You are currently browsing the tag archive for the ‘cocycle’ tag.

Let , be additive groups (i.e., groups with an abelian addition group law). A map is a homomorphism if one has

for all . A map is an *affine* homomorphism if one has

for all *additive quadruples* in , by which we mean that and . The two notions are closely related; it is easy to verify that is an affine homomorphism if and only if is the sum of a homomorphism and a constant.

Now suppose that also has a translation-invariant metric . A map is said to be a quasimorphism if one has

for all , where denotes a quantity at a bounded distance from the origin. Similarly, is an *affine quasimorphism* if

for all additive quadruples in . Again, one can check that is an affine quasimorphism if and only if it is the sum of a quasimorphism and a constant (with the implied constant of the quasimorphism controlled by the implied constant of the affine quasimorphism). (Since every constant is itself a quasimorphism, it is in fact the case that affine quasimorphisms are quasimorphisms, but now the implied constant in the latter is not controlled by the implied constant of the former.)

“Trivial” examples of quasimorphisms include the sum of a homomorphism and a bounded function. Are there others? In some cases, the answer is no. For instance, suppose we have a quasimorphism . Iterating (2), we see that for any integer and natural number , which we can rewrite as for non-zero . Also, is Lipschitz. Sending , we can verify that is a Cauchy sequence as and thus tends to some limit ; we have for , hence for positive , and then one can use (2) one last time to obtain for all . Thus is the sum of the homomorphism and a bounded sequence.

In general, one can phrase this problem in the language of group cohomology (discussed in this previous post). Call a map a *-cocycle*. A *-cocycle* is a map obeying the identity

for all . Given a -cocycle , one can form its *derivative* by the formula

Such functions are called *-coboundaries*. It is easy to see that the abelian group of -coboundaries is a subgroup of the abelian group of -cocycles. The quotient of these two groups is the first group cohomology of with coefficients in , and is denoted .

If a -cocycle is bounded then its derivative is a bounded -coboundary. The quotient of the group of bounded -cocycles by the derivatives of bounded -cocycles is called the *bounded first group cohomology* of with coefficients in , and is denoted . There is an obvious homomorphism from to , formed by taking a coset of the space of derivatives of bounded -cocycles, and enlarging it to a coset of the space of -coboundaries. By chasing all the definitions, we see that all quasimorphism from to are the sum of a homomorphism and a bounded function if and only if this homomorphism is injective; in fact the quotient of the space of quasimorphisms by the sum of homomorphisms and bounded functions is isomorphic to the kernel of .

In additive combinatorics, one is often working with functions which only have additive structure a fraction of the time, thus for instance (1) or (3) might only hold “ of the time”. This makes it somewhat difficult to directly interpret the situation in terms of group cohomology. However, thanks to tools such as the Balog-Szemerédi-Gowers lemma, one can upgrade this sort of -structure to -structure – at the cost of restricting the domain to a smaller set. Here I record one such instance of this phenomenon, thus giving a tentative link between additive combinatorics and group cohomology. (I thank Yuval Wigderson for suggesting the problem of locating such a link.)

Theorem 1Let , be additive groups with , let be a subset of , let , and let be a function such thatfor additive quadruples in . Then there exists a subset of containing with , a subset of with , and a function such that

for all (thus, the derivative takes values in on ), and such that for each , one has

Presumably the constants and can be improved further, but we have not attempted to optimise these constants. We chose as the domain on which one has a bounded derivative, as one can use the Bogulybov lemma (see e.g, Proposition 4.39 of my book with Van Vu) to find a large Bohr set inside . In applications, the set need not have bounded size, or even bounded doubling; for instance, in the inverse theory over a small finite fields , one would be interested in the situation where is the group of matrices with coefficients in (for some large , and being the subset consisting of those matrices of rank bounded by some bound .

