You are currently browsing the tag archive for the ‘Liouville function’ tag.

Given a function on the natural numbers taking values in , one can invoke the Furstenberg correspondence principle to locate a measure preserving system – a probability space together with a measure-preserving shift (or equivalently, a measure-preserving -action on ) – together with a measurable function (or “observable”) that has essentially the same statistics as in the sense that

for any integers . In particular, one has

whenever the limit on the right-hand side exists. We will refer to the system together with the designated function as a *Furstenberg limit* ot the sequence . These Furstenberg limits capture some, but not all, of the asymptotic behaviour of ; roughly speaking, they control the typical “local” behaviour of , involving correlations such as in the regime where are much smaller than . However, the control on error terms here is usually only qualitative at best, and one usually does not obtain non-trivial control on correlations in which the are allowed to grow at some significant rate with (e.g. like some power of ).

The correspondence principle is discussed in these previous blog posts. One way to establish the principle is by introducing a Banach limit that extends the usual limit functional on the subspace of consisting of convergent sequences while still having operator norm one. Such functionals cannot be constructed explicitly, but can be proven to exist (non-constructively and non-uniquely) using the Hahn-Banach theorem; one can also use a non-principal ultrafilter here if desired. One can then seek to construct a system and a measurable function for which one has the statistics

for all . One can explicitly construct such a system as follows. One can take to be the Cantor space with the product -algebra and the shift

with the function being the coordinate function at zero:

(so in particular for any ). The only thing remaining is to construct the invariant measure . In order to be consistent with (2), one must have

for any distinct integers and signs . One can check that this defines a premeasure on the Boolean algebra of defined by cylinder sets, and the existence of then follows from the Hahn-Kolmogorov extension theorem (or the closely related Kolmogorov extension theorem). One can then check that the correspondence (2) holds, and that is translation-invariant; the latter comes from the translation invariance of the (Banach-)Césaro averaging operation . A variant of this construction shows that the Furstenberg limit is unique up to equivalence if and only if all the limits appearing in (1) actually exist.

One can obtain a slightly tighter correspondence by using a smoother average than the Césaro average. For instance, one can use the logarithmic Césaro averages in place of the Césaro average , thus one replaces (2) by

Whenever the Césaro average of a bounded sequence exists, then the logarithmic Césaro average exists and is equal to the Césaro average. Thus, a Furstenberg limit constructed using logarithmic Banach-Césaro averaging still obeys (1) for all when the right-hand side limit exists, but also obeys the more general assertion

whenever the limit of the right-hand side exists.

In a recent paper of Frantizinakis, the Furstenberg limits of the Liouville function (with logarithmic averaging) were studied. Some (but not all) of the known facts and conjectures about the Liouville function can be interpreted in the Furstenberg limit. For instance, in a recent breakthrough result of Matomaki and Radziwill (discussed previously here), it was shown that the Liouville function exhibited cancellation on short intervals in the sense that

In terms of Furstenberg limits of the Liouville function, this assertion is equivalent to the assertion that

for all Furstenberg limits of Liouville (including those without logarithmic averaging). Invoking the mean ergodic theorem (discussed in this previous post), this assertion is in turn equivalent to the observable that corresponds to the Liouville function being orthogonal to the invariant factor of ; equivalently, the first Gowers-Host-Kra seminorm of (as defined for instance in this previous post) vanishes. The Chowla conjecture, which asserts that

for all distinct integers , is equivalent to the assertion that all the Furstenberg limits of Liouville are equivalent to the Bernoulli system ( with the product measure arising from the uniform distribution on , with the shift and observable as before). Similarly, the logarithmically averaged Chowla conjecture

is equivalent to the assertion that all the Furstenberg limits of Liouville with logarithmic averaging are equivalent to the Bernoulli system. Recently, I was able to prove the two-point version

of the logarithmically averaged Chowla conjecture, for any non-zero integer ; this is equivalent to the perfect strong mixing property

for any Furstenberg limit of Liouville with logarithmic averaging, and any .

The situation is more delicate with regards to the Sarnak conjecture, which is equivalent to the assertion that

for any zero-entropy sequence (see this previous blog post for more discussion). Morally speaking, this conjecture should be equivalent to the assertion that any Furstenberg limit of Liouville is disjoint from any zero entropy system, but I was not able to formally establish an implication in either direction due to some technical issues regarding the fact that the Furstenberg limit does not directly control long-range correlations, only short-range ones. (There are however ergodic theoretic interpretations of the Sarnak conjecture that involve the notion of generic points; see this paper of El Abdalaoui, Lemancyk, and de la Rue.) But the situation is currently better with the logarithmically averaged Sarnak conjecture

as I was able to show that this conjecture was equivalent to the logarithmically averaged Chowla conjecture, and hence to all Furstenberg limits of Liouville with logarithmic averaging being Bernoulli; I also showed the conjecture was equivalent to local Gowers uniformity of the Liouville function, which is in turn equivalent to the function having all Gowers-Host-Kra seminorms vanishing in every Furstenberg limit with logarithmic averaging. In this recent paper of Frantzikinakis, this analysis was taken further, showing that the logarithmically averaged Chowla and Sarnak conjectures were in fact equivalent to the much milder seeming assertion that all Furstenberg limits with logarithmic averaging were ergodic.

