystyle \lim_{N \rightarrow \infty} \frac{1}{\log N} \sum_{n=1}^N \frac{\lambda(n) f(n)}{n} = 0,

as I was able to show that this conjecture was equivalent to the logarithmically averaged Chowla conjecture, and hence to all Furstenberg limits of Liouville with logarithmic averaging being Bernoulli; I also showed the conjecture was equivalent to local Gowers uniformity of the Liouville function, which is in turn equivalent to the function {F} having all Gowers-Host-Kra seminorms vanishing in every Furstenberg limit with logarithmic averaging. In this recent paper of Frantzikinakis, this analysis was taken further, showing that the logarithmically averaged Chowla and Sarnak conjectures were in fact equivalent to the much milder seeming assertion that all Furstenberg limits with logarithmic averaging were ergodic.

Actually, the logarithmically averaged Furstenberg limits have more structure than just a {{\bf Z}}-action on a measure preserving system {(X,\mu)} with a single observable {F}. Let {Aff_+({\bf Z})} denote the semigroup of affine maps {n \mapsto an+b} on the integers with {a,b \in {\bf Z}} and {a} positive. Also, let {\hat {\bf Z}} denote the profinite integers (the inverse limit of the cyclic groups {{\bf Z}/q{\bf Z}}). Observe that {Aff_+({\bf Z})} acts on {\hat {\bf Z}} by taking the inverse limit of the obvious actions of {Aff_+({\bf Z})} on {{\bf Z}/q{\bf Z}}.

Proposition 1 (Enriched logarithmically averaged Furstenberg limit of Liouville) Let {p\!-\!\lim} be a Banach limit. Then there exists a probability space {(X,\mu)} with an action {\phi \mapsto T^\phi} of the affine semigroup {Aff_+({\bf Z})}, as well as measurable functions {F: X \rightarrow \{-1,+1\}} and {M: X \rightarrow \hat {\bf Z}}, with the following properties:

  • (i) (Affine Furstenberg limit) For any {\phi_1,\dots,\phi_k \in Aff_+({\bf Z})}, and any congruence class {a\ (q)}, one has

    \displaystyle p\!-\!\lim_{N \rightarrow \infty} \frac{1}{\log N} \sum_{n=1}^N \frac{\lambda(\phi_1(n)) \dots \lambda(\phi_k(n)) 1_{n = a\ (q)}}{n}

    \displaystyle = \int_X F( T^{\phi_1}(x) ) \dots F( T^{\phi_k}(x) ) 1_{M(x) = a\ (q)}\ d\mu(x).

  • (ii) (Equivariance of {M}) For any {\phi \in Aff_+({\bf Z})}, one has

    \displaystyle M( T^\phi(x) ) = \phi( M(x) )

    for {\mu}-almost every {x \in X}.

  • (iii) (Multiplicativity at fixed primes) For any prime {p}, one has

    \displaystyle F( T^{p\cdot} x ) = - F(x)

    for {\mu}-almost every {x \in X}, where {p \cdot \in Aff_+({\bf Z})} is the dilation map {n \mapsto pn}.

  • (iv) (Measure pushforward) If {\phi \in Aff_+({\bf Z})} is of the form {\phi(n) = an+b} and {S_\phi \subset X} is the set {S_\phi = \{ x \in X: M(x) \in \phi(\hat {\bf Z}) \}}, then the pushforward {T^\phi_* \mu} of {\mu} by {\phi} is equal to {a \mu\downharpoonright_{S_\phi}}, that is to say one has

    \displaystyle \mu( (T^\phi)^{-1}(E) ) = a \mu( E \cap S_\phi )

    for every measurable {E \subset X}.

Note that {{\bf Z}} can be viewed as the subgroup of {Aff_+({\bf Z})} consisting of the translations {n \mapsto n + b}. If one only keeps the {{\bf Z}}-portion of the {Aff_+({\bf Z})} action and forgets the rest (as well as the function {M}) then the action becomes measure-preserving, and we recover an ordinary Furstenberg limit with logarithmic averaging. However, the additional structure here can be quite useful; for instance, one can transfer the proof of (3) to this setting, which we sketch below the fold, after proving the proposition.

The observable {M}, roughly speaking, means that points {x} in the Furstenberg limit {X} constructed by this proposition are still “virtual integers” in the sense that one can meaningfully compute the residue class of {x} modulo any natural number modulus {q}, by first applying {M} and then reducing mod {q}. The action of {Aff_+({\bf Z})} means that one can also meaningfully multiply {x} by any natural number, and translate it by any integer. As with other applications of the correspondence principle, the main advantage of moving to this more “virtual” setting is that one now acquires a probability measure {\mu}, so that the tools of ergodic theory can be readily applied.

Read the rest of this entry »

I’ve just uploaded to the arXiv my paper “Equivalence of the logarithmically averaged Chowla and Sarnak conjectures“, submitted to the Festschrift “Number Theory – Diophantine problems, uniform distribution and applications” in honour of Robert F. Tichy. This paper is a spinoff of my previous paper establishing a logarithmically averaged version of the Chowla (and Elliott) conjectures in the two-point case. In that paper, the estimate

\displaystyle  \sum_{n \leq x} \frac{\lambda(n) \lambda(n+h)}{n} = o( \log x )

as {x \rightarrow \infty} was demonstrated, where {h} was any positive integer and {\lambda} denoted the Liouville function. The proof proceeded using a method I call the “entropy decrement argument”, which ultimately reduced matters to establishing a bound of the form

\displaystyle  \sum_{n \leq x} \frac{|\sum_{h \leq H} \lambda(n+h) e( \alpha h)|}{n} = o( H \log x )

whenever {H} was a slowly growing function of {x}. This was in turn established in a previous paper of Matomaki, Radziwill, and myself, using the recent breakthrough of Matomaki and Radziwill.

It is natural to see to what extent the arguments can be adapted to attack the higher-point cases of the logarithmically averaged Chowla conjecture (ignoring for this post the more general Elliott conjecture for other bounded multiplicative functions than the Liouville function). That is to say, one would like to prove that

\displaystyle  \sum_{n \leq x} \frac{\lambda(n+h_1) \dots \lambda(n+h_k)}{n} = o( \log x )

as {x \rightarrow \infty} for any fixed distinct integers {h_1,\dots,h_k}. As it turns out (and as is detailed in the current paper), the entropy decrement argument extends to this setting (after using some known facts about linear equations in primes), and allows one to reduce the above estimate to an estimate of the form

\displaystyle  \sum_{n \leq x} \frac{1}{n} \| \lambda \|_{U^d[n, n+H]} = o( \log x )

for {H} a slowly growing function of {x} and some fixed {d} (in fact we can take {d=k-1} for {k \geq 3}), where {U^d} is the (normalised) local Gowers uniformity norm. (In the case {k=3}, {d=2}, this becomes the Fourier-uniformity conjecture discussed in this previous post.) If one then applied the (now proven) inverse conjecture for the Gowers norms, this estimate is in turn equivalent to the more complicated looking assertion

\displaystyle  \sum_{n \leq x} \frac{1}{n} \sup |\sum_{h \leq H} \lambda(n+h) F( g^h x )| = o( \log x ) \ \ \ \ \ (1)

where the supremum is over all possible choices of nilsequences {h \mapsto F(g^h x)} of controlled step and complexity (see the paper for definitions of these terms).

