You are currently browsing the tag archive for the ‘eigenvectors’ tag.

Peter Denton, Stephen Parke, Xining Zhang, and I have just uploaded to the arXiv a completely rewritten version of our previous paper, now titled “Eigenvectors from Eigenvalues: a survey of a basic identity in linear algebra“. This paper is now a survey of the various literature surrounding the following basic identity in linear algebra, which we propose to call the *eigenvector-eigenvalue identity*:

Theorem 1 (Eigenvector-eigenvalue identity)Let be an Hermitian matrix, with eigenvalues . Let be a unit eigenvector corresponding to the eigenvalue , and let be the component of . Thenwhere is the Hermitian matrix formed by deleting the row and column from .

When we posted the first version of this paper, we were unaware of previous appearances of this identity in the literature; a related identity had been used by Erdos-Schlein-Yau and by myself and Van Vu for applications to random matrix theory, but to our knowledge this specific identity appeared to be new. Even two months after our preprint first appeared on the arXiv in August, we had only learned of one other place in the literature where the identity showed up (by Forrester and Zhang, who also cite an earlier paper of Baryshnikov).

The situation changed rather dramatically with the publication of a popular science article in Quanta on this identity in November, which gave this result significantly more exposure. Within a few weeks we became informed (through private communication, online discussion, and exploration of the citation tree around the references we were alerted to) of over three dozen places where the identity, or some other closely related identity, had previously appeared in the literature, in such areas as numerical linear algebra, various aspects of graph theory (graph reconstruction, chemical graph theory, and walks on graphs), inverse eigenvalue problems, random matrix theory, and neutrino physics. As a consequence, we have decided to completely rewrite our article in order to collate this crowdsourced information, and survey the history of this identity, all the known proofs (we collect seven distinct ways to prove the identity (or generalisations thereof)), and all the applications of it that we are currently aware of. The citation graph of the literature that this *ad hoc* crowdsourcing effort produced is only very weakly connected, which we found surprising:

The earliest explicit appearance of the eigenvector-eigenvalue identity we are now aware of is in a 1966 paper of Thompson, although this paper is only cited (directly or indirectly) by a fraction of the known literature, and also there is a precursor identity of Löwner from 1934 that can be shown to imply the identity as a limiting case. At the end of the paper we speculate on some possible reasons why this identity only achieved a modest amount of recognition and dissemination prior to the November 2019 Quanta article.

Peter Denton, Stephen Parke, Xining Zhang, and I have just uploaded to the arXiv the short unpublished note “Eigenvectors from eigenvalues“. This note gives two proofs of a general eigenvector identity observed recently by Denton, Parke and Zhang in the course of some quantum mechanical calculations. The identity is as follows:

Theorem 1Let be an Hermitian matrix, with eigenvalues . Let be a unit eigenvector corresponding to the eigenvalue , and let be the component of . Thenwhere is the Hermitian matrix formed by deleting the row and column from .

For instance, if we have

for some real number , -dimensional vector , and Hermitian matrix , then we have

assuming that the denominator is non-zero.

Once one is aware of the identity, it is not so difficult to prove it; we give two proofs, each about half a page long, one of which is based on a variant of the Cauchy-Binet formula, and the other based on properties of the adjugate matrix. But perhaps it is surprising that such a formula exists at all; one does not normally expect to learn much information about eigenvectors purely from knowledge of eigenvalues. In the random matrix theory literature, for instance in this paper of Erdos, Schlein, and Yau, or this later paper of Van Vu and myself, a related identity has been used, namely

but it is not immediately obvious that one can derive the former identity from the latter. (I do so below the fold; we ended up not putting this proof in the note as it was longer than the two other proofs we found. I also give two other proofs below the fold, one from a more geometric perspective and one proceeding via Cramer’s rule.) It was certainly something of a surprise to me that there is no explicit appearance of the components of in the formula (1) (though they do indirectly appear through their effect on the eigenvalues ; for instance from taking traces one sees that ).

