You are currently browsing the tag archive for the ‘Jordan’s theorem’ tag.

Jordan’s theorem is a basic theorem in the theory of finite linear groups, and can be formulated as follows:

Theorem 1 (Jordan’s theorem)Let be a finite subgroup of the general linear group . Then there is an abelian subgroup of of index , where depends only on .

Informally, Jordan’s theorem asserts that finite linear groups over the complex numbers are almost abelian. The theorem can be extended to other fields of characteristic zero, and also to fields of positive characteristic so long as the characteristic does not divide the order of , but we will not consider these generalisations here. A proof of this theorem can be found for instance in these lecture notes of mine.

I recently learned (from this comment of Kevin Ventullo) that the finiteness hypothesis on the group in this theorem can be relaxed to the significantly weaker condition of periodicity. Recall that a group is periodic if all elements are of finite order. Jordan’s theorem with “finite” replaced by “periodic” is known as the Jordan-Schur theorem.

The Jordan-Schur theorem can be quickly deduced from Jordan’s theorem, and the following result of Schur:

Theorem 2 (Schur’s theorem)Every finitely generated periodic subgroup of a general linear group is finite. (Equivalently, every periodic linear group is locally finite.)

Remark 1The question of whetherallfinitely generated periodic subgroups (not necessarily linear in nature) were finite was known as the Burnside problem; the answer was shown to be negative by Golod and Shafarevich in 1964.

Let us see how Jordan’s theorem and Schur’s theorem combine via a compactness argument to form the Jordan-Schur theorem. Let be a periodic subgroup of . Then for every finite subset of , the group generated by is finite by Theorem 2. Applying Jordan’s theorem, contains an abelian subgroup of index at most .

In particular, given any finite number of finite subsets of , we can find abelian subgroups of respectively such that each has index at most in . We claim that we may furthermore impose the compatibility condition whenever . To see this, we set , locate an abelian subgroup of of index at most , and then set . As is covered by at most cosets of , we see that is covered by at most cosets of , and the claim follows.

Note that for each , the set of possible is finite, and so the product space of all configurations , as ranges over finite subsets of , is compact by Tychonoff’s theorem. Using the finite intersection property, we may thus locate a subgroup of of index at most for *all* finite subsets of , obeying the compatibility condition whenever . If we then set , where ranges over all finite subsets of , we then easily verify that is abelian and has index at most in , as required.

Below I record a proof of Schur’s theorem, which I extracted from this book of Wehrfritz. This was primarily an exercise for my own benefit, but perhaps it may be of interest to some other readers.

## Recent Comments