You are currently browsing the tag archive for the ‘finite convergence principle’ tag.

In the field of analysis, it is common to make a distinction between “hard”, “quantitative”, or “finitary” analysis on one hand, and “soft”, “qualitative”, or “infinitary” analysis on the other. “Hard analysis” is mostly concerned with finite quantities (e.g. the cardinality of finite sets, the measure of bounded sets, the value of convergent integrals, the norm of finite-dimensional vectors, etc.) and their *quantitative* properties (in particular, upper and lower bounds). “Soft analysis”, on the other hand, tends to deal with more infinitary objects (e.g. sequences, measurable sets and functions, -algebras, Banach spaces, etc.) and their *qualitative* properties (convergence, boundedness, integrability, completeness, compactness, etc.). To put it more symbolically, hard analysis is the mathematics of , , , and ^{[1]}; soft analysis is the mathematics of 0, , , and .

At first glance, the two types of analysis look very different; they deal with different types of objects, ask different types of questions, and seem to use different techniques in their proofs. They even use^{[2] }different axioms of mathematics; the axiom of infinity, the axiom of choice, and the Dedekind completeness axiom for the real numbers are often invoked in soft analysis, but rarely in hard analysis. (As a consequence, there are occasionally some finitary results that can be proven easily by soft analysis but are in fact *impossible* to prove via hard analysis methods; the Paris-Harrington theorem gives a famous example.) Because of all these differences, it is common for analysts to specialise in only one of the two types of analysis. For instance, as a general rule (and with notable exceptions), discrete mathematicians, computer scientists, real-variable harmonic analysts, and analytic number theorists tend to rely on “hard analysis” tools, whereas functional analysts, operator algebraists, abstract harmonic analysts, and ergodic theorists tend to rely on “soft analysis” tools. (PDE is an interesting intermediate case in which *both* types of analysis are popular and useful, though many practitioners of PDE still prefer to primarily use just one of the two types. Another interesting transition occurs on the interface between point-set topology, which largely uses soft analysis, and metric geometry, which largely uses hard analysis. Also, the ineffective bounds which crop up from time to time in analytic number theory are a sort of hybrid of hard and soft analysis. Finally, there are examples of evolution of a field from soft analysis to hard (e.g. Banach space geometry) or vice versa (e.g. recent developments in extremal combinatorics, particularly in relation to the regularity lemma).)

## Recent Comments