Actually, the logarithmically averaged Furstenberg limits have more structure than just a -action on a measure preserving system with a single observable . Let denote the semigroup of affine maps on the integers with and positive. Also, let denote the profinite integers (the inverse limit of the cyclic groups ). Observe that acts on by taking the inverse limit of the obvious actions of on .

Proposition 1 (Enriched logarithmically averaged Furstenberg limit of Liouville)Let be a Banach limit. Then there exists a probability space with an action of the affine semigroup , as well as measurable functions and , with the following properties:

- (i) (Affine Furstenberg limit) For any , and any congruence class , one has
- (ii) (Equivariance of ) For any , one has
for -almost every .

- (iii) (Multiplicativity at fixed primes) For any prime , one has
for -almost every , where is the dilation map .

- (iv) (Measure pushforward) If is of the form and is the set , then the pushforward of by is equal to , that is to say one has
for every measurable .

Note that can be viewed as the subgroup of consisting of the translations . If one only keeps the -portion of the action and forgets the rest (as well as the function ) then the action becomes measure-preserving, and we recover an ordinary Furstenberg limit with logarithmic averaging. However, the additional structure here can be quite useful; for instance, one can transfer the proof of (3) to this setting, which we sketch below the fold, after proving the proposition.

The observable , roughly speaking, means that points in the Furstenberg limit constructed by this proposition are still “virtual integers” in the sense that one can meaningfully compute the residue class of modulo any natural number modulus , by first applying and then reducing mod . The action of means that one can also meaningfully multiply by any natural number, and translate it by any integer. As with other applications of the correspondence principle, the main advantage of moving to this more “virtual” setting is that one now acquires a probability measure , so that the tools of ergodic theory can be readily applied.

Given a random variable that takes on only finitely many values, we can define its Shannon entropy by the formula

with the convention that . (In some texts, one uses the logarithm to base rather than the natural logarithm, but the choice of base will not be relevant for this discussion.) This is clearly a nonnegative quantity. Given two random variables taking on finitely many values, the joint variable is also a random variable taking on finitely many values, and also has an entropy . It obeys the *Shannon inequalities*

so we can define some further nonnegative quantities, the mutual information

and the conditional entropies

More generally, given three random variables , one can define the conditional mutual information

and the final of the Shannon entropy inequalities asserts that this quantity is also non-negative.

The mutual information is a measure of the extent to which and fail to be independent; indeed, it is not difficult to show that vanishes if and only if and are independent. Similarly, vanishes if and only if and are *conditionally* independent relative to . At the other extreme, is a measure of the extent to which fails to depend on ; indeed, it is not difficult to show that if and only if is determined by in the sense that there is a deterministic function such that . In a related vein, if and are equivalent in the sense that there are deterministic functional relationships , between the two variables, then is interchangeable with for the purposes of computing the above quantities, thus for instance , , , , etc..

One can get some initial intuition for these information-theoretic quantities by specialising to a simple situation in which all the random variables being considered come from restricting a single random (and uniformly distributed) boolean function on a given finite domain to some subset of :

In this case, has the law of a random uniformly distributed boolean function from to , and the entropy here can be easily computed to be , where denotes the cardinality of . If is the restriction of to , and is the restriction of to , then the joint variable is equivalent to the restriction of to . If one discards the normalisation factor , one then obtains the following dictionary between entropy and the combinatorics of finite sets:

Random variables | Finite sets |

Entropy | Cardinality |

Joint variable | Union |

Mutual information | Intersection cardinality |

Conditional entropy | Set difference cardinality |

Conditional mutual information | |

independent | disjoint |

determined by | a subset of |

conditionally independent relative to |

Every (linear) inequality or identity about entropy (and related quantities, such as mutual information) then specialises to a combinatorial inequality or identity about finite sets that is easily verified. For instance, the Shannon inequality becomes the union bound , and the definition of mutual information becomes the inclusion-exclusion formula

For a more advanced example, consider the data processing inequality that asserts that if are conditionally independent relative to , then . Specialising to sets, this now says that if are disjoint outside of , then ; this can be made apparent by considering the corresponding Venn diagram. This dictionary also suggests how to *prove* the data processing inequality using the existing Shannon inequalities. Firstly, if and are not necessarily disjoint outside of , then a consideration of Venn diagrams gives the more general inequality

and a further inspection of the diagram then reveals the more precise identity

Using the dictionary in the reverse direction, one is then led to conjecture the identity

which (together with non-negativity of conditional mutual information) implies the data processing inequality, and this identity is in turn easily established from the definition of mutual information.