The main novelty in the paper (elaborating upon a previous comment I had made on this blog) is to observe that this latter estimate in turn follows from the logarithmically averaged form of Sarnak’s conjecture (discussed in this previous post), namely that

\displaystyle  \sum_{n \leq x} \frac{1}{n} \lambda(n) F( T^n x )= o( \log x )

whenever {n \mapsto F(T^n x)} is a zero entropy (i.e. deterministic) sequence. Morally speaking, this follows from the well-known fact that nilsequences have zero entropy, but the presence of the supremum in (1) means that we need a little bit more; roughly speaking, we need the class of nilsequences of a given step and complexity to have “uniformly zero entropy” in some sense.

On the other hand, it was already known (see previous post) that the Chowla conjecture implied the Sarnak conjecture, and similarly for the logarithmically averaged form of the two conjectures. Putting all these implications together, we obtain the pleasant fact that the logarithmically averaged Sarnak and Chowla conjectures are equivalent, which is the main result of the current paper. There have been a large number of special cases of the Sarnak conjecture worked out (when the deterministic sequence involved came from a special dynamical system), so these results can now also be viewed as partial progress towards the Chowla conjecture also (at least with logarithmic averaging). However, my feeling is that the full resolution of these conjectures will not come from these sorts of special cases; instead, conjectures like the Fourier-uniformity conjecture in this previous post look more promising to attack.

It would also be nice to get rid of the pesky logarithmic averaging, but this seems to be an inherent requirement of the entropy decrement argument method, so one would probably have to find a way to avoid that argument if one were to remove the log averaging.

Let {\lambda} denote the Liouville function. The prime number theorem is equivalent to the estimate

\displaystyle \sum_{n \leq x} \lambda(n) = o(x)

as {x \rightarrow \infty}, that is to say that {\lambda} exhibits cancellation on large intervals such as {[1,x]}. This result can be improved to give cancellation on shorter intervals. For instance, using the known zero density estimates for the Riemann zeta function, one can establish that

\displaystyle \int_X^{2X} |\sum_{x \leq n \leq x+H} \lambda(n)|\ dx = o( HX ) \ \ \ \ \ (1)


as {X \rightarrow \infty} if {X^{1/6+\varepsilon} \leq H \leq X} for some fixed {\varepsilon>0}; I believe this result is due to Ramachandra (see also Exercise 21 of this previous blog post), and in fact one could obtain a better error term on the right-hand side that for instance gained an arbitrary power of {\log X}. On the Riemann hypothesis (or the weaker density hypothesis), it was known that the {X^{1/6+\varepsilon}} could be lowered to {X^\varepsilon}.

Early this year, there was a major breakthrough by Matomaki and Radziwill, who (among other things) showed that the asymptotic (1) was in fact valid for any {H = H(X)} with {H \leq X} that went to infinity as {X \rightarrow \infty}, thus yielding cancellation on extremely short intervals. This has many further applications; for instance, this estimate, or more precisely its extension to other “non-pretentious” bounded multiplicative functions, was a key ingredient in my recent solution of the Erdös discrepancy problem, as well as in obtaining logarithmically averaged cases of Chowla’s conjecture, such as

\displaystyle \sum_{n \leq x} \frac{\lambda(n) \lambda(n+1)}{n} = o(\log x). \ \ \ \ \ (2)


It is of interest to twist the above estimates by phases such as the linear phase {n \mapsto e(\alpha n) := e^{2\pi i \alpha n}}. In 1937, Davenport showed that

\displaystyle \sup_\alpha |\sum_{n \leq x} \lambda(n) e(\alpha n)| \ll_A x \log^{-A} x

which of course improves the prime number theorem. Recently with Matomaki and Radziwill, we obtained a common generalisation of this estimate with (1), showing that

\displaystyle \sup_\alpha \int_X^{2X} |\sum_{x \leq n \leq x+H} \lambda(n) e(\alpha n)|\ dx = o(HX) \ \ \ \ \ (3)


as {X \rightarrow \infty}, for any {H = H(X) \leq X} that went to infinity as {X \rightarrow \infty}. We were able to use this estimate to obtain an averaged form of Chowla’s conjecture.

In that paper, we asked whether one could improve this estimate further by moving the supremum inside the integral, that is to say to establish the bound

\displaystyle \int_X^{2X} \sup_\alpha |\sum_{x \leq n \leq x+H} \lambda(n) e(\alpha n)|\ dx = o(HX) \ \ \ \ \ (4)


as {X \rightarrow \infty}, for any {H = H(X) \leq X} that went to infinity as {X \rightarrow \infty}. This bound is asserting that {\lambda} is locally Fourier-uniform on most short intervals; it can be written equivalently in terms of the “local Gowers {U^2} norm” as

\displaystyle \int_X^{2X} \sum_{1 \leq a \leq H} |\sum_{x \leq n \leq x+H} \lambda(n) \lambda(n+a)|^2\ dx = o( H^3 X )

from which one can see that this is another averaged form of Chowla’s conjecture (stronger than the one I was able to prove with Matomaki and Radziwill, but a consequence of the unaveraged Chowla conjecture). If one inserted such a bound into the machinery I used to solve the Erdös discrepancy problem, it should lead to further averaged cases of Chowla’s conjecture, such as

\displaystyle \sum_{n \leq x} \frac{\lambda(n) \lambda(n+1) \lambda(n+2)}{n} = o(\log x), \ \ \ \ \ (5)


though I have not fully checked the details of this implication. It should also have a number of new implications for sign patterns of the Liouville function, though we have not explored these in detail yet.

One can write (4) equivalently in the form

\displaystyle \int_X^{2X} \sum_{x \leq n \leq x+H} \lambda(n) e( \alpha(x) n + \beta(x) )\ dx = o(HX) \ \ \ \ \ (6)


uniformly for all {x}-dependent phases {\alpha(x), \beta(x)}. In contrast, (3) is equivalent to the subcase of (6) when the linear phase coefficient {\alpha(x)} is independent of {x}. This dependency of {\alpha(x)} on {x} seems to necessitate some highly nontrivial additive combinatorial analysis of the function {x \mapsto \alpha(x)} in order to establish (4) when {H} is small. To date, this analysis has proven to be elusive, but I would like to record what one can do with more classical methods like Vaughan’s identity, namely:

Proposition 1 The estimate (4) (or equivalently (6)) holds in the range {X^{2/3+\varepsilon} \leq H \leq X} for any fixed {\varepsilon>0}. (In fact one can improve the right-hand side by an arbitrary power of {\log X} in this case.)

The values of {H} in this range are far too large to yield implications such as new cases of the Chowla conjecture, but it appears that the {2/3} exponent is the limit of “classical” methods (at least as far as I was able to apply them), in the sense that one does not do any combinatorial analysis on the function {x \mapsto \alpha(x)}, nor does one use modern equidistribution results on “Type III sums” that require deep estimates on Kloosterman-type sums. The latter may shave a little bit off of the {2/3} exponent, but I don’t see how one would ever hope to go below {1/2} without doing some non-trivial combinatorics on the function {x \mapsto \alpha(x)}. UPDATE: I have come across this paper of Zhan which uses mean-value theorems for L-functions to lower the {2/3} exponent to {5/8}.

