You are currently browsing the tag archive for the ‘Lindeberg replacement trick’ tag.

Let ${X_1,X_2,\dots}$ be iid copies of an absolutely integrable real scalar random variable ${X}$, and form the partial sums ${S_n := X_1 + \dots + X_n}$. As we saw in the last set of notes, the law of large numbers ensures that the empirical averages ${S_n/n}$ converge (both in probability and almost surely) to a deterministic limit, namely the mean ${\mu= {\bf E} X}$ of the reference variable ${X}$. Furthermore, under some additional moment hypotheses on the underlying variable ${X}$, we can obtain square root cancellation for the fluctuation ${\frac{S_n}{n} - \mu}$ of the empirical average from the mean. To simplify the calculations, let us first restrict to the case ${\mu=0, \sigma^2=1}$ of mean zero and variance one, thus

$\displaystyle {\bf E} X = 0$

and

$\displaystyle {\bf Var}(X) = {\bf E} X^2 = 1.$

Then, as computed in previous notes, the normalised fluctuation ${S_n/\sqrt{n}}$ also has mean zero and variance one:

$\displaystyle {\bf E} \frac{S_n}{\sqrt{n}} = 0$

$\displaystyle {\bf Var}(\frac{S_n}{\sqrt{n}}) = {\bf E} (\frac{S_n}{\sqrt{n}})^2 = 1.$

This and Chebyshev’s inequality already indicates that the “typical” size of ${S_n}$ is ${O(\sqrt{n})}$, thus for instance ${\frac{S_n}{\sqrt{n} \omega(n)}}$ goes to zero in probability for any ${\omega(n)}$ that goes to infinity as ${n \rightarrow \infty}$. If we also have a finite fourth moment ${{\bf E} |X|^4 < \infty}$, then the calculations of the previous notes also give a fourth moment estimate

$\displaystyle {\bf E} (\frac{S_n}{\sqrt{n}})^4 = 3 + O( \frac{{\bf E} |X|^4}{n} ).$

From this and the Paley-Zygmund inequality (Exercise 42 of Notes 1) we also get some lower bound for ${\frac{S_n}{\sqrt{n}}}$ of the form

$\displaystyle {\bf P}( |\frac{S_n}{\sqrt{n}}| \geq \varepsilon ) \geq \varepsilon$

for some absolute constant ${\varepsilon>0}$ and for ${n}$ sufficiently large; this indicates in particular that ${\frac{S_n \omega(n)}{\sqrt{n}}}$ does not converge in any reasonable sense to something finite for any ${\omega(n)}$ that goes to infinity.

The question remains as to what happens to the ratio ${S_n/\sqrt{n}}$ itself, without multiplying or dividing by any factor ${\omega(n)}$. A first guess would be that these ratios converge in probability or almost surely, but this is unfortunately not the case:

Proposition 1 Let ${X_1,X_2,\dots}$ be iid copies of an absolutely integrable real scalar random variable ${X}$ with mean zero, variance one, and finite fourth moment, and write ${S_n := X_1 + \dots + X_n}$. Then the random variables ${S_n/\sqrt{n}}$ do not converge in probability or almost surely to any limit, and neither does any subsequence of these random variables.

Proof: Suppose for contradiction that some sequence ${S_{n_j}/\sqrt{n_j}}$ converged in probability or almost surely to a limit ${Y}$. By passing to a further subsequence we may assume that the convergence is in the almost sure sense. Since all of the ${S_{n_j}/\sqrt{n_j}}$ have mean zero, variance one, and bounded fourth moment, Theorem 24 of Notes 1 implies that the limit ${Y}$ also has mean zero and variance one. On the other hand, ${Y}$ is a tail random variable and is thus almost surely constant by the Kolmogorov zero-one law from Notes 3. Since constants have variance zero, we obtain the required contradiction. $\Box$

Nevertheless there is an important limit for the ratio ${S_n/\sqrt{n}}$, which requires one to replace the notions of convergence in probability or almost sure convergence by the weaker concept of convergence in distribution.