On the other hand, not every assertion about cardinalities of sets generalises to entropies of random variables that are not arising from restricting random boolean functions to sets. For instance, a basic property of sets is that disjointness from a given set is preserved by unions:

Indeed, one has the union bound

Applying the dictionary in the reverse direction, one might now conjecture that if was independent of and was independent of , then should also be independent of , and furthermore that

but these statements are well known to be false (for reasons related to pairwise independence of random variables being strictly weaker than joint independence). For a concrete counterexample, one can take to be independent, uniformly distributed random elements of the finite field of two elements, and take to be the sum of these two field elements. One can easily check that each of and is separately independent of , but the joint variable determines and thus is not independent of .

From the inclusion-exclusion identities

one can check that (1) is equivalent to the trivial lower bound . The basic issue here is that in the dictionary between entropy and combinatorics, there is no satisfactory entropy analogue of the notion of a triple intersection . (Even the double intersection only exists information theoretically in a “virtual” sense; the mutual information allows one to “compute the entropy” of this “intersection”, but does not actually describe this intersection itself as a random variable.)

However, this issue only arises with three or more variables; it is not too difficult to show that the only linear equalities and inequalities that are necessarily obeyed by the information-theoretic quantities associated to just two variables are those that are also necessarily obeyed by their combinatorial analogues . (See for instance the Venn diagram at the Wikipedia page for mutual information for a pictorial summation of this statement.)

One can work with a larger class of special cases of Shannon entropy by working with random *linear* functions rather than random *boolean* functions. Namely, let be some finite-dimensional vector space over a finite field , and let be a random linear functional on , selected uniformly among all such functions. Every subspace of then gives rise to a random variable formed by restricting to . This random variable is also distributed uniformly amongst all linear functions on , and its entropy can be easily computed to be . Given two random variables formed by restricting to respectively, the joint random variable determines the random linear function on the union on the two spaces, and thus by linearity on the Minkowski sum as well; thus is equivalent to the restriction of to . In particular, . This implies that and also , where is the quotient map. After discarding the normalising constant , this leads to the following dictionary between information theoretic quantities and linear algebra quantities, analogous to the previous dictionary:

Random variables | Subspaces |

Entropy | Dimension |

Joint variable | Sum |

Mutual information | Dimension of intersection |

Conditional entropy | Dimension of projection |

Conditional mutual information | |

independent | transverse () |

determined by | a subspace of |

conditionally independent relative to | , transverse. |

The combinatorial dictionary can be regarded as a specialisation of the linear algebra dictionary, by taking to be the vector space over the finite field of two elements, and only considering those subspaces that are coordinate subspaces associated to various subsets of .

As before, every linear inequality or equality that is valid for the information-theoretic quantities discussed above, is automatically valid for the linear algebra counterparts for subspaces of a vector space over a finite field by applying the above specialisation (and dividing out by the normalising factor of ). In fact, the requirement that the field be finite can be removed by applying the compactness theorem from logic (or one of its relatives, such as Los’s theorem on ultraproducts, as done in this previous blog post).

The linear algebra model captures more of the features of Shannon entropy than the combinatorial model. For instance, in contrast to the combinatorial case, it is possible in the linear algebra setting to have subspaces such that and are separately transverse to , but their sum is not; for instance, in a two-dimensional vector space , one can take to be the one-dimensional subspaces spanned by , , and respectively. Note that this is essentially the same counterexample from before (which took to be the field of two elements). Indeed, one can show that any necessarily true linear inequality or equality involving the dimensions of three subspaces (as well as the various other quantities on the above table) will also be necessarily true when applied to the entropies of three discrete random variables (as well as the corresponding quantities on the above table).

However, the linear algebra model does not completely capture the subtleties of Shannon entropy once one works with *four* or more variables (or subspaces). This was first observed by Ingleton, who established the dimensional inequality

for any subspaces . This is easiest to see when the three terms on the right-hand side vanish; then are transverse, which implies that ; similarly . But and are transverse, and this clearly implies that and are themselves transverse. To prove the general case of Ingleton’s inequality, one can define and use (and similarly for instead of ) to reduce to establishing the inequality

which can be rearranged using (and similarly for instead of ) and as

but this is clear since .