Let me now sketch the proof of the proposition, omitting many of the technical details. We first remark that known estimates on sums of the Liouville function (or similar functions such as the von Mangoldt function) in short arithmetic progressions, based on zero-density estimates for Dirichlet {L}-functions, can handle the “major arc” case of (4) (or (6)) where {\alpha} is restricted to be of the form {\alpha = \frac{a}{q} + O( X^{-1/6-\varepsilon} )} for {q = O(\log^{O(1)} X)} (the exponent here being of the same numerology as the {X^{1/6+\varepsilon}} exponent in the classical result of Ramachandra, tied to the best zero density estimates currently available); for instance a modification of the arguments in this recent paper of Koukoulopoulos would suffice. Thus we can restrict attention to “minor arc” values of {\alpha} (or {\alpha(x)}, using the interpretation of (6)).

Next, one breaks up {\lambda} (or the closely related Möbius function) into Dirichlet convolutions using one of the standard identities (e.g. Vaughan’s identity or Heath-Brown’s identity), as discussed for instance in this previous post (which is focused more on the von Mangoldt function, but analogous identities exist for the Liouville and Möbius functions). The exact choice of identity is not terribly important, but the upshot is that {\lambda(n)} can be decomposed into {\log^{O(1)} X} terms, each of which is either of the “Type I” form

\displaystyle \sum_{d \sim D; m \sim M: dm=n} a_d

for some coefficients {a_d} that are roughly of logarithmic size on the average, and scales {D, M} with {D \ll X^{2/3}} and {DM \sim X}, or else of the “Type II” form

\displaystyle \sum_{d \sim D; m \sim M: dm=n} a_d b_m

for some coefficients {a_d, b_m} that are roughly of logarithmic size on the average, and scales {D,M} with {X^{1/3} \ll D,M \ll X^{2/3}} and {DM \sim X}. As discussed in the previous post, the {2/3} exponent is a natural barrier in these identities if one is unwilling to also consider “Type III” type terms which are roughly of the shape of the third divisor function {\tau_3(n) := \sum_{d_1d_2d_3=1} 1}.

A Type I sum makes a contribution to { \sum_{x \leq n \leq x+H} \lambda(n) e( \alpha(x) n + \beta(x) )} that can be bounded (via Cauchy-Schwarz) in terms of an expression such as

\displaystyle \sum_{d \sim D} | \sum_{x/d \leq m \leq x/d+H/d} e(\alpha(x) dm )|^2.

The inner sum exhibits a lot of cancellation unless {\alpha(x) d} is within {O(D/H)} of an integer. (Here, “a lot” should be loosely interpreted as “gaining many powers of {\log X} over the trivial bound”.) Since {H} is significantly larger than {D}, standard Vinogradov-type manipulations (see e.g. Lemma 13 of these previous notes) show that this bad case occurs for many {d} only when {\alpha} is “major arc”, which is the case we have specifically excluded. This lets us dispose of the Type I contributions.

A Type II sum makes a contribution to { \sum_{x \leq n \leq x+H} \lambda(n) e( \alpha(x) n + \beta(x) )} roughly of the form

\displaystyle \sum_{d \sim D} | \sum_{x/d \leq m \leq x/d+H/d} b_m e(\alpha(x) dm)|.

We can break this up into a number of sums roughly of the form

\displaystyle \sum_{d = d_0 + O( H / M )} | \sum_{x/d_0 \leq m \leq x/d_0 + H/D} b_m e(\alpha(x) dm)|

for {d_0 \sim D}; note that the {d} range is non-trivial because {H} is much larger than {M}. Applying the usual bilinear sum Cauchy-Schwarz methods (e.g. Theorem 14 of these notes) we conclude that there is a lot of cancellation unless one has {\alpha(x) = a/q + O( \frac{X \log^{O(1)} X}{H^2} )} for some {q = O(\log^{O(1)} X)}. But with {H \geq X^{2/3+\varepsilon}}, {X \log^{O(1)} X/H^2} is well below the threshold {X^{-1/6-\varepsilon}} for the definition of major arc, so we can exclude this case and obtain the required cancellation.

The Chowla conjecture asserts, among other things, that one has the asymptotic

\displaystyle \frac{1}{X} \sum_{n \leq X} \lambda(n+h_1) \dots \lambda(n+h_k) = o(1)

as {X \rightarrow \infty} for any distinct integers {h_1,\dots,h_k}, where {\lambda} is the Liouville function. (The usual formulation of the conjecture also allows one to consider more general linear forms {a_i n + b_i} than the shifts {n+h_i}, but for sake of discussion let us focus on the shift case.) This conjecture remains open for {k \geq 2}, though there are now some partial results when one averages either in {x} or in the {h_1,\dots,h_k}, as discussed in this recent post.

A natural generalisation of the Chowla conjecture is the Elliott conjecture. Its original formulation was basically as follows: one had

\displaystyle \frac{1}{X} \sum_{n \leq X} g_1(n+h_1) \dots g_k(n+h_k) = o(1) \ \ \ \ \ (1)

whenever {g_1,\dots,g_k} were bounded completely multiplicative functions and {h_1,\dots,h_k} were distinct integers, and one of the {g_i} was “non-pretentious” in the sense that

\displaystyle \sum_p \frac{1 - \hbox{Re}( g_i(p) \overline{\chi(p)} p^{-it})}{p} = +\infty \ \ \ \ \ (2)

for all Dirichlet characters {\chi} and real numbers {t}. It is easy to see that some condition like (2) is necessary; for instance if {g(n) := \chi(n) n^{it}} and {\chi} has period {q} then {\frac{1}{X} \sum_{n \leq X} g(n+q) \overline{g(n)}} can be verified to be bounded away from zero as {X \rightarrow \infty}.

In a previous paper with Matomaki and Radziwill, we provided a counterexample to the original formulation of the Elliott conjecture, and proposed that (2) be replaced with the stronger condition

\displaystyle \inf_{|t| \leq X} \sum_{p \leq X} \frac{1 - \hbox{Re}( g_i(p) \overline{\chi(p)} p^{-it})}{p} \rightarrow +\infty \ \ \ \ \ (3)

as {X \rightarrow \infty} for any Dirichlet character {\chi}. To support this conjecture, we proved an averaged and non-asymptotic version of this conjecture which roughly speaking showed a bound of the form

\displaystyle \frac{1}{H^k} \sum_{h_1,\dots,h_k \leq H} |\frac{1}{X} \sum_{n \leq X} g_1(n+h_1) \dots g_k(n+h_k)| \leq \varepsilon

whenever {H} was an arbitrarily slowly growing function of {X}, {X} was sufficiently large (depending on {\varepsilon,k} and the rate at which {H} grows), and one of the {g_i} obeyed the condition

\displaystyle \inf_{|t| \leq AX} \sum_{p \leq X} \frac{1 - \hbox{Re}( g_i(p) \overline{\chi(p)} p^{-it})}{p} \geq A \ \ \ \ \ (4)

for some {A} that was sufficiently large depending on {k,\varepsilon}, and all Dirichlet characters {\chi} of period at most {A}. As further support of this conjecture, I recently established the bound

\displaystyle \frac{1}{\log \omega} |\sum_{X/\omega \leq n \leq X} \frac{g_1(n+h_1) g_2(n+h_2)}{n}| \leq \varepsilon

under the same hypotheses, where {\omega} is an arbitrarily slowly growing function of {X}.