One can get some feeling of the identity (1) by considering some special cases. Suppose for instance that is a diagonal matrix with all distinct entries. The upper left entry of is one of the eigenvalues of . If it is equal to , then the eigenvalues of are the other eigenvalues of , and now the left and right-hand sides of (1) are equal to . At the other extreme, if is equal to a different eigenvalue of , then now appears as an eigenvalue of , and both sides of (1) now vanish. More generally, if we order the eigenvalues and , then the Cauchy interlacing inequalities tell us that

for , and

for , so that the right-hand side of (1) lies between and , which is of course consistent with (1) as is a unit vector. Thus the identity relates the coefficient sizes of an eigenvector with the extent to which the Cauchy interlacing inequalities are sharp.

Perhaps the most important structural result about general large dense graphs is the Szemerédi regularity lemma. Here is a standard formulation of that lemma:

Lemma 1 (Szemerédi regularity lemma)Let be a graph on vertices, and let . Then there exists a partition for some with the property that for all but at most of the pairs , the pair is-regularin the sense thatwhenever are such that and , and is the edge density between and . Furthermore, the partition is

equitablein the sense that for all .

There are many proofs of this lemma, which is actually not that difficult to establish; see for instance these previous blog posts for some examples. In this post I would like to record one further proof, based on the spectral decomposition of the adjacency matrix of , which is essentially due to Frieze and Kannan. (Strictly speaking, Frieze and Kannan used a variant of this argument to establish a weaker form of the regularity lemma, but it is not difficult to modify the Frieze-Kannan argument to obtain the usual form of the regularity lemma instead. Some closely related spectral regularity lemmas were also developed by Szegedy.) I found recently (while speaking at the Abel conference in honour of this year’s laureate, Endre Szemerédi) that this particular argument is not as widely known among graph theory experts as I had thought, so I thought I would record it here.

For reasons of exposition, it is convenient to first establish a slightly weaker form of the lemma, in which one drops the hypothesis of equitability (but then has to weight the cells by their magnitude when counting bad pairs):

Lemma 2 (Szemerédi regularity lemma, weakened variant). Let be a graph on vertices, and let . Then there exists a partition for some with the property that for all pairs outside of an exceptional set , one haswhenever , for some real number , where is the number of edges between and . Furthermore, we have

Let us now prove Lemma 2. We enumerate (after relabeling) as . The adjacency matrix of the graph is then a self-adjoint matrix, and thus admits an eigenvalue decomposition

for some orthonormal basis of and some eigenvalues , which we arrange in decreasing order of magnitude:

We can compute the trace of as

Among other things, this implies that

Let be a function (depending on ) to be chosen later, with for all . Applying (3) and the pigeonhole principle (or the finite convergence principle, see this blog post), we can find such that

(Indeed, the bound on is basically iterated times.) We can now split

where is the “structured” component

and is the “pseudorandom” component

We now design a vertex partition to make approximately constant on most cells. For each , we partition into cells on which (viewed as a function from to ) only fluctuates by , plus an exceptional cell of size coming from the values where is excessively large (larger than ). Combining all these partitions together, we can write for some , where has cardinality at most , and for all , the eigenfunctions all fluctuate by at most . In particular, if , then (by (4) and (6)) the entries of fluctuate by at most on each block . If we let be the mean value of these entries on , we thus have

for any and , where we view the indicator functions as column vectors of dimension .

Next, we observe from (3) and (7) that . If we let be the coefficients of , we thus have

and hence by Markov’s inequality we have

for all pairs outside of an exceptional set with

for any , by (10) and the Cauchy-Schwarz inequality.

Finally, to control we see from (4) and (8) that has an operator norm of at most . In particular, we have from the Cauchy-Schwarz inequality that

Let be the set of all pairs where either , , , or

One easily verifies that (2) holds. If is not in , then by summing (9), (11), (12) and using (5), we see that

for all . The left-hand side is just . As , we have

and so (since )

If we let be a sufficiently rapidly growing function of that depends on , the second error term in (13) can be absorbed in the first, and (1) follows. This concludes the proof of Lemma 2.

To prove Lemma 1, one argues similarly (after modifying as necessary), except that the initial partition of constructed above needs to be subdivided further into equitable components (of size ), plus some remainder sets which can be aggregated into an exceptional component of size (and which can then be redistributed amongst the other components to arrive at a truly equitable partition). We omit the details.

