You are currently browsing the tag archive for the ‘disintegration’ tag.

Asgar Jamneshan and I have just uploaded to the arXiv our paper “Foundational aspects of uncountable measure theory: Gelfand duality, Riesz representation, canonical models, and canonical disintegration“. This paper arose from our longer-term project to systematically develop “uncountable” ergodic theory – ergodic theory in which the groups acting are not required to be countable, the probability spaces one acts on are not required to be standard Borel, or Polish, and the compact groups that arise in the structural theory (e.g., the theory of group extensions) are not required to be separable. One of the motivations of doing this is to allow ergodic theory results to be applied to ultraproducts of finite dynamical systems, which can then hopefully be transferred to establish combinatorial results with good uniformity properties. An instance of this is the uncountable Mackey-Zimmer theorem, discussed in this companion blog post.

In the course of this project, we ran into the obstacle that many foundational results, such as the Riesz representation theorem, often require one or more of these countability hypotheses when encountered in textbooks. Other technical issues also arise in the uncountable setting, such as the need to distinguish the Borel -algebra from the (two different types of) Baire -algebra. As such we needed to spend some time reviewing and synthesizing the known literature on some foundational results of “uncountable” measure theory, which led to this paper. As such, most of the results of this paper are already in the literature, either explicitly or implicitly, in one form or another (with perhaps the exception of the canonical disintegration, which we discuss below); we view the main contribution of this paper as presenting the results in a coherent and unified fashion. In particular we found that the language of category theory was invaluable in clarifying and organizing all the different results. In subsequent work we (and some other authors) will use the results in this paper for various applications in uncountable ergodic theory.

The foundational results covered in this paper can be divided into a number of subtopics (Gelfand duality, Baire -algebras and Riesz representation, canonical models, and canonical disintegration), which we discuss further below the fold.

We continue our study of basic ergodic theorems, establishing the maximal and pointwise ergodic theorems of Birkhoff. Using these theorems, we can then give several equivalent notions of the fundamental concept of ergodicity, which (roughly speaking) plays the role in measure-preserving dynamics that minimality plays in topological dynamics. A general measure-preserving system is not necessarily ergodic, but we shall introduce the *ergodic decomposition*, which allows one to express any non-ergodic measure as an average of ergodic measures (generalising the decomposition of a permutation into disjoint cycles).

## Recent Comments