Definition 2 (Vague convergence and convergence in distribution) Let ${R}$ be a locally compact Hausdorff topological space with the Borel ${\sigma}$-algebra. A sequence of finite measures ${\mu_n}$ on ${R}$ is said to converge vaguely to another finite measure ${\mu}$ if one has

$\displaystyle \int_R G(x)\ d\mu_n(x) \rightarrow \int_R G(x)\ d\mu(x)$

as ${n \rightarrow \infty}$ for all continuous compactly supported functions ${G: R \rightarrow {\bf R}}$. (Vague convergence is also known as weak convergence, although strictly speaking the terminology weak-* convergence would be more accurate.) A sequence of random variables ${X_n}$ taking values in ${R}$ is said to converge in distribution (or converge weakly or converge in law) to another random variable ${X}$ if the distributions ${\mu_{X_n}}$ converge vaguely to the distribution ${\mu_X}$, or equivalently if

$\displaystyle {\bf E}G(X_n) \rightarrow {\bf E} G(X)$

as ${n \rightarrow \infty}$ for all continuous compactly supported functions ${G: R \rightarrow {\bf R}}$.

One could in principle try to extend this definition beyond the locally compact Hausdorff setting, but certain pathologies can occur when doing so (e.g. failure of the Riesz representation theorem), and we will never need to consider vague convergence in spaces that are not locally compact Hausdorff, so we restrict to this setting for simplicity.

Note that the notion of convergence in distribution depends only on the distribution of the random variables involved. One consequence of this is that convergence in distribution does not produce unique limits: if ${X_n}$ converges in distribution to ${X}$, and ${Y}$ has the same distribution as ${X}$, then ${X_n}$ also converges in distribution to ${Y}$. However, limits are unique up to equivalence in distribution (this is a consequence of the Riesz representation theorem, discussed for instance in this blog post). As a consequence of the insensitivity of convergence in distribution to equivalence in distribution, we may also legitimately talk about convergence of distribution of a sequence of random variables ${X_n}$ to another random variable ${X}$ even when all the random variables ${X_1,X_2,\dots}$ and ${X}$ involved are being modeled by different probability spaces (e.g. each ${X_n}$ is modeled by ${\Omega_n}$, and ${X}$ is modeled by ${\Omega}$, with no coupling presumed between these spaces). This is in contrast to the stronger notions of convergence in probability or almost sure convergence, which require all the random variables to be modeled by a common probability space. Also, by an abuse of notation, we can say that a sequence ${X_n}$ of random variables converges in distribution to a probability measure ${\mu}$, when ${\mu_{X_n}}$ converges vaguely to ${\mu}$. Thus we can talk about a sequence of random variables converging in distribution to a uniform distribution, a gaussian distribution, etc..

From the dominated convergence theorem (available for both convergence in probability and almost sure convergence) we see that convergence in probability or almost sure convergence implies convergence in distribution. The converse is not true, due to the insensitivity of convergence in distribution to equivalence in distribution; for instance, if ${X_1,X_2,\dots}$ are iid copies of a non-deterministic scalar random variable ${X}$, then the ${X_n}$ trivially converge in distribution to ${X}$, but will not converge in probability or almost surely (as one can see from the zero-one law). However, there are some partial converses that relate convergence in distribution to convergence in probability; see Exercise 10 below.

Remark 3 The notion of convergence in distribution is somewhat similar to the notion of convergence in the sense of distributions that arises in distribution theory (discussed for instance in this previous blog post), however strictly speaking the two notions of convergence are distinct and should not be confused with each other, despite the very similar names.

The notion of convergence in distribution simplifies in the case of real scalar random variables:

Proposition 4 Let ${X_1,X_2,\dots}$ be a sequence of scalar random variables, and let ${X}$ be another scalar random variable. Then the following are equivalent:

• (i) ${X_n}$ converges in distribution to ${X}$.
• (ii) ${F_{X_n}(t)}$ converges to ${F_X(t)}$ for each continuity point ${t}$ of ${F_X}$ (i.e. for all real numbers ${t \in {\bf R}}$ at which ${F_X}$ is continuous). Here ${F_X(t) := {\bf P}(X \leq t)}$ is the cumulative distribution function of ${X}$.