Remark 1It is easy to verify that needs to be growing exponentially in in order for the above argument to work, which leads to tower-exponential bounds in the number of cells in the partition. It was shown by Gowers that a tower-exponential bound is actually necessary here. By varying , one basically obtains thestrong regularity lemmafirst established by Alon, Fischer, Krivelevich, and Szegedy; in the opposite direction, setting essentially gives theweak regularity lemmaof Frieze and Kannan.

Remark 2If we specialise to a Cayley graph, in which is a finite abelian group and for some (symmetric) subset of , then the eigenvectors are characters, and one essentially recovers thearithmetic regularity lemmaof Green, in which the vertex partition classes are given by Bohr sets (and one can then place additional regularity properties on these Bohr sets with some additional arguments). The components of , representing high, medium, and low eigenvalues of , then become a decomposition associated to high, medium, and low Fourier coefficients of .

Remark 3The use of spectral theory here is parallel to the use of Fourier analysis to establish results such as Roth’s theorem on arithmetic progressions of length three. In analogy with this, one could view hypergraph regularity as being a sort of “higher order spectral theory”, although this spectral perspective is not as convenient as it is in the graph case.

Van Vu and I have just uploaded to the arXiv our paper “Random matrices: Universality of eigenvectors“, submitted to Random Matrices: Theory and Applications. This paper concerns an extension of our four moment theorem for eigenvalues. Roughly speaking, that four moment theorem asserts (under mild decay conditions on the coefficients of the random matrix) that the fine-scale structure of individual eigenvalues of a Wigner random matrix depend only on the first four moments of each of the entries.

In this paper, we extend this result from eigenvalues to eigen*vectors*, and specifically to the coefficients of, say, the eigenvector of a Wigner random matrix . Roughly speaking, the main result is that the distribution of these coefficients also only depends on the first four moments of each of the entries. In particular, as the distribution of coefficients eigenvectors of invariant ensembles such as GOE or GUE are known to be asymptotically gaussian real (in the GOE case) or gaussian complex (in the GUE case), the same asymptotic automatically holds for Wigner matrices whose coefficients match GOE or GUE to fourth order.

(A technical point here: strictly speaking, the eigenvectors are only determined up to a phase, even when the eigenvalues are simple. So, to phrase the question properly, one has to perform some sort of normalisation, for instance by working with the coefficients of the spectral projection operators instead of the eigenvectors, or rotating each eigenvector by a random phase, or by fixing the first component of each eigenvector to be positive real. This is a fairly minor technical issue here, though, and will not be discussed further.)

This theorem strengthens a four moment theorem for eigenvectors recently established by Knowles and Yin (by a somewhat different method), in that the hypotheses are weaker (no level repulsion assumption is required, and the matrix entries only need to obey a finite moment condition rather than an exponential decay condition), and a slightly stronger conclusion (less regularity is needed on the test function, and one can handle the joint distribution of polynomially many coefficients, rather than boundedly many coefficients). On the other hand, the Knowles-Yin paper can also handle generalised Wigner ensembles in which the variances of the entries are allowed to fluctuate somewhat.

The method used here is a variation of that in our original paper (incorporating the subsequent improvements to extend the four moment theorem from the bulk to the edge, and to replace exponential decay by a finite moment condition). That method was ultimately based on the observation that if one swapped a single entry (and its adjoint) in a Wigner random matrix, then an individual eigenvalue would not fluctuate much as a consequence (as long as one had already truncated away the event of an unexpectedly small eigenvalue gap). The same analysis shows that the projection matrices obeys the same stability property.

As an application of the eigenvalue four moment theorem, we establish a four moment theorem for the coefficients of resolvent matrices , even when is on the real axis (though in that case we need to make a level repulsion hypothesis, which has been already verified in many important special cases and is likely to be true in general). This improves on an earlier four moment theorem for resolvents of Erdos, Yau, and Yin, which required to stay some distance away from the real axis (specifically, that for some small ).

## Recent Comments