In view of these results, it is tempting to conjecture that the condition (4) for one of the {g_i} should be sufficient to obtain the bound

\displaystyle |\frac{1}{X} \sum_{n \leq X} g_1(n+h_1) \dots g_k(n+h_k)| \leq \varepsilon

when {A} is large enough depending on {k,\varepsilon}. This may well be the case for {k=2}. However, the purpose of this blog post is to record a simple counterexample for {k>2}. Let’s take {k=3} for simplicity. Let {t_0} be a quantity much larger than {X} but much smaller than {X^2} (e.g. {t = X^{3/2}}), and set

\displaystyle g_1(n) := n^{it_0}; \quad g_2(n) := n^{-2it_0}; \quad g_3(n) := n^{it_0}.

For {X/2 \leq n \leq X}, Taylor expansion gives

\displaystyle (n+1)^{it} = n^{it_0} \exp( i t_0 / n ) + o(1)


\displaystyle (n+2)^{it} = n^{it_0} \exp( 2 i t_0 / n ) + o(1)

and hence

\displaystyle g_1(n) g_2(n+1) g_3(n+2) = 1 + o(1)

and hence

\displaystyle |\frac{1}{X} \sum_{X/2 \leq n \leq X} g_1(n) g_2(n+1) g_3(n+2)| \gg 1.

On the other hand one can easily verify that all of the {g_1,g_2,g_3} obey (4) (the restriction {|t| \leq AX} there prevents {t} from getting anywhere close to {t_0}). So it seems the correct non-asymptotic version of the Elliott conjecture is the following:

Conjecture 1 (Non-asymptotic Elliott conjecture) Let {k} be a natural number, and let {h_1,\dots,h_k} be integers. Let {\varepsilon > 0}, let {A} be sufficiently large depending on {k,\varepsilon,h_1,\dots,h_k}, and let {X} be sufficiently large depending on {k,\varepsilon,h_1,\dots,h_k,A}. Let {g_1,\dots,g_k} be bounded multiplicative functions such that for some {1 \leq i \leq k}, one has

\displaystyle \inf_{|t| \leq AX^{k-1}} \sum_{p \leq X} \frac{1 - \hbox{Re}( g_i(p) \overline{\chi(p)} p^{-it})}{p} \geq A

for all Dirichlet characters {\chi} of conductor at most {A}. Then

\displaystyle |\frac{1}{X} \sum_{n \leq X} g_1(n+h_1) \dots g_k(n+h_k)| \leq \varepsilon.

The {k=1} case of this conjecture follows from the work of Halasz; in my recent paper a logarithmically averaged version of the {k=2} case of this conjecture is established. The requirement to take {t} to be as large as {A X^{k-1}} does not emerge in the averaged Elliott conjecture in my previous paper with Matomaki and Radziwill; it thus seems that this averaging has concealed some of the subtler features of the Elliott conjecture. (However, this subtlety does not seem to affect the asymptotic version of the conjecture formulated in that paper, in which the hypothesis is of the form (3), and the conclusion is of the form (1).)

A similar subtlety arises when trying to control the maximal integral

\displaystyle \frac{1}{X} \int_X^{2X} \sup_\alpha \frac{1}{H} |\sum_{x \leq n \leq x+H} g(n) e(\alpha n)|\ dx. \ \ \ \ \ (5)

In my previous paper with Matomaki and Radziwill, we could show that easier expression

\displaystyle \frac{1}{X} \sup_\alpha \int_X^{2X} \frac{1}{H} |\sum_{x \leq n \leq x+H} g(n) e(\alpha n)|\ dx. \ \ \ \ \ (6)

was small (for {H} a slowly growing function of {X}) if {g} was bounded and completely multiplicative, and one had a condition of the form

\displaystyle \inf_{|t| \leq AX} \sum_{p \leq X} \frac{1 - \hbox{Re}( g(p) \overline{\chi(p)} p^{-it})}{p} \geq A \ \ \ \ \ (7)

for some large {A}. However, to obtain an analogous bound for (5) it now appears that one needs to strengthen the above condition to

\displaystyle \inf_{|t| \leq AX^2} \sum_{p \leq X} \frac{1 - \hbox{Re}( g(p) \overline{\chi(p)} p^{-it})}{p} \geq A

in order to address the counterexample in which {g(n) = n^{it_0}} for some {t_0} between {X} and {X^2}. This seems to suggest that proving (5) (which is closely related to the {k=3} case of the Chowla conjecture) could in fact be rather difficult; the estimation of (6) relied primarily of prior work of Matomaki and Radziwill which used the hypothesis (7), but as this hypothesis is not sufficient to conclude (5), some additional input must also be used.

I’ve just uploaded two related papers to the arXiv:

This pair of papers is an outgrowth of these two recent blog posts and the ensuing discussion. In the first paper, we establish the following logarithmically averaged version of the Chowla conjecture (in the case {k=2} of two-point correlations (or “pair correlations”)):

Theorem 1 (Logarithmically averaged Chowla conjecture) Let {a_1,a_2} be natural numbers, and let {b_1,b_2} be integers such that {a_1 b_2 - a_2 b_1 \neq 0}. Let {1 \leq \omega(x) \leq x} be a quantity depending on {x} that goes to infinity as {x \rightarrow \infty}. Let {\lambda} denote the Liouville function. Then one has

\displaystyle  \sum_{x/\omega(x) < n \leq x} \frac{\lambda(a_1 n + b_1) \lambda(a_2 n+b_2)}{n} = o( \log \omega(x) ) \ \ \ \ \ (1)

as {x \rightarrow \infty}.

Thus for instance one has

\displaystyle  \sum_{n \leq x} \frac{\lambda(n) \lambda(n+1)}{n} = o(\log x). \ \ \ \ \ (2)

For comparison, the non-averaged Chowla conjecture would imply that

\displaystyle  \sum_{n \leq x} \lambda(n) \lambda(n+1) = o(x) \ \ \ \ \ (3)

which is a strictly stronger estimate than (2), and remains open.

The arguments also extend to other completely multiplicative functions than the Liouville function. In particular, one obtains a slightly averaged version of the non-asymptotic Elliott conjecture that was shown in the previous blog post to imply a positive solution to the Erdos discrepancy problem. The averaged version of the conjecture established in this paper is slightly weaker than the one assumed in the previous blog post, but it turns out that the arguments there can be modified without much difficulty to accept this averaged Elliott conjecture as input. In particular, we obtain an unconditional solution to the Erdos discrepancy problem as a consequence; this is detailed in the second paper listed above. In fact we can also handle the vector-valued version of the Erdos discrepancy problem, in which the sequence {f(1), f(2), \dots} takes values in the unit sphere of an arbitrary Hilbert space, rather than in {\{-1,+1\}}.

Estimates such as (2) or (3) are known to be subject to the “parity problem” (discussed numerous times previously on this blog), which roughly speaking means that they cannot be proven solely using “linear” estimates on functions such as the von Mangoldt function. However, it is known that the parity problem can be circumvented using “bilinear” estimates, and this is basically what is done here.