Proof: First suppose that ${X_n}$ converges in distribution to ${X}$, and ${F_X}$ is continuous at ${t}$. For any ${\varepsilon > 0}$, one can find a ${\delta}$ such that

$\displaystyle F_X(t) - \varepsilon \leq F_X(t') \leq F_X(t) + \varepsilon$

for every ${t' \in [t-\delta,t+\delta]}$. One can also find an ${N}$ larger than ${|t|+\delta}$ such that ${F_X(-N) \leq \varepsilon}$ and ${F_X(N) \geq 1-\varepsilon}$. Thus

$\displaystyle {\bf P} (|X| \geq N ) = O(\varepsilon)$

and

$\displaystyle {\bf P} (|X - t| \leq \delta ) = O(\varepsilon).$

Let ${G: {\bf R} \rightarrow [0,1]}$ be a continuous function supported on ${[-2N, t]}$ that equals ${1}$ on ${[-N, t-\delta]}$. Then by the above discussion we have

$\displaystyle {\bf E} G(X) = F_X(t) + O(\varepsilon)$

and hence

$\displaystyle {\bf E} G(X_n) = F_X(t) + O(\varepsilon)$

for large enough ${n}$. In particular

$\displaystyle {\bf P}( X_n \leq t ) \geq F_X(t) - O(\varepsilon).$

A similar argument, replacing ${G}$ with a continuous function supported on ${[t,2N]}$ that equals ${1}$ on ${[t+\delta,N]}$ gives

$\displaystyle {\bf P}( X_n > t ) \geq 1 - F_X(t) - O(\varepsilon)$

for ${n}$ large enough. Putting the two estimates together gives

$\displaystyle F_{X_n}(t) = F_X(t) + O(\varepsilon)$

for ${n}$ large enough; sending ${\varepsilon \rightarrow 0}$, we obtain the claim.

Conversely, suppose that ${F_{X_n}(t)}$ converges to ${F_X(t)}$ at every continuity point ${t}$ of ${F_X}$. Let ${G: {\bf R} \rightarrow {\bf R}}$ be a continuous compactly supported function, then it is uniformly continuous. As ${F_X}$ is monotone increasing, it can only have countably many points of discontinuity. From these two facts one can find, for any ${\varepsilon>0}$, a simple function ${G_\varepsilon(t) = \sum_{i=1}^n c_i 1_{(t_i,t_{i+1}]}}$ for some ${t_1 < \dots < t_n}$ that are points of continuity of ${F_X}$, and real numbers ${c_i}$, such that ${|G(t) - G_\varepsilon(t)| \leq \varepsilon}$ for all ${t}$. Thus

$\displaystyle {\bf E} G(X_n) = {\bf E} G_\varepsilon(X_n) + O(\varepsilon)$

$\displaystyle = \sum_{i=1}^n c_i(F_{X_n}(t_{i+1}) - F_{X_n}(t)) + O(\varepsilon).$

Similarly for ${X_n}$ replaced by ${X}$. Subtracting and taking limit superior, we conclude that

$\displaystyle \limsup_{n \rightarrow \infty} |{\bf E} G(X_n) - {\bf E} G(X)| = O(\varepsilon),$

and on sending ${\varepsilon \rightarrow 0}$, we obtain that ${X_n}$ converges in distribution to ${X}$ as claimed. $\Box$

The restriction to continuity points of ${t}$ is necessary. Consider for instance the deterministic random variables ${X_n = 1/n}$, then ${X_n}$ converges almost surely (and hence in distribution) to ${0}$, but ${F_{X_n}(0) = 0}$ does not converge to ${F_X(0)=1}$.

