You are currently browsing the tag archive for the ‘distance ladder’ tag.

I gave a non-technical talk today to the local chapter of the Pi Mu Epsilon society here at UCLA. I chose to talk on the cosmic distance ladder – the hierarchy of rather clever (yet surprisingly elementary) mathematical methods that astronomers use to indirectly measure very large distances, such as the distance to planets, nearby stars, or distant stars. This ladder was really started by the ancient Greeks, who used it to measure the size and relative locations of the Earth, Sun and Moon to reasonable accuracy, and then continued by Copernicus, Brahe and Kepler who then measured distances to the planets, and in the modern era to stars, galaxies, and (very recently) to the scale of the universe itself. It’s a great testament to the power of indirect measurement, and to the use of mathematics to cleverly augment observation.

For this (rather graphics-intensive) talk, I used Powerpoint for the first time; the slides (which are rather large – 3 megabytes) – can be downloaded here. [I gave an earlier version of this talk in Australia last year in a plainer PDF format, and had to get someone to convert it for me.]

[Update, May 31: In case the powerpoint file is too large or unreadable, I also have my older PDF version of the talk, which omits all the graphics.]

[Update, July 1 2008: John Hutchinson has made some computations to accompany these slides, which can be found at this page.]