*Proof:* By hypothesis, there are triples such that and

Thus, there is a set with such that for all , one has (6) for pairs with ; in particular, there exists such that (6) holds for values of . Setting , we conclude that for each , one has

Consider the bipartite graph whose vertex sets are two copies of , and and connected by a (directed) edge if and (7) holds. Then this graph has edges. Applying (a slight modification of) the Balog-Szemerédi-Gowers theorem (for instance by modifying the proof of Corollary 5.19 of my book with Van Vu), we can then find a subset of with with the property that for any , there exist triples such that the edges all lie in this bipartite graph. This implies that, for all , there exist septuples obeying the constraints

and for . These constraints imply in particular that

Also observe that

Thus, if and are such that , we see that

for octuples in the hyperplane

By the pigeonhole principle, this implies that for any fixed , there can be at most sets of the form with , that are pairwise disjoint. Using a greedy algorithm, we conclude that there is a set of cardinality , such that each set with , intersects for some , or in other words that

This implies that there exists a subset of with , and an element for each , such that

for all . Note we may assume without loss of generality that and .

By construction of , and permuting labels, we can find 16-tuples such that

and

for . We sum this to obtain

and hence by (8)

where . Since

we see that there are only possible values of . By the pigeonhole principle, we conclude that at most of the sets can be disjoint. Arguing as before, we conclude that there exists a set of cardinality such that

whenever (10) holds.

For any , write arbitrarily as for some (with if , and if ) and then set

Then from (11) we have (4). For we have , and (5) then follows from (9).

The von Neumann ergodic theorem (the Hilbert space version of the mean ergodic theorem) asserts that if is a unitary operator on a Hilbert space , and is a vector in that Hilbert space, then one has

in the strong topology, where is the -invariant subspace of , and is the orthogonal projection to . (See e.g. these previous lecture notes for a proof.) The same proof extends to more general amenable groups: if is a countable amenable group acting on a Hilbert space by unitary transformations , and is a vector in that Hilbert space, then one has

for any Folner sequence of , where is the -invariant subspace. Thus one can interpret as a certain average of elements of the orbit of .

I recently discovered that there is a simple variant of this ergodic theorem that holds even when the group is not amenable (or not discrete), using a more abstract notion of averaging:

Theorem 1 (Abstract ergodic theorem)Let be an arbitrary group acting unitarily on a Hilbert space , and let be a vector in . Then is the element in the closed convex hull of of minimal norm, and is also the unique element of in this closed convex hull.

*Proof:* As the closed convex hull of is closed, convex, and non-empty in a Hilbert space, it is a classical fact (see e.g. Proposition 1 of this previous post) that it has a unique element of minimal norm. If for some , then the midpoint of and would be in the closed convex hull and be of smaller norm, a contradiction; thus is -invariant. To finish the first claim, it suffices to show that is orthogonal to every element of . But if this were not the case for some such , we would have for all , and thus on taking convex hulls , a contradiction.

Finally, since is orthogonal to , the same is true for for any in the closed convex hull of , and this gives the second claim.

This result is due to Alaoglu and Birkhoff. It implies the amenable ergodic theorem (1); indeed, given any , Theorem 1 implies that there is a finite convex combination of shifts of which lies within (in the norm) to . By the triangle inequality, all the averages also lie within of , but by the Folner property this implies that the averages are eventually within (say) of , giving the claim.

It turns out to be possible to use Theorem 1 as a substitute for the mean ergodic theorem in a number of contexts, thus removing the need for an amenability hypothesis. Here is a basic application:

Corollary 2 (Relative orthogonality)Let be a group acting unitarily on a Hilbert space , and let be a -invariant subspace of . Then and are relatively orthogonal over their common subspace , that is to say the restrictions of and to the orthogonal complement of are orthogonal to each other.

*Proof:* By Theorem 1, we have for all , and the claim follows. (Thanks to Gergely Harcos for this short argument.)

