You are currently browsing the tag archive for the ‘Kronecker systems’ tag.

The primary objective of this lecture and the next few will be to give a proof of the Furstenberg recurrence theorem (Theorem 2 from the previous lecture). Along the way we will develop a structural theory for measure-preserving systems.

The basic strategy of Furstenberg’s proof is to first prove the recurrence theorems for very simple systems – either those with “almost periodic” (or compact) dynamics or with “weakly mixing” dynamics. These cases are quite easy, but don’t manage to cover all the cases. To go further, we need to consider various combinations of these systems. For instance, by viewing a general system as an extension of the maximal compact factor, we will be able to prove Roth’s theorem (which is equivalent to the k=3 form of the Furstenberg recurrence theorem). To handle the general case, we need to consider compact extensions of compact factors, compact extensions of compact extensions of compact factors, etc., as well as weakly mixing extensions of all the previously mentioned factors.

In this lecture, we will consider those measure-preserving systems (X, {\mathcal X}, \mu, T) which are compact or almost periodic. These systems are analogous to the equicontinuous or isometric systems in topological dynamics discussed in Lecture 6, and as with those systems, we will be able to characterise such systems (or more precisely, the ergodic ones) algebraically as Kronecker systems, though this is not strictly necessary for the proof of the recurrence theorem.

Read the rest of this entry »