Example 5 For any natural number ${n}$, let ${X_n}$ be a discrete random variable drawn uniformly from the finite set ${\{0/n, 1/n, \dots, (n-1)/n\}}$, and let ${X}$ be the continuous random variable drawn uniformly from ${[0,1]}$. Then ${X_n}$ converges in distribution to ${X}$. Thus we see that a continuous random variable can emerge as the limit of discrete random variables.

Example 6 For any natural number ${n}$, let ${X_n}$ be a continuous random variable drawn uniformly from ${[0,1/n]}$, then ${X_n}$ converges in distribution to the deterministic real number ${0}$. Thus we see that discrete (or even deterministic) random variables can emerge as the limit of continuous random variables.

Exercise 7 (Portmanteau theorem) Show that the properties (i) and (ii) in Proposition 4 are also equivalent to the following three statements:

• (iii) One has ${\limsup_{n \rightarrow \infty} {\bf P}( X_n \in K ) \leq {\bf P}(X \in K)}$ for all closed sets ${K \subset {\bf R}}$.
• (iv) One has ${\liminf_{n \rightarrow \infty} {\bf P}( X_n \in U ) \geq {\bf P}(X \in U)}$ for all open sets ${U \subset {\bf R}}$.
• (v) For any Borel set ${E \subset {\bf R}}$ whose topological boundary ${\partial E}$ is such that ${{\bf P}(X \in \partial E) = 0}$, one has ${\lim_{n \rightarrow \infty} {\bf P}(X_n \in E) = {\bf P}(X \in E)}$.

(Note: to prove this theorem, you may wish to invoke Urysohn’s lemma. To deduce (iii) from (i), you may wish to start with the case of compact ${K}$.)

We can now state the famous central limit theorem:

Theorem 8 (Central limit theorem) Let ${X_1,X_2,\dots}$ be iid copies of a scalar random variable ${X}$ of finite mean ${\mu := {\bf E} X}$ and finite non-zero variance ${\sigma^2 := {\bf Var}(X)}$. Let ${S_n := X_1 + \dots + X_n}$. Then the random variables ${\frac{\sqrt{n}}{\sigma} (\frac{S_n}{n} - \mu)}$ converges in distribution to a random variable with the standard normal distribution ${N(0,1)}$ (that is to say, a random variable with probability density function ${x \mapsto \frac{1}{\sqrt{2\pi}} e^{-x^2/2}}$). Thus, by abuse of notation

$\displaystyle \frac{\sqrt{n}}{\sigma} (\frac{S_n}{n} - \mu) \rightarrow N(0,1).$

In the normalised case ${\mu=0, \sigma^2=1}$ when ${X}$ has mean zero and unit variance, this simplifies to

$\displaystyle \frac{S_n}{\sqrt{n}} \rightarrow N(0,1).$

Using Proposition 4 (and the fact that the cumulative distribution function associated to ${N(0,1)}$ is continuous, the central limit theorem is equivalent to asserting that

$\displaystyle {\bf P}( \frac{\sqrt{n}}{\sigma} (\frac{S_n}{n} - \mu) \leq t ) \rightarrow \frac{1}{\sqrt{2\pi}} \int_{-\infty}^t e^{-x^2/2}\ dx$

as ${n \rightarrow \infty}$ for any ${t \in {\bf R}}$, or equivalently that

$\displaystyle {\bf P}( a \leq \frac{\sqrt{n}}{\sigma} (\frac{S_n}{n} - \mu) \leq b ) \rightarrow \frac{1}{\sqrt{2\pi}} \int_{a}^b e^{-x^2/2}\ dx.$

Informally, one can think of the central limit theorem as asserting that ${S_n}$ approximately behaves like it has distribution ${N( n \mu, n \sigma^2 )}$ for large ${n}$, where ${N(\mu,\sigma^2)}$ is the normal distribution with mean ${\mu}$ and variance ${\sigma^2}$, that is to say the distribution with probability density function ${x \mapsto \frac{1}{\sqrt{2\pi} \sigma} e^{-(x-\mu)^2/2\sigma^2}}$. The integrals ${\frac{1}{\sqrt{2\pi}} \int_{-\infty}^t e^{-x^2/2}\ dx}$ can be written in terms of the error function ${\hbox{erf}}$ as ${\frac{1}{2} + \frac{1}{2} \hbox{erf}(t/\sqrt{2})}$.