Now we give a more advanced application of Theorem 1, to establish some “Mackey theory” over arbitrary groups . Define a *-system* to be a probability space together with a measure-preserving action of on ; this gives an action of on , which by abuse of notation we also call :

(In this post we follow the usual convention of defining the spaces by quotienting out by almost everywhere equivalence.) We say that a -system is *ergodic* if consists only of the constants.

(A technical point: the theory becomes slightly cleaner if we interpret our measure spaces abstractly (or “pointlessly“), removing the underlying space and quotienting by the -ideal of null sets, and considering maps such as only on this quotient -algebra (or on the associated von Neumann algebra or Hilbert space ). However, we will stick with the more traditional setting of classical probability spaces here to keep the notation familiar, but with the understanding that many of the statements below should be understood modulo null sets.)

A *factor* of a -system is another -system together with a *factor map* which commutes with the -action (thus for all ) and respects the measure in the sense that for all . For instance, the *-invariant factor* , formed by restricting to the invariant algebra , is a factor of . (This factor is the first factor in an important hierachy, the next element of which is the *Kronecker factor* , but we will not discuss higher elements of this hierarchy further here.) If is a factor of , we refer to as an *extension* of .

From Corollary 2 we have

Corollary 3 (Relative independence)Let be a -system for a group , and let be a factor of . Then and are relatively independent over their common factor , in the sense that the spaces and are relatively orthogonal over when all these spaces are embedded into .

This has a simple consequence regarding the product of two -systems and , in the case when the action is trivial:

Lemma 4If are two -systems, with the action of on trivial, then is isomorphic to in the obvious fashion.

This lemma is immediate for countable , since for a -invariant function , one can ensure that holds simultaneously for all outside of a null set, but is a little trickier for uncountable .

*Proof:* It is clear that is a factor of . To obtain the reverse inclusion, suppose that it fails, thus there is a non-zero which is orthogonal to . In particular, we have orthogonal to for any . Since lies in , we conclude from Corollary 3 (viewing as a factor of ) that is also orthogonal to . Since is an arbitrary element of , we conclude that is orthogonal to and in particular is orthogonal to itself, a contradiction. (Thanks to Gergely Harcos for this argument.)

Now we discuss the notion of a group extension.

Definition 5 (Group extension)Let be an arbitrary group, let be a -system, and let be a compact metrisable group. A-extensionof is an extension whose underlying space is (with the product of and the Borel -algebra on ), the factor map is , and the shift maps are given bywhere for each , is a measurable map (known as the

cocycleassociated to the -extension ).

An important special case of a -extension arises when the measure is the product of with the Haar measure on . In this case, also has a -action that commutes with the -action, making a -system. More generally, could be the product of with the Haar measure of some closed subgroup of , with taking values in ; then is now a system. In this latter case we will call *-uniform*.

If is a -extension of and is a measurable map, we can define the *gauge transform* of to be the -extension of whose measure is the pushforward of under the map , and whose cocycles are given by the formula

It is easy to see that is a -extension that is isomorphic to as a -extension of ; we will refer to and as *equivalent* systems, and as *cohomologous* to . We then have the following fundamental result of Mackey and of Zimmer:

Theorem 6 (Mackey-Zimmer theorem)Let be an arbitrary group, let be an ergodic -system, and let be a compact metrisable group. Then every ergodic -extension of is equivalent to an -uniform extension of for some closed subgroup of .

This theorem is usually stated for amenable groups , but by using Theorem 1 (or more precisely, Corollary 3) the result is in fact also valid for arbitrary groups; we give the proof below the fold. (In the usual formulations of the theorem, and are also required to be Lebesgue spaces, or at least standard Borel, but again with our abstract approach here, such hypotheses will be unnecessary.) Among other things, this theorem plays an important role in the Furstenberg-Zimmer structural theory of measure-preserving systems (as well as subsequent refinements of this theory by Host and Kra); see this previous blog post for some relevant discussion. One can obtain similar descriptions of non-ergodic extensions via the ergodic decomposition, but the result becomes more complicated to state, and we will not do so here.

## Recent Comments