You are currently browsing the tag archive for the ‘generic points’ tag.

Emmanuel Breuillard, Ben Green, Robert Guralnick, and I have just uploaded to the arxiv our paper “Strongly dense free subgroups of semisimple algebraic groups“, submitted to Israel J. Math.. This paper was originally motivated by (and provides a key technical tool for) another forthcoming paper of ours, on expander Cayley graphs in finite simple groups of Lie type, but also has some independent interest due to connections with other topics, such as the Banach-Tarski paradox.

Recall that one of the basic facts underlying the Banach-Tarski paradox is that the rotation group contains a copy of the free non-abelian group on two generators; thus there exists such that obey no nontrivial word identities. In fact, using basic algebraic geometry, one can then deduce that a *generic* pair of group elements has this property, where for the purposes of this paper “generic” means “outside of at most countably many algebraic subvarieties of strictly smaller dimension”. (In particular, using Haar measure on , almost every pair has this property.) In fact one has a stronger property, given any non-trivial word , the associated word map from to is a dominant map, which means that its image is Zariski-dense. More succinctly, if is generic, then is generic also.

In contrast, if one were working in a solvable, nilpotent, or abelian group (such as ), then this property would not hold, since every subgroup of a solvable group is still solvable and thus not free (and similarly for nilpotent or abelian groups). (This already goes a long way to explain why the Banach-Tarski paradox holds in three or more dimensions, but not in two or fewer.) On the other hand, a famous result of Borel asserts that for any semisimple Lie group (over an algebraically closed field), and any nontrivial word , the word map is dominant, thus generalising the preceding discussion for . (There is also the even more famous Tits alternative, that asserts that any linear group that is not (virtually) solvable will contain a copy of the free group ; as pointed out to me by Michael Cowling, this already shows that generic pairs of generators will generate a free group, and with a little more effort one can even show that it generates a Zariski-dense free group.)

Now suppose we take *two* words , and look at the double word map on a semisimple Lie group . If are non-trivial, then Borel’s theorem tells us that each component of this map is dominant, but this does not mean that the entire map is dominant, because there could be constraints between and . For instance, if the two words commute, then must also commute and so the image of the double word map is not Zariski-dense. But there are also non-commuting examples of non-trivial constraints: for instance, if are conjugate, then must also be conjugate, which is also a constraint that obstructs dominance.

It is still not clear exactly what pairs of words have the dominance property. However, we are able to establish that all pairs of non-commuting words have a weaker property than dominance:

Theorem.Let be non-commuting words, and let be generic elements of a semisimple Lie group over an algebraically closed field. Then generate a Zariski-dense subgroup of .

To put it another way, not only contains free subgroups, but contains what we call strongly dense free subgroups: free subgroups such that any two non-commuting elements generate a Zariski-dense subgroup.

Our initial motivation for this theorem is its implications for finite simple groups of Lie type. Roughly speaking, one can use this theorem to show that a generic random walk in such a group cannot be trapped in a (bounded complexity) proper algebraic subgroup of , and this “escape from subgroups” fact is a key ingredient in our forthcoming paper in which we demonstrate that random Cayley graphs in such groups are expander graphs.

It also has implications for results of Banach-Tarski type; it shows that for any semisimple Lie group G, and for generic , one can use to create Banach-Tarski paradoxical decompositions for all homogeneous spaces of . In particular there is one pair of that gives paradoxical decompositions for all homogeneous spaces simultaneously.

Our argument is based on a concept that we call “degeneration”. Let be generic elements of , and suppose for contradiction that generically generated a group whose algebraic closure was conjugate to a proper algebraic subgroup of . Borel’s theorem lets us show that , and latex [w_1(a,b), w_2(a,b)]$ each generate maximal tori of , which by basic algebraic group theory can be used to show that must be a proper semisimple subgroup of of maximal rank. If we were in the model case , then we would already be done, as there are no such maximal rank semisimple subgroups; but in the other groups, such proper maximal semisimple groups unfortunately exist. Fortunately, they have been completely classified, and we take advantage of this classification in our argument.

The degeneration argument comes in as follows. Let be a *non*-generic pair in . Then lies in the Zariski closure of the generic pairs, which means that lies in the Zariski closure of the set formed by and its conjugates. In particular, if the non-generic pair is such that generates a group that is dense in some proper algebraic subgroup , then is in the Zariski closure of the union of the conjugates of . When this happens, we say that is a *degeneration* of . (For instance, could be the stabiliser of some non-degenerate quadratic form, and could be the stabiliser of a degenerate limit of that form.)

The key fact we need (that relies on the classification, and a certain amount of representation theory) is:

Proposition.Given any proper semisimple maximal rank subgroup of , there exists another proper semisimple subgroup that isnota degeneration of .

Using an induction hypothesis, we can find pairs such that generate a dense subgroup of , which together with the preceding discussion contradicts the proposition.

The proposition is currently proven by using some known facts about certain representation-theoretic invariants of all the semisimple subgroups of the classical and exceptional simple Lie groups. While the proof is of finite length, it is not particularly elegant, ultimately relying on the numerical value of one or more invariants of being sufficiently different from their counterparts for that one can prevent the latter being a degeneration of the former. Perhaps there is another way to proceed here that is not based so heavily on classification.

## Recent Comments