We now describe in informal terms the proof of Theorem 1, focusing on the model case (2) for simplicity. Suppose for contradiction that the left-hand side of (2) was large and (say) positive. Using the multiplicativity {\lambda(pn) = -\lambda(n)}, we conclude that

\displaystyle  \sum_{n \leq x} \frac{\lambda(n) \lambda(n+p) 1_{p|n}}{n}

is also large and positive for all primes {p} that are not too large; note here how the logarithmic averaging allows us to leave the constraint {n \leq x} unchanged. Summing in {p}, we conclude that

\displaystyle  \sum_{n \leq x} \frac{ \sum_{p \in {\mathcal P}} \lambda(n) \lambda(n+p) 1_{p|n}}{n}

is large and positive for any given set {{\mathcal P}} of medium-sized primes. By a standard averaging argument, this implies that

\displaystyle  \frac{1}{H} \sum_{j=1}^H \sum_{p \in {\mathcal P}} \lambda(n+j) \lambda(n+p+j) 1_{p|n+j} \ \ \ \ \ (4)

is large for many choices of {n}, where {H} is a medium-sized parameter at our disposal to choose, and we take {{\mathcal P}} to be some set of primes that are somewhat smaller than {H}. (A similar approach was taken in this recent paper of Matomaki, Radziwill, and myself to study sign patterns of the Möbius function.) To obtain the required contradiction, one thus wants to demonstrate significant cancellation in the expression (4). As in that paper, we view {n} as a random variable, in which case (4) is essentially a bilinear sum of the random sequence {(\lambda(n+1),\dots,\lambda(n+H))} along a random graph {G_{n,H}} on {\{1,\dots,H\}}, in which two vertices {j, j+p} are connected if they differ by a prime {p} in {{\mathcal P}} that divides {n+j}. A key difficulty in controlling this sum is that for randomly chosen {n}, the sequence {(\lambda(n+1),\dots,\lambda(n+H))} and the graph {G_{n,H}} need not be independent. To get around this obstacle we introduce a new argument which we call the “entropy decrement argument” (in analogy with the “density increment argument” and “energy increment argument” that appear in the literature surrounding Szemerédi’s theorem on arithmetic progressions, and also reminiscent of the “entropy compression argument” of Moser and Tardos, discussed in this previous post). This argument, which is a simple consequence of the Shannon entropy inequalities, can be viewed as a quantitative version of the standard subadditivity argument that establishes the existence of Kolmogorov-Sinai entropy in topological dynamical systems; it allows one to select a scale parameter {H} (in some suitable range {[H_-,H_+]}) for which the sequence {(\lambda(n+1),\dots,\lambda(n+H))} and the graph {G_{n,H}} exhibit some weak independence properties (or more precisely, the mutual information between the two random variables is small).

Informally, the entropy decrement argument goes like this: if the sequence {(\lambda(n+1),\dots,\lambda(n+H))} has significant mutual information with {G_{n,H}}, then the entropy of the sequence {(\lambda(n+1),\dots,\lambda(n+H'))} for {H' > H} will grow a little slower than linearly, due to the fact that the graph {G_{n,H}} has zero entropy (knowledge of {G_{n,H}} more or less completely determines the shifts {G_{n+kH,H}} of the graph); this can be formalised using the classical Shannon inequalities for entropy (and specifically, the non-negativity of conditional mutual information). But the entropy cannot drop below zero, so by increasing {H} as necessary, at some point one must reach a metastable region (cf. the finite convergence principle discussed in this previous blog post), within which very little mutual information can be shared between the sequence {(\lambda(n+1),\dots,\lambda(n+H))} and the graph {G_{n,H}}. Curiously, for the application it is not enough to have a purely quantitative version of this argument; one needs a quantitative bound (which gains a factor of a bit more than {\log H} on the trivial bound for mutual information), and this is surprisingly delicate (it ultimately comes down to the fact that the series {\sum_{j \geq 2} \frac{1}{j \log j \log\log j}} diverges, which is only barely true).

Once one locates a scale {H} with the low mutual information property, one can use standard concentration of measure results such as the Hoeffding inequality to approximate (4) by the significantly simpler expression

\displaystyle  \frac{1}{H} \sum_{j=1}^H \sum_{p \in {\mathcal P}} \frac{\lambda(n+j) \lambda(n+p+j)}{p}. \ \ \ \ \ (5)

The important thing here is that Hoeffding’s inequality gives exponentially strong bounds on the failure probability, which is needed to counteract the logarithms that are inevitably present whenever trying to use entropy inequalities. The expression (5) can then be controlled in turn by an application of the Hardy-Littlewood circle method and a non-trivial estimate

\displaystyle  \sup_\alpha \frac{1}{X} \int_X^{2X} |\frac{1}{H} \sum_{x \leq n \leq x+H} \lambda(n) e(\alpha n)|\ dx = o(1) \ \ \ \ \ (6)

for averaged short sums of a modulated Liouville function established in another recent paper by Matomäki, Radziwill and myself.

When one uses this method to study more general sums such as

\displaystyle  \sum_{n \leq x} \frac{g_1(n) g_2(n+1)}{n},

one ends up having to consider expressions such as

\displaystyle  \frac{1}{H} \sum_{j=1}^H \sum_{p \in {\mathcal P}} c_p \frac{g_1(n+j) g_2(n+p+j)}{p}.

where {c_p} is the coefficient {c_p := \overline{g_1}(p) \overline{g_2}(p)}. When attacking this sum with the circle method, one soon finds oneself in the situation of wanting to locate the large Fourier coefficients of the exponential sum

\displaystyle  S(\alpha) := \sum_{p \in {\mathcal P}} \frac{c_p}{p} e^{2\pi i \alpha p}.

In many cases (such as in the application to the Erdös discrepancy problem), the coefficient {c_p} is identically {1}, and one can understand this sum satisfactorily using the classical results of Vinogradov: basically, {S(\alpha)} is large when {\alpha} lies in a “major arc” and is small when it lies in a “minor arc”. For more general functions {g_1,g_2}, the coefficients {c_p} are more or less arbitrary; the large values of {S(\alpha)} are no longer confined to the major arc case. Fortunately, even in this general situation one can use a restriction theorem for the primes established some time ago by Ben Green and myself to show that there are still only a bounded number of possible locations {\alpha} (up to the uncertainty mandated by the Heisenberg uncertainty principle) where {S(\alpha)} is large, and we can still conclude by using (6). (Actually, as recently pointed out to me by Ben, one does not need the full strength of our result; one only needs the {L^4} restriction theorem for the primes, which can be proven fairly directly using Plancherel’s theorem and some sieve theory.)

It is tempting to also use the method to attack higher order cases of the (logarithmically) averaged Chowla conjecture, for instance one could try to prove the estimate

\displaystyle  \sum_{n \leq x} \frac{\lambda(n) \lambda(n+1) \lambda(n+2)}{n} = o(\log x).

The above arguments reduce matters to obtaining some non-trivial cancellation for sums of the form

\displaystyle  \frac{1}{H} \sum_{j=1}^H \sum_{p \in {\mathcal P}} \frac{\lambda(n+j) \lambda(n+p+j) \lambda(n+2p+j)}{p}.

A little bit of “higher order Fourier analysis” (as was done for very similar sums in the ergodic theory context by Frantzikinakis-Host-Kra and Wooley-Ziegler) lets one control this sort of sum if one can establish a bound of the form

\displaystyle  \frac{1}{X} \int_X^{2X} \sup_\alpha |\frac{1}{H} \sum_{x \leq n \leq x+H} \lambda(n) e(\alpha n)|\ dx = o(1) \ \ \ \ \ (7)

where {X} goes to infinity and {H} is a very slowly growing function of {X}. This looks very similar to (6), but the fact that the supremum is now inside the integral makes the problem much more difficult. However it looks worth attacking (7) further, as this estimate looks like it should have many nice applications (beyond just the {k=3} case of the logarithmically averaged Chowla or Elliott conjectures, which is already interesting).