The central limit theorem is a basic example of the universality phenomenon in probability – many statistics involving a large system of many independent (or weakly dependent) variables (such as the normalised sums ${\frac{\sqrt{n}}{\sigma}(\frac{S_n}{n}-\mu)}$) end up having a universal asymptotic limit (in this case, the normal distribution), regardless of the precise makeup of the underlying random variable ${X}$ that comprised that system. Indeed, the universality of the normal distribution is such that it arises in many other contexts than the fluctuation of iid random variables; the central limit theorem is merely the first place in probability theory where it makes a prominent appearance.

We will give several proofs of the central limit theorem in these notes; each of these proofs has their advantages and disadvantages, and can each extend to prove many further results beyond the central limit theorem. We first give Lindeberg’s proof of the central limit theorem, based on exchanging (or swapping) each component ${X_1,\dots,X_n}$ of the sum ${S_n}$ in turn. This proof gives an accessible explanation as to why there should be a universal limit for the central limit theorem; one then computes directly with gaussians to verify that it is the normal distribution which is the universal limit. Our second proof is the most popular one taught in probability texts, namely the Fourier-analytic proof based around the concept of the characteristic function ${t \mapsto {\bf E} e^{itX}}$ of a real random variable ${X}$. Thanks to the powerful identities and other results of Fourier analysis, this gives a quite short and direct proof of the central limit theorem, although the arguments may seem rather magical to readers who are not already familiar with Fourier methods. Finally, we give a proof based on the moment method, in the spirit of the arguments in the previous notes; this argument is more combinatorial, but is straightforward and is particularly robust, in particular being well equipped to handle some dependencies between components; we will illustrate this by proving the Erdos-Kac law in number theory by this method. Some further discussion of the central limit theorem (including some further proofs, such as one based on Stein’s method) can be found in this blog post. Some further variants of the central limit theorem, such as local limit theorems, stable laws, and large deviation inequalities, will be discussed in the next (and final) set of notes.

The following exercise illustrates the power of the central limit theorem, by establishing combinatorial estimates which would otherwise require the use of Stirling’s formula to establish.

Exercise 9 (De Moivre-Laplace theorem) Let ${X}$ be a Bernoulli random variable, taking values in ${\{0,1\}}$ with ${{\bf P}(X=0)={\bf P}(X=1)=1/2}$, thus ${X}$ has mean ${1/2}$ and variance ${1/4}$. Let ${X_1,X_2,\dots}$ be iid copies of ${X}$, and write ${S_n := X_1+\dots+X_n}$.

• (i) Show that ${S_n}$ takes values in ${\{0,\dots,n\}}$ with ${{\bf P}(S_n=i) = \frac{1}{2^n} \binom{n}{i}}$. (This is an example of a binomial distribution.)
• (ii) Assume Stirling’s formula

$\displaystyle n! = (1+o(1)) \sqrt{2\pi n} n^n e^{-n} \ \ \ \ \ (1)$

where ${o(1)}$ is a function of ${n}$ that goes to zero as ${n \rightarrow \infty}$. (A proof of this formula may be found in this previous blog post.) Using this formula, and without using the central limit theorem, show that

$\displaystyle {\bf P}( a \leq 2\sqrt{n} (\frac{S_n}{n} - \frac{1}{2}) \leq b ) \rightarrow \frac{1}{\sqrt{2\pi}} \int_{a}^b e^{-x^2/2}\ dx$

as ${n \rightarrow \infty}$ for any fixed real numbers ${a.

The above special case of the central limit theorem was first established by de Moivre and Laplace.

We close this section with some basic facts about convergence of distribution that will be useful in the sequel.

