You are currently browsing the tag archive for the ‘complex logarithm’ tag.

Previous set of notes: Notes 3. Next set of notes: Notes 5.

In the previous set of notes we saw that functions ${f: U \rightarrow {\bf C}}$ that were holomorphic on an open set ${U}$ enjoyed a large number of useful properties, particularly if the domain ${U}$ was simply connected. In many situations, though, we need to consider functions ${f}$ that are only holomorphic (or even well-defined) on most of a domain ${U}$, thus they are actually functions ${f: U \backslash S \rightarrow {\bf C}}$ outside of some small singular set ${S}$ inside ${U}$. (In this set of notes we only consider interior singularities; one can also discuss singular behaviour at the boundary of ${U}$, but this is a whole separate topic and will not be pursued here.) Since we have only defined the notion of holomorphicity on open sets, we will require the singular sets ${S}$ to be closed, so that the domain ${U \backslash S}$ on which ${f}$ remains holomorphic is still open. A typical class of examples are the functions of the form ${\frac{f(z)}{z-z_0}}$ that were already encountered in the Cauchy integral formula; if ${f: U \rightarrow {\bf C}}$ is holomorphic and ${z_0 \in U}$, such a function would be holomorphic save for a singularity at ${z_0}$. Another basic class of examples are the rational functions ${P(z)/Q(z)}$, which are holomorphic outside of the zeroes of the denominator ${Q}$.

Singularities come in varying levels of “badness” in complex analysis. The least harmful type of singularity is the removable singularity – a point ${z_0}$ which is an isolated singularity (i.e., an isolated point of the singular set ${S}$) where the function ${f}$ is undefined, but for which one can extend the function across the singularity in such a fashion that the function becomes holomorphic in a neighbourhood of the singularity. A typical example is that of the complex sinc function ${\frac{\sin(z)}{z}}$, which has a removable singularity at the origin ${0}$, which can be removed by declaring the sinc function to equal ${1}$ at ${0}$. The detection of isolated removable singularities can be accomplished by Riemann’s theorem on removable singularities (Exercise 37 from Notes 3): if a holomorphic function ${f: U \backslash S \rightarrow {\bf C}}$ is bounded near an isolated singularity ${z_0 \in S}$, then the singularity at ${z_0}$ may be removed.

After removable singularities, the mildest form of singularity one can encounter is that of a pole – an isolated singularity ${z_0}$ such that ${f(z)}$ can be factored as ${f(z) = \frac{g(z)}{(z-z_0)^m}}$ for some ${m \geq 1}$ (known as the order of the pole), where ${g}$ has a removable singularity at ${z_0}$ (and is non-zero at ${z_0}$ once the singularity is removed). Such functions have already made a frequent appearance in previous notes, particularly the case of simple poles when ${m=1}$. The behaviour near ${z_0}$ of function ${f}$ with a pole of order ${m}$ is well understood: for instance, ${|f(z)|}$ goes to infinity as ${z}$ approaches ${z_0}$ (at a rate comparable to ${|z-z_0|^{-m}}$). These singularities are not, strictly speaking, removable; but if one compactifies the range ${{\bf C}}$ of the holomorphic function ${f: U \backslash S \rightarrow {\bf C}}$ to a slightly larger space ${{\bf C} \cup \{\infty\}}$ known as the Riemann sphere, then the singularity can be removed. In particular, functions ${f: U \backslash S \rightarrow {\bf C}}$ which only have isolated singularities that are either poles or removable can be extended to holomorphic functions ${f: U \rightarrow {\bf C} \cup \{\infty\}}$ to the Riemann sphere. Such functions are known as meromorphic functions, and are nearly as well-behaved as holomorphic functions in many ways. In fact, in one key respect, the family of meromorphic functions is better: the meromorphic functions on ${U}$ turn out to form a field, in particular the quotient of two meromorphic functions is again meromorphic (if the denominator is not identically zero).

Unfortunately, there are isolated singularities that are neither removable or poles, and are known as essential singularities. A typical example is the function ${f(z) = e^{1/z}}$, which turns out to have an essential singularity at ${z=0}$. The behaviour of such essential singularities is quite wild; we will show here the Casorati-Weierstrass theorem, which shows that the image of ${f}$ near the essential singularity is dense in the complex plane, as well as the more difficult great Picard theorem which asserts that in fact the image can omit at most one point in the complex plane. Nevertheless, around any isolated singularity (even the essential ones) ${z_0}$, it is possible to expand ${f}$ as a variant of a Taylor series known as a Laurent series ${\sum_{n=-\infty}^\infty a_n (z-z_0)^n}$. The ${\frac{1}{z-z_0}}$ coefficient ${a_{-1}}$ of this series is particularly important for contour integration purposes, and is known as the residue of ${f}$ at the isolated singularity ${z_0}$. These residues play a central role in a common generalisation of Cauchy’s theorem and the Cauchy integral formula known as the residue theorem, which is a particularly useful tool for computing (or at least transforming) contour integrals of meromorphic functions, and has proven to be a particularly popular technique to use in analytic number theory. Within complex analysis, one important consequence of the residue theorem is the argument principle, which gives a topological (and analytical) way to control the zeroes and poles of a meromorphic function.

Finally, there are the non-isolated singularities. Little can be said about these singularities in general (for instance, the residue theorem does not directly apply in the presence of such singularities), but certain types of non-isolated singularities are still relatively easy to understand. One particularly common example of such non-isolated singularity arises when trying to invert a non-injective function, such as the complex exponential ${z \mapsto \exp(z)}$ or a power function ${z \mapsto z^n}$, leading to branches of multivalued functions such as the complex logarithm ${z \mapsto \log(z)}$ or the ${n^{th}}$ root function ${z \mapsto z^{1/n}}$ respectively. Such branches will typically have a non-isolated singularity along a branch cut; this branch cut can be moved around the complex domain by switching from one branch to another, but usually cannot be eliminated entirely, unless one is willing to lift up the domain ${U}$ to a more general type of domain known as a Riemann surface. As such, one can view branch cuts as being an “artificial” form of singularity, being an artefact of a choice of local coordinates of a Riemann surface, rather than reflecting any intrinsic singularity of the function itself. The further study of Riemann surfaces is an important topic in complex analysis (as well as the related fields of complex geometry and algebraic geometry), but this topic will be postponed to the next course in this sequence. Dilip Kulkarni on The inverse theorem for the U^… Anonymous on The inverse theorem for the U^… Anonymous on The inverse theorem for the U^… Anonymous on Using the Smith normal form to… Romain Viguier on ICM and IMU award ceremony beg… diophantine approxim… on Hilbert’s seventh proble… Brief communication… on The International Congress of… Michael Barany on Request for comments from the… Internet web page fo… on Short communication satellite… What is the trace?… on 254A, Notes 5: Free proba… Anonymous on Request for comments from the… porton on Request for comments from the… Aditya Guha Roy on Request for comments from the… math postdoc on Request for comments from the… Aditya Guha Roy on Request for comments from the…