For higher {k} than {k=3}, the same line of analysis requires one to replace the linear phase {e(\alpha n)} by more complicated phases, such as quadratic phases {e(\alpha n^2 + \beta n)} or even {k-2}-step nilsequences. Given that (7) is already beyond the reach of current literature, these even more complicated expressions are also unavailable at present, but one can imagine that they will eventually become tractable, in which case we would obtain an averaged form of the Chowla conjecture for all {k}, which would have a number of consequences (such as a logarithmically averaged version of Sarnak’s conjecture, as per this blog post).

It would of course be very nice to remove the logarithmic averaging, and be able to establish bounds such as (3). I did attempt to do so, but I do not see a way to use the entropy decrement argument in a manner that does not require some sort of averaging of logarithmic type, as it requires one to pick a scale {H} that one cannot specify in advance, which is not a problem for logarithmic averages (which are quite stable with respect to dilations) but is problematic for ordinary averages. But perhaps the problem can be circumvented by some clever modification of the argument. One possible approach would be to start exploiting multiplicativity at products of primes, and not just individual primes, to try to keep the scale fixed, but this makes the concentration of measure part of the argument much more complicated as one loses some independence properties (coming from the Chinese remainder theorem) which allowed one to conclude just from the Hoeffding inequality.

Kaisa Matomäki, Maksym Radziwiłł, and I have just uploaded to the arXiv our paper “Sign patterns of the Liouville and Möbius functions“. This paper is somewhat similar to our previous paper in that it is using the recent breakthrough of Matomäki and Radziwiłł on mean values of multiplicative functions to obtain partial results towards the Chowla conjecture. This conjecture can be phrased, roughly speaking, as follows: if {k} is a fixed natural number and {n} is selected at random from a large interval {[1,x]}, then the sign pattern {(\lambda(n), \lambda(n+1),\dots,\lambda(n+k-1)) \in \{-1,+1\}^k} becomes asymptotically equidistributed in {\{-1,+1\}^k} in the limit {x \rightarrow \infty}. This remains open for {k \geq 2}. In fact even the significantly weaker statement that each of the sign patterns in {\{-1,+1\}^k} is attained infinitely often is open for {k \geq 4}. However, in 1986, Hildebrand showed that for {k \leq 3} all sign patterns are indeed attained infinitely often. Our first result is a strengthening of Hildebrand’s, moving a little bit closer to Chowla’s conjecture:

Theorem 1 Let {k \leq 3}. Then each of the sign patterns in {\{-1,+1\}^k} is attained by the Liouville function for a set of natural numbers {n} of positive lower density.

Thus for instance one has {\lambda(n)=\lambda(n+1)=\lambda(n+2)} for a set of {n} of positive lower density. The {k \leq 2} case of this theorem already appears in the original paper of Matomäki and Radziwiłł (and the significantly simpler case of the sign patterns {++} and {--} was treated previously by Harman, Pintz, and Wolke).

The basic strategy in all of these arguments is to assume for sake of contradiction that a certain sign pattern occurs extremely rarely, and then exploit the complete multiplicativity of {\lambda} (which implies in particular that {\lambda(2n) = -\lambda(n)}, {\lambda(3n) = -\lambda(n)}, and {\lambda(5n) = -\lambda(n)} for all {n}) together with some combinatorial arguments (vaguely analogous to solving a Sudoku puzzle!) to establish more complex sign patterns for the Liouville function, that are either inconsistent with each other, or with results such as the Matomäki-Radziwiłł result. To illustrate this, let us give some {k=2} examples, arguing a little informally to emphasise the combinatorial aspects of the argument. First suppose that the sign pattern {(\lambda(n),\lambda(n+1)) = (+1,+1)} almost never occurs. The prime number theorem tells us that {\lambda(n)} and {\lambda(n+1)} are each equal to {+1} about half of the time, which by inclusion-exclusion implies that the sign pattern {(\lambda(n),\lambda(n+1))=(-1,-1)} almost never occurs. In other words, we have {\lambda(n+1) = -\lambda(n)} for almost all {n}. But from the multiplicativity property {\lambda(2n)=-\lambda(n)} this implies that one should have

\displaystyle \lambda(2n+2) = -\lambda(2n)

\displaystyle \lambda(2n+1) = -\lambda(2n)


\displaystyle \lambda(2n+2) = -\lambda(2n+1)

for almost all {n}. But the above three statements are contradictory, and the claim follows.

Similarly, if we assume that the sign pattern {(\lambda(n),\lambda(n+1)) = (+1,-1)} almost never occurs, then a similar argument to the above shows that for any fixed {h}, one has {\lambda(n)=\lambda(n+1)=\dots=\lambda(n+h)} for almost all {n}. But this means that the mean {\frac{1}{h} \sum_{j=1}^h \lambda(n+j)} is abnormally large for most {n}, which (for {h} large enough) contradicts the results of Matomäki and Radziwiłł. Here we see that the “enemy” to defeat is the scenario in which {\lambda} only changes sign very rarely, in which case one rarely sees the pattern {(+1,-1)}.

It turns out that similar (but more combinatorially intricate) arguments work for sign patterns of length three (but are unlikely to work for most sign patterns of length four or greater). We give here one fragment of such an argument (due to Hildebrand) which hopefully conveys the Sudoku-type flavour of the combinatorics. Suppose for instance that the sign pattern {(\lambda(n),\lambda(n+1),\lambda(n+2)) = (+1,+1,+1)} almost never occurs. Now suppose {n} is a typical number with {\lambda(15n-1)=\lambda(15n+1)=+1}. Since we almost never have the sign pattern {(+1,+1,+1)}, we must (almost always) then have {\lambda(15n) = -1}. By multiplicativity this implies that

\displaystyle (\lambda(60n-4), \lambda(60n), \lambda(60n+4)) = (+1,-1,+1).

We claim that this (almost always) forces {\lambda(60n+5)=-1}. For if {\lambda(60n+5)=+1}, then by the lack of the sign pattern {(+1,+1,+1)}, this (almost always) forces {\lambda(60n+3)=\lambda(60n+6)=-1}, which by multiplicativity forces {\lambda(20n+1)=\lambda(20n+2)=+1}, which by lack of {(+1,+1,+1)} (almost always) forces {\lambda(20n)=-1}, which by multiplicativity contradicts {\lambda(60n)=-1}. Thus we have {\lambda(60n+5)=-1}; a similar argument gives {\lambda(60n-5)=-1} almost always, which by multiplicativity gives {\lambda(12n-1)=\lambda(12n)=\lambda(12n+1)=+1}, a contradiction. Thus we almost never have {\lambda(15n-1)=\lambda(15n+1)=+1}, which by the inclusion-exclusion argument mentioned previously shows that {\lambda(15n+1) = - \lambda(15n-1)} for almost all {n}.

One can continue these Sudoku-type arguments and conclude eventually that {\lambda(3n-1)=-\lambda(3n+1)=\lambda(3n+2)} for almost all {n}. To put it another way, if {\chi_3} denotes the non-principal Dirichlet character of modulus {3}, then {\lambda \chi_3} is almost always constant away from the multiples of {3}. (Conversely, if {\lambda \chi_3} changed sign very rarely outside of the multiples of three, then the sign pattern {(+1,+1,+1)} would never occur.) Fortunately, the main result of Matomäki and Radziwiłł shows that this scenario cannot occur, which establishes that the sign pattern {(+1,+1,+1)} must occur rather frequently. The other sign patterns are handled by variants of these arguments.