Exercise 10 Let ${X_1,X_2,\dots}$, ${Y_1,Y_2,\dots}$ be sequences of real random variables, and let ${X,Y}$ be further real random variables.

• (i) If ${X}$ is deterministic, show that ${X_n}$ converges in distribution to ${X}$ if and only if ${X_n}$ converges in probability to ${X}$.
• (ii) Suppose that ${X_n}$ is independent of ${Y_n}$ for each ${n}$, and ${X}$ independent of ${Y}$. Show that ${X_n+iY_n}$ converges in distribution to ${X+iY}$ if and only if ${X_n}$ converges in distribution to ${X}$ and ${Y_n}$ converges in distribution to ${Y}$. (The shortest way to prove this is by invoking the Stone-Weierstrass theorem, but one can also proceed by proving some version of Proposition 4.) What happens if the independence hypothesis is dropped?
• (iii) If ${X_n}$ converges in distribution to ${X}$, show that for every ${\varepsilon>0}$ there exists ${K>0}$ such that ${{\bf P}( |X_n| \geq K ) < \varepsilon}$ for all sufficiently large ${n}$. (That is to say, ${X_n}$ is a tight sequence of random variables.)
• (iv) Show that ${X_n}$ converges in distribution to ${X}$ if and only if, after extending the probability space model if necessary, one can find copies ${Z_1,Z_2,\dots}$ and ${Z}$ of ${X_1,X_2,\dots}$ and ${X}$ respectively such that ${Z_n}$ converges almost surely to ${Z}$. (Hint: use the Skorohod representation, Exercise 29 of Notes 0.)
• (v) If ${X_1,X_2,\dots}$ converges in distribution to ${X}$, and ${F: {\bf R} \rightarrow {\bf R}}$ is continuous, show that ${F(X_1),F(X_2),\dots}$ converges in distribution to ${F(X)}$. Generalise this claim to the case when ${X}$ takes values in an arbitrary locally compact Hausdorff space.
• (vi) (Slutsky’s theorem) If ${X_n}$ converges in distribution to ${X}$, and ${Y_n}$ converges in probability to a deterministic limit ${Y}$, show that ${X_n+Y_n}$ converges in distribution to ${X+Y}$, and ${X_n Y_n}$ converges in distribution to ${XY}$. (Hint: either use (iv), or else use (iii) to control some error terms.) This statement combines particularly well with (i). What happens if ${Y}$ is not assumed to be deterministic?
• (vii) (Fatou lemma) If ${G: {\bf R} \rightarrow [0,+\infty)}$ is continuous, and ${X_n}$ converges in distribution to ${X}$, show that ${\liminf_{n \rightarrow \infty} {\bf E} G(X_n) \geq {\bf E} G(X)}$.
• (viii) (Bounded convergence) If ${G: {\bf R} \rightarrow {\bf R}}$ is continuous and bounded, and ${X_n}$ converges in distribution to ${X}$, show that ${\lim_{n \rightarrow \infty} {\bf E} G(X_n) = {\bf E} G(X)}$.
• (ix) (Dominated convergence) If ${X_n}$ converges in distribution to ${X}$, and there is an absolutely integrable ${Y}$ such that ${|X_n| \leq Y}$ almost surely for all ${n}$, show that ${\lim_{n \rightarrow \infty} {\bf E} X_n = {\bf E} X}$.

For future reference we also mention (but will not prove) Prokhorov’s theorem that gives a partial converse to part (iii) of the above exercise:

Theorem 11 (Prokhorov’s theorem) Let ${X_1,X_2,\dots}$ be a sequence of real random variables which is tight (that is, for every ${\varepsilon>0}$ there exists ${K>0}$ such that ${{\bf P}(|X_n| \geq K) < \varepsilon}$ for all sufficiently large ${n}$). Then there exists a subsequence ${X_{n_j}}$ which converges in distribution to some random variable ${X}$ (which may possibly be modeled by a different probability space model than the ${X_1,X_2,\dots}$.)

