You are currently browsing the tag archive for the ‘deck transformations’ tag.

Let be a field, and let be a finite extension of that field; in this post we will denote such a relationship by . We say that is a Galois extension of if the cardinality of the automorphism group of fixing is as large as it can be, namely the degree of the extension. In that case, we call the Galois group of over and denote it also by . The fundamental theorem of Galois theory then gives a one-to-one correspondence (also known as the *Galois correspondence*) between the intermediate extensions between and and the subgroups of :

Theorem 1 (Fundamental theorem of Galois theory)Let be a Galois extension of .

- (i) If is an intermediate field betwen and , then is a Galois extension of , and is a subgroup of .
- (ii) Conversely, if is a subgroup of , then there is a unique intermediate field such that ; namely is the set of elements of that are fixed by .
- (iii) If and , then if and only if is a subgroup of .
- (iv) If is an intermediate field between and , then is a Galois extension of if and only if is a normal subgroup of . In that case, is isomorphic to the quotient group .

Example 2Let , and let be the degree Galois extension formed by adjoining a primitive root of unity (that is to say, is the cyclotomic field of order ). Then is isomorphic to the multiplicative cyclic group (the invertible elements of the ring ). Amongst the intermediate fields, one has the cyclotomic fields of the form where divides ; they are also Galois extensions, with isomorphic to and isomorphic to the elements of such that modulo . (There can also be other intermediate fields, corresponding to other subgroups of .)

Example 3Let be the field of rational functions of one indeterminate with complex coefficients, and let be the field formed by adjoining an root to , thus . Then is a degree Galois extension of with Galois group isomorphic to (with an element corresponding to the field automorphism of that sends to ). The intermediate fields are of the form where divides ; they are also Galois extensions, with isomorphic to and isomorphic to the multiples of in .

There is an analogous Galois correspondence in the covering theory of manifolds. For simplicity we restrict attention to finite covers. If is a connected manifold and is a finite covering map of by another connected manifold , we denote this relationship by . (Later on we will change our function notations slightly and write in place of the more traditional , and similarly for the deck transformations below; more on this below the fold.) If , we can define to be the group of deck transformations: continuous maps which preserve the fibres of . We say that this covering map is a *Galois cover* if the cardinality of the group is as large as it can be. In that case we call the *Galois group* of over and denote it by .

Suppose is a finite cover of . An *intermediate cover* between and is a cover of by , such that , in such a way that the covering maps are compatible, in the sense that is the composition of and . This sort of compatibilty condition will be implicitly assumed whenever we chain together multiple instances of the notation. Two intermediate covers are *equivalent* if they cover each other, in a fashion compatible with all the other covering maps, thus and . We then have the analogous Galois correspondence:

Theorem 4 (Fundamental theorem of covering spaces)Let be a Galois covering.

- (i) If is an intermediate cover betwen and , then is a Galois extension of , and is a subgroup of .
- (ii) Conversely, if is a subgroup of , then there is a intermediate cover , unique up to equivalence, such that .
- (iii) If and , then if and only if is a subgroup of .
- (iv) If , then is a Galois cover of if and only if is a normal subgroup of . In that case, is isomorphic to the quotient group .

Example 5Let , and let be the -fold cover of with covering map . Then is a Galois cover of , and is isomorphic to the cyclic group . The intermediate covers are (up to equivalence) of the form with covering map where divides ; they are also Galois covers, with isomorphic to and isomorphic to the multiples of in .

Given the strong similarity between the two theorems, it is natural to ask if there is some more concrete connection between Galois theory and the theory of finite covers.

In one direction, if the manifolds have an algebraic structure (or a complex structure), then one can relate covering spaces to field extensions by considering the field of rational functions (or meromorphic functions) on the space. For instance, if and is the coordinate on , one can consider the field of rational functions on ; the -fold cover with coordinate from Example 5 similarly has a field of rational functions. The covering relates the two coordinates by the relation , at which point one sees that the rational functions on are a degree extension of that of (formed by adjoining the root of unity to ). In this way we see that Example 5 is in fact closely related to Example 3.

Exercise 6What happens if one uses meromorphic functions in place of rational functions in the above example? (To answer this question, I found it convenient to use a discrete Fourier transform associated to the multiplicative action of the roots of unity on to decompose the meromorphic functions on as a linear combination of functions invariant under this action, times a power of the coordinate for .)

I was curious however about the reverse direction. Starting with some field extensions , is it is possible to create manifold like spaces associated to these fields in such a fashion that (say) behaves like a “covering space” to with a group of deck transformations isomorphic to , so that the Galois correspondences agree? Also, given how the notion of a path (and associated concepts such as loops, monodromy and the fundamental group) play a prominent role in the theory of covering spaces, can spaces such as or also come with a notion of a path that is somehow compatible with the Galois correspondence?

The standard answer from modern algebraic geometry (as articulated for instance in this nice MathOverflow answer by Minhyong Kim) is to set equal to the spectrum of the field . As a set, the spectrum of a commutative ring is defined as the set of prime ideals of . Generally speaking, the map that maps a commutative ring to its spectrum tends to act like an inverse of the operation that maps a space to a ring of functions on that space. For instance, if one considers the commutative ring of regular functions on , then each point in gives rise to the prime ideal , and one can check that these are the only such prime ideals (other than the zero ideal ), giving an almost one-to-one correspondence between and . (The zero ideal corresponds instead to the generic point of .)

Of course, the spectrum of a field such as is just a point, as the zero ideal is the only prime ideal. Naively, it would then seem that there is not enough space inside such a point to support a rich enough structure of paths to recover the Galois theory of this field. In modern algebraic geometry, one addresses this issue by considering not just the set-theoretic elements of , but more general “base points” that map from some other (affine) scheme to (one could also consider non-affine base points of course). One has to rework many of the fundamentals of the subject to accommodate this “relative point of view“, for instance replacing the usual notion of topology with an étale topology, but once one does so one obtains a very satisfactory theory.

As an exercise, I set myself the task of trying to interpret Galois theory as an analogue of covering space theory in a more classical fashion, without explicit reference to more modern concepts such as schemes, spectra, or étale topology. After some experimentation, I found a reasonably satisfactory way to do so as follows. The space that one associates with in this classical perspective is not the single point , but instead the much larger space consisting of ring homomorphisms from to arbitrary integral domains ; informally, consists of all the “models” or “representations” of (in the spirit of this previous blog post). (There is a technical set-theoretic issue here because the class of integral domains is a proper class, so that will also be a proper class; I will completely ignore such technicalities in this post.) We view each such homomorphism as a single point in . The analogous notion of a path from one point to another is then a homomorphism of integral domains, such that is the composition of with . Note that every prime ideal in the spectrum of a commutative ring gives rise to a point in the space defined here, namely the quotient map to the ring , which is an integral domain because is prime. So one can think of as being a distinguished subset of ; alternatively, one can think of as a sort of “penumbra” surrounding . In particular, when is a field, defines a special point in , namely the identity homomorphism .

Below the fold I would like to record this interpretation of Galois theory, by first revisiting the theory of covering spaces using paths as the basic building block, and then adapting that theory to the theory of field extensions using the spaces indicated above. This is not too far from the usual scheme-theoretic way of phrasing the connection between the two topics (basically I have replaced étale-type points with more classical points ), but I had not seen it explicitly articulated before, so I am recording it here for my own benefit and for any other readers who may be interested.

## Recent Comments