Excluding a sign pattern of length three leads to useful implications like “if {\lambda(n-1)=\lambda(n)=+1}, then {\lambda(n+1)=-1}” which turn out are just barely strong enough to quite rigidly constrain the Liouville function using Sudoku-like arguments. In contrast, excluding a sign pattern of length four only gives rise to implications like “`if {\lambda(n-2)=\lambda(n-1)=\lambda(n)=+1}, then {\lambda(n+1)=-1}“, and these seem to be much weaker for this purpose (the hypothesis in these implications just isn’t satisfied nearly often enough). So a different idea seems to be needed if one wishes to extend the above theorem to larger values of {k}.

Our second theorem gives an analogous result for the Möbius function {\mu} (which takes values in {\{-1,0,+1\}} rather than {\{-1,1\}}), but the analysis turns out to be remarkably difficult and we are only able to get up to {k=2}:

Theorem 2 Let {k \leq 2}. Then each of the sign patterns in {\{-1,0,+1\}^k} is attained by the Möbius function for a set {n} of positive lower density.

It turns out that the prime number theorem and elementary sieve theory can be used to handle the {k=1} case and all the {k=2} cases that involve at least one {0}, leaving only the four sign patterns {(\pm 1, \pm 1)} to handle. It is here that the zeroes of the Möbius function cause a significant new obstacle. Suppose for instance that the sign pattern {(+1, -1)} almost never occurs for the Möbius function. The same arguments that were used in the Liouville case then show that {\mu(n)} will be almost always equal to {\mu(n+1)}, provided that {n,n+1} are both square-free. One can try to chain this together as before to create a long string {\mu(n)=\dots=\mu(n+h) \in \{-1,+1\}} where the Möbius function is constant, but this cannot work for any {h} larger than three, because the Möbius function vanishes at every multiple of four.

The constraints we assume on the Möbius function can be depicted using a graph on the squarefree natural numbers, in which any two adjacent squarefree natural numbers are connected by an edge. The main difficulty is then that this graph is highly disconnected due to the multiples of four not being squarefree.

To get around this, we need to enlarge the graph. Note from multiplicativity that if {\mu(n)} is almost always equal to {\mu(n+1)} when {n,n+1} are squarefree, then {\mu(n)} is almost always equal to {\mu(n+p)} when {n,n+p} are squarefree and {n} is divisible by {p}. We can then form a graph on the squarefree natural numbers by connecting {n} to {n+p} whenever {n,n+p} are squarefree and {n} is divisible by {p}. If this graph is “locally connected” in some sense, then {\mu} will be constant on almost all of the squarefree numbers in a large interval, which turns out to be incompatible with the results of Matomäki and Radziwiłł. Because of this, matters are reduced to establishing the connectedness of a certain graph. More precisely, it turns out to be sufficient to establish the following claim:

Theorem 3 For each prime {p}, let {a_p \hbox{ mod } p^2} be a residue class chosen uniformly at random. Let {G} be the random graph whose vertices {V} consist of those integers {n} not equal to {a_p \hbox{ mod } p^2} for any {p}, and whose edges consist of pairs {n,n+p} in {V} with {n = a_p \hbox{ mod } p}. Then with probability {1}, the graph {G} is connected.

We were able to show the connectedness of this graph, though it turned out to be remarkably tricky to do so. Roughly speaking (and suppressing a number of technicalities), the main steps in the argument were as follows.

  • (Early stage) Pick a large number {X} (in our paper we take {X} to be odd, but I’ll ignore this technicality here). Using a moment method to explore neighbourhoods of a single point in {V}, one can show that a vertex {v} in {V} is almost always connected to at least {\log^{10} X} numbers in {[v,v+X^{1/100}]}, using relatively short paths of short diameter. (This is the most computationally intensive portion of the argument.)
  • (Middle stage) Let {X'} be a typical number in {[X/40,X/20]}, and let {R} be a scale somewhere between {X^{1/40}} and {X'}. By using paths {n, n+p_1, n+p_1-p_2, n+p_1-p_2+p_3} involving three primes, and using a variant of Vinogradov’s theorem and some routine second moment computations, one can show that with quite high probability, any “good” vertex in {[v+X'-R, v+X'-0.99R]} is connected to a “good” vertex in {[v+X'-0.01R, v+X-0.0099 R]} by paths of length three, where the definition of “good” is somewhat technical but encompasses almost all of the vertices in {V}.
  • (Late stage) Combining the two previous results together, we can show that most vertices {v} will be connected to a vertex in {[v+X'-X^{1/40}, v+X']} for any {X'} in {[X/40,X/20]}. In particular, {v} will be connected to a set of {\gg X^{9/10}} vertices in {[v,v+X/20]}. By tracking everything carefully, one can control the length and diameter of the paths used to connect {v} to this set, and one can also control the parity of the elements in this set.
  • (Final stage) Now if we have two vertices {v, w} at a distance {X} apart. By the previous item, one can connect {v} to a large set {A} of vertices in {[v,v+X/20]}, and one can similarly connect {w} to a large set {B} of vertices in {[w,w+X/20]}. Now, by using a Vinogradov-type theorem and second moment calculations again (and ensuring that the elements of {A} and {B} have opposite parity), one can connect many of the vertices in {A} to many of the vertices {B} by paths of length three, which then connects {v} to {w}, and gives the claim.

It seems of interest to understand random graphs like {G} further. In particular, the graph {G'} on the integers formed by connecting {n} to {n+p} for all {n} in a randomly selected residue class mod {p} for each prime {p} is particularly interesting (it is to the Liouville function as {G} is to the Möbius function); if one could show some “local expander” properties of this graph {G'}, then one would have a chance of modifying the above methods to attack the first unsolved case of the Chowla conjecture, namely that {\lambda(n)\lambda(n+1)} has asymptotic density zero (perhaps working with logarithmic density instead of natural density to avoids some technicalities).

One of the basic general problems in analytic number theory is to understand as much as possible the fluctuations of the Möbius function {\mu(n)}, defined as {(-1)^k} when {n} is the product of {k} distinct primes, and zero otherwise. For instance, as {\mu} takes values in {\{-1,0,1\}}, we have the trivial bound

\displaystyle  |\sum_{n \leq x} \mu(n)| \leq x

and the seemingly slight improvement

\displaystyle  \sum_{n \leq x} \mu(n) = o(x) \ \ \ \ \ (1)

is already equivalent to the prime number theorem, as observed by Landau (see e.g. this previous blog post for a proof), while the much stronger (and still open) improvement

\displaystyle  \sum_{n \leq x} \mu(n) = O(x^{1/2+o(1)})

is equivalent to the notorious Riemann hypothesis.

There is a general Möbius pseudorandomness heuristic that suggests that the sign pattern {\mu} behaves so randomly (or pseudorandomly) that one should expect a substantial amount of cancellation in sums that involve the sign fluctuation of the Möbius function in a nontrivial fashion, with the amount of cancellation present comparable to the amount that an analogous random sum would provide; cf. the probabilistic heuristic discussed in this recent blog post. There are a number of ways to make this heuristic precise. As already mentioned, the Riemann hypothesis can be considered one such manifestation of the heuristic. Another manifestation is the following old conjecture of Chowla:

Conjecture 1 (Chowla’s conjecture) For any fixed integer {m} and exponents {a_1,a_2,\ldots,a_m \geq 0}, with at least one of the {a_i} odd (so as not to completely destroy the sign cancellation), we have

\displaystyle  \sum_{n \leq x} \mu(n+1)^{a_1} \ldots \mu(n+m)^{a_m} = o_{x \rightarrow \infty;m}(x).