The proof of this theorem relies on the Riesz representation theorem, and is beyond the scope of this course; but see for instance Exercise 29 of this previous blog post. (See also the closely related Helly selection theorem, covered in Exercise 30 of the same post.)

Van Vu and I have just uploaded to the arXiv our paper “Random matrices: universality of local eigenvalue statistics“, submitted to Acta Math..  This paper concerns the eigenvalues $\lambda_1(M_n) \leq \ldots \leq \lambda_n(M_n)$ of a Wigner matrix $M_n = (\zeta_{ij})_{1 \leq i,j \leq n}$, which we define to be a random Hermitian $n \times n$ matrix whose upper-triangular entries $\zeta_{ij}, 1 \leq i \leq j \leq n$ are independent (and whose strictly upper-triangular entries $\zeta_{ij}, 1 \leq i < j \leq n$ are also identically distributed).  [The lower-triangular entries are of course determined from the upper-triangular ones by the Hermitian property.]  We normalise the matrices so that all the entries have mean zero and variance 1.  Basic examples of Wigner Hermitian matrices include

1. The Gaussian Unitary Ensemble (GUE), in which the upper-triangular entries $\zeta_{ij}, i are complex gaussian, and the diagonal entries $\zeta_{ii}$ are real gaussians;
2. The Gaussian Orthogonal Ensemble (GOE), in which all entries are real gaussian;
3. The Bernoulli Ensemble, in which all entries take values $\pm 1$ (with equal probability of each).

We will make a further distinction into Wigner real symmetric matrices (which are Wigner matrices with real coefficients, such as GOE and the Bernoulli ensemble) and Wigner Hermitian matrices (which are Wigner matrices whose upper-triangular coefficients have real and imaginary parts iid, such as GUE).

The GUE and GOE ensembles have a rich algebraic structure (for instance, the GUE distribution is invariant under conjugation by unitary matrices, while the GOE distribution is similarly invariant under conjugation by orthogonal matrices, hence the terminology), and as a consequence their eigenvalue distribution can be computed explicitly.  For instance, the joint distribution of the eigenvalues $\lambda_1(M_n),\ldots,\lambda_n(M_n)$ for GUE is given by the explicit formula

$\displaystyle C_n \prod_{1 \leq i (0)

for some explicitly computable constant $C_n$ on the orthant $\{ \lambda_1 \leq \ldots \leq \lambda_n\}$ (a result first established by Ginibre).  (A similar formula exists for GOE, but for simplicity we will just discuss GUE here.)  Using this explicit formula one can compute a wide variety of asymptotic eigenvalue statistics.  For instance, the (bulk) empirical spectral distribution (ESD) measure $\frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i(M_n)/\sqrt{n}}$ for GUE (and indeed for all Wigner matrices, see below) is known to converge (in the vague sense) to the Wigner semicircular law

$\displaystyle \frac{1}{2\pi} (4-x^2)_+^{1/2}\ dx =: \rho_{sc}(x)\ dx$ (1)

as $n \to \infty$.  Actually, more precise statements are known for GUE; for instance, for $1 \leq i \leq n$, the $i^{th}$ eigenvalue $\lambda_i(M_n)$ is known to equal

$\displaystyle \lambda_i(M_n) = \sqrt{n} t(\frac{i}{n}) + O( \frac{\log n}{n} )$ (2)

with probability $1-o(1)$, where $t(a) \in [-2,2]$ is the inverse cumulative distribution function of the semicircular law, thus

$\displaystyle a = \int_{-2}^{t(a)} \rho_{sc}(x)\ dx$.

Furthermore, the distribution of the normalised eigenvalue spacing $\sqrt{n} \rho_{sc}(\frac{i}{n}) (\lambda_{i+1}(M_n) - \lambda_i(M_n))$ is known; in the bulk region $\varepsilon n \leq i \leq 1-\varepsilon n$ for fixed $\varepsilon > 0$, it converges as $n \to \infty$ to the Gaudin distribution, which can be described explicitly in terms of determinants of the Dyson sine kernel $K(x,y) := \frac{\sin \pi(x-y)}{\pi(x-y)}$.  Many further local statistics of the eigenvalues of GUE are in fact governed by this sine kernel, a result usually proven using the asymptotics of orthogonal polynomials (and specifically, the Hermite polynomials).  (At the edge of the spectrum, say $i = n-O(1)$, the asymptotic distribution is a bit different, being governed instead by the  Tracy-Widom law.)

It has been widely believed that these GUE facts enjoy a universality property, in the sense that they should also hold for wide classes of other matrix models. In particular, Wigner matrices should enjoy the same bulk distribution (1), the same asymptotic law (2) for individual eigenvalues, and the same sine kernel statistics as GUE. (The statistics for Wigner symmetric matrices are slightly different, and should obey GOE statistics rather than GUE ones.)

There has been a fair body of evidence to support this belief.  The bulk distribution (1) is in fact valid for all Wigner matrices (a result of Pastur, building on the original work of Wigner of course).  The Tracy-Widom statistics on the edge were established for all Wigner Hermitian matrices (assuming that the coefficients had a distribution which was symmetric and decayed exponentially) by Soshnikov (with some further refinements by Soshnikov and Peche).  Soshnikov’s arguments were based on an advanced version of the moment method.

The sine kernel statistics were established by Johansson for Wigner Hermitian matrices which were gaussian divisible, which means that they could be expressed as a non-trivial linear combination of another Wigner Hermitian matrix and an independent GUE.  (Basically, this means that distribution of the coefficients is a convolution of some other distribution with a gaussian.  There were some additional technical decay conditions in Johansson’s work which were removed in subsequent work of Ben Arous and Peche.)   Johansson’s work was based on an explicit formula for the joint distribution for gauss divisible matrices that generalises (0) (but is significantly more complicated).

Just last week, Erdos, Ramirez, Schlein, and Yau established sine kernel statistics for Wigner Hermitian matrices with exponential decay and a high degree of smoothness (roughly speaking, they require  control of up to six derivatives of the Radon-Nikodym derivative of the distribution).  Their method is based on an analysis of the dynamics of the eigenvalues under a smooth transition from a general Wigner Hermitian matrix to GUE, essentially a matrix version of the Ornstein-Uhlenbeck process, whose eigenvalue dynamics are governed by Dyson Brownian motion.

In my paper with Van, we establish similar results to that of Erdos et al. under slightly different hypotheses, and by a somewhat different method.  Informally, our main result is as follows:

Theorem 1. (Informal version)  Suppose $M_n$ is a Wigner Hermitian matrix whose coefficients have an exponentially decaying distribution, and whose real and imaginary parts are supported on at least three points (basically, this excludes Bernoulli-type distributions only) and have vanishing third moment (which is for instance the case for symmetric distributions).  Then one has the local statistics (2) (but with an error term of $O(n^{-1+\delta})$ for any $\delta>0$ rather than $O(\log n/n)$) and the sine kernel statistics for individual eigenvalue spacings $\sqrt{n} \rho_{sc}(\frac{i}{n}) (\lambda_{i+1}(M_n) - \lambda_i(M_n))$ (as well as higher order correlations) in the bulk.

If one removes the vanishing third moment hypothesis, one still has the sine kernel statistics provided one averages over all i.

There are analogous results for Wigner real symmetric matrices (see paper for details).  There are also some related results, such as a universal distribution for the least singular value of matrices of the form in Theorem 1, and a crude asymptotic for the determinant (in particular, $\log |\det M_n| = (1+o(1)) \log \sqrt{n!}$ with probability $1-o(1)$).

The arguments are based primarily on the Lindeberg replacement strategy, which Van and I also used to obtain universality for the circular law for iid matrices, and for the least singular value for iid matrices, but also rely on other tools, such as some recent arguments of Erdos, Schlein, and Yau, as well as a very useful concentration inequality of Talagrand which lets us tackle both discrete and continuous matrix ensembles in a unified manner.  (I plan to talk about Talagrand’s inequality in my next blog post.)