Note that as {\mu^a = \mu^{a+2}} for any {a \geq 1}, we can reduce to the case when the {a_i} take values in {0,1,2} here. When only one of the {a_i} are odd, this is essentially the prime number theorem in arithmetic progressions (after some elementary sieving), but with two or more of the {a_i} are odd, the problem becomes completely open. For instance, the estimate

\displaystyle  \sum_{n \leq x} \mu(n) \mu(n+2) = o(x)

is morally very close to the conjectured asymptotic

\displaystyle  \sum_{n \leq x} \Lambda(n) \Lambda(n+2) = 2\Pi_2 x + o(x)

for the von Mangoldt function {\Lambda}, where {\Pi_2 := \prod_{p > 2} (1 - \frac{1}{(p-1)^2}) = 0.66016\ldots} is the twin prime constant; this asymptotic in turn implies the twin prime conjecture. (To formally deduce estimates for von Mangoldt from estimates for Möbius, though, typically requires some better control on the error terms than {o()}, in particular gains of some power of {\log x} are usually needed. See this previous blog post for more discussion.)

Remark 1 The Chowla conjecture resembles an assertion that, for {n} chosen randomly and uniformly from {1} to {x}, the random variables {\mu(n+1),\ldots,\mu(n+k)} become asymptotically independent of each other (in the probabilistic sense) as {x \rightarrow \infty}. However, this is not quite accurate, because some moments (namely those with all exponents {a_i} even) have the “wrong” asymptotic value, leading to some unwanted correlation between the two variables. For instance, the events {\mu(n)=0} and {\mu(n+4)=0} have a strong correlation with each other, basically because they are both strongly correlated with the event of {n} being divisible by {4}. A more accurate interpretation of the Chowla conjecture is that the random variables {\mu(n+1),\ldots,\mu(n+k)} are asymptotically conditionally independent of each other, after conditioning on the zero pattern {\mu(n+1)^2,\ldots,\mu(n+k)^2}; thus, it is the sign of the Möbius function that fluctuates like random noise, rather than the zero pattern. (The situation is a bit cleaner if one works instead with the Liouville function {\lambda} instead of the Möbius function {\mu}, as this function never vanishes, but we will stick to the traditional Möbius function formalism here.)

A more recent formulation of the Möbius randomness heuristic is the following conjecture of Sarnak. Given a bounded sequence {f: {\bf N} \rightarrow {\bf C}}, define the topological entropy of the sequence to be the least exponent {\sigma} with the property that for any fixed {\epsilon > 0}, and for {m} going to infinity the set {\{ (f(n+1),\ldots,f(n+m)): n \in {\bf N} \} \subset {\bf C}^m} of {f} can be covered by {O( \exp( \sigma m + o(m) ) )} balls of radius {\epsilon}. (If {f} arises from a minimal topological dynamical system {(X,T)} by {f(n) := f(T^n x)}, the above notion is equivalent to the usual notion of the topological entropy of a dynamical system.) For instance, if the sequence is a bit sequence (i.e. it takes values in {\{0,1\}}), then there are only {\exp(\sigma m + o(m))} {m}-bit patterns that can appear as blocks of {m} consecutive bits in this sequence. As a special case, a Turing machine with bounded memory that had access to a random number generator at the rate of one random bit produced every {T} units of time, but otherwise evolved deterministically, would have an output sequence that had a topological entropy of at most {\frac{1}{T} \log 2}. A bounded sequence is said to be deterministic if its topological entropy is zero. A typical example is a polynomial sequence such as {f(n) := e^{2\pi i \alpha n^2}} for some fixed {\sigma}; the {m}-blocks of such polynomials sequence have covering numbers that only grow polynomially in {m}, rather than exponentially, thus yielding the zero entropy. Unipotent flows, such as the horocycle flow on a compact hyperbolic surface, are another good source of deterministic sequences.

Conjecture 2 (Sarnak’s conjecture) Let {f: {\bf N} \rightarrow {\bf C}} be a deterministic bounded sequence. Then

\displaystyle  \sum_{n \leq x} \mu(n) f(n) = o_{x \rightarrow \infty;f}(x).

This conjecture in general is still quite far from being solved. However, special cases are known:

  • For constant sequences, this is essentially the prime number theorem (1).
  • For periodic sequences, this is essentially the prime number theorem in arithmetic progressions.
  • For quasiperiodic sequences such as {f(n) = F(\alpha n \hbox{ mod } 1)} for some continuous {F}, this follows from the work of Davenport.
  • For nilsequences, this is a result of Ben Green and myself.
  • For horocycle flows, this is a result of Bourgain, Sarnak, and Ziegler.
  • For the Thue-Morse sequence, this is a result of Dartyge-Tenenbaum (with a stronger error term obtained by Maduit-Rivat). A subsequent result of Bourgain handles all bounded rank one sequences (though the Thue-Morse sequence is actually of rank two), and a related result of Green establishes asymptotic orthogonality of the Möbius function to bounded depth circuits, although such functions are not necessarily deterministic in nature.
  • For the Rudin-Shapiro sequence, I sketched out an argument at this MathOverflow post.
  • The Möbius function is known to itself be non-deterministic, because its square {\mu^2(n)} (i.e. the indicator of the square-free functions) is known to be non-deterministic (indeed, its topological entropy is {\frac{6}{\pi^2}\log 2}). (The corresponding question for the Liouville function {\lambda(n)}, however, remains open, as the square {\lambda^2(n)=1} has zero entropy.)
  • In the converse direction, it is easy to construct sequences of arbitrarily small positive entropy that correlate with the Möbius function (a rather silly example is {\mu(n) 1_{k|n}} for some fixed large (squarefree) {k}, which has topological entropy at most {\log 2/k} but clearly correlates with {\mu}).

See this survey of Sarnak for further discussion of this and related topics.

In this post I wanted to give a very nice argument of Sarnak that links the above two conjectures:

Proposition 3 The Chowla conjecture implies the Sarnak conjecture.

The argument does not use any number-theoretic properties of the Möbius function; one could replace {\mu} in both conjectures by any other function from the natural numbers to {\{-1,0,+1\}} and obtain the same implication. The argument consists of the following ingredients:

  1. To show that {\sum_{n<x} \mu(n) f(n) = o(x)}, it suffices to show that the expectation of the random variable {\frac{1}{m} (\mu(n+1)f(n+1)+\ldots+\mu(n+m)f(n+m))}, where {n} is drawn uniformly at random from {1} to {x}, can be made arbitrary small by making {m} large (and {n} even larger).
  2. By the union bound and the zero topological entropy of {f}, it suffices to show that for any bounded deterministic coefficients {c_1,\ldots,c_m}, the random variable {\frac{1}{m}(c_1 \mu(n+1) + \ldots + c_m \mu(n+m))} concentrates with exponentially high probability.
  3. Finally, this exponentially high concentration can be achieved by the moment method, using a slight variant of the moment method proof of the large deviation estimates such as the Chernoff inequality or Hoeffding inequality (as discussed in this blog post).

As is often the case, though, while the “top-down” order of steps presented above is perhaps the clearest way to think conceptually about the argument, in order to present the argument formally it is more convenient to present the arguments in the reverse (or “bottom-up”) order. This is the approach taken below the fold.

Read the rest of this entry »