Returning to the entropy setting, the analogue

of (3) is true (exercise!), but the analogue

of Ingleton’s inequality is false in general. Again, this is easiest to see when all the terms on the right-hand side vanish; then are conditionally independent relative to , and relative to , and and are independent, and the claim (4) would then be asserting that and are independent. While there is no linear counterexample to this statement, there are simple non-linear ones: for instance, one can take to be independent uniform variables from , and take and to be (say) and respectively (thus are the indicators of the events and respectively). Once one conditions on either or , one of has positive conditional entropy and the other has zero entropy, and so are conditionally independent relative to either or ; also, or are independent of each other. But and are not independent of each other (they cannot be simultaneously equal to ). Somehow, the feature of the linear algebra model that is not present in general is that in the linear algebra setting, every pair of subspaces has a well-defined intersection that is also a subspace, whereas for arbitrary random variables , there does not necessarily exist the analogue of an intersection, namely a “common information” random variable that has the entropy of and is determined either by or by .

I do not know if there is any simpler model of Shannon entropy that captures all the inequalities available for four variables. One significant complication is that there exist some information inequalities in this setting that are not of Shannon type, such as the Zhang-Yeung inequality

One can however still use these simpler models of Shannon entropy to be able to guess arguments that would work for general random variables. An example of this comes from my paper on the logarithmically averaged Chowla conjecture, in which I showed among other things that

whenever was sufficiently large depending on , where is the Liouville function. The information-theoretic part of the proof was as follows. Given some intermediate scale between and , one can form certain random variables . The random variable is a sign pattern of the form where is a random number chosen from to (with logarithmic weighting). The random variable was tuple of reductions of to primes comparable to . Roughly speaking, what was implicitly shown in the paper (after using the multiplicativity of , the circle method, and the Matomaki-Radziwill theorem on short averages of multiplicative functions) is that if the inequality (5) fails, then there was a lower bound

on the mutual information between and . From translation invariance, this also gives the more general lower bound

for any , where denotes the shifted sign pattern . On the other hand, one had the entropy bounds

and from concatenating sign patterns one could see that is equivalent to the joint random variable for any . Applying these facts and using an “entropy decrement” argument, I was able to obtain a contradiction once was allowed to become sufficiently large compared to , but the bound was quite weak (coming ultimately from the unboundedness of as the interval of values of under consideration becomes large), something of the order of ; the quantity needs at various junctures to be less than a small power of , so the relationship between and becomes essentially quadruple exponential in nature, . The basic strategy was to observe that the lower bound (6) causes some slowdown in the growth rate of the mean entropy, in that this quantity decreased by as increased from to , basically by dividing into components , and observing from (6) each of these shares a bit of common information with the same variable . This is relatively clear when one works in a set model, in which is modeled by a set of size , and is modeled by a set of the form

for various sets of size (also there is some translation symmetry that maps to a shift while preserving all of the ).

However, on considering the set model recently, I realised that one can be a little more efficient by exploiting the fact (basically the Chinese remainder theorem) that the random variables are basically jointly independent as ranges over dyadic values that are much smaller than , which in the set model corresponds to the all being disjoint. One can then establish a variant

of (6), which in the set model roughly speaking asserts that each claims a portion of the of cardinality that is not claimed by previous choices of . This leads to a more efficient contradiction (relying on the unboundedness of rather than ) that looks like it removes one order of exponential growth, thus the relationship between and is now . Returning to the entropy model, one can use (7) and Shannon inequalities to establish an inequality of the form

for a small constant , which on iterating and using the boundedness of gives the claim. (A modification of this analysis, at least on the level of the back of the envelope calculation, suggests that the Matomaki-Radziwill theorem is needed only for ranges greater than or so, although at this range the theorem is not significantly simpler than the general case).

Let denote the Liouville function. The prime number theorem is equivalent to the estimate

as , that is to say that exhibits cancellation on large intervals such as . This result can be improved to give cancellation on shorter intervals. For instance, using the known zero density estimates for the Riemann zeta function, one can establish that

as if for some fixed ; I believe this result is due to Ramachandra (see also Exercise 21 of this previous blog post), and in fact one could obtain a better error term on the right-hand side that for instance gained an arbitrary power of . On the Riemann hypothesis (or the weaker density hypothesis), it was known that the could be lowered to .

Early this year, there was a major breakthrough by Matomaki and Radziwill, who (among other things) showed that the asymptotic (1) was in fact valid for *any* with that went to infinity as , thus yielding cancellation on extremely short intervals. This has many further applications; for instance, this estimate, or more precisely its extension to other “non-pretentious” bounded multiplicative functions, was a key ingredient in my recent solution of the Erdös discrepancy problem, as well as in obtaining logarithmically averaged cases of Chowla’s conjecture, such as

It is of interest to twist the above estimates by phases such as the linear phase . In 1937, Davenport showed that

which of course improves the prime number theorem. Recently with Matomaki and Radziwill, we obtained a common generalisation of this estimate with (1), showing that

as , for any that went to infinity as . We were able to use this estimate to obtain an averaged form of Chowla’s conjecture.

In that paper, we asked whether one could improve this estimate further by moving the supremum inside the integral, that is to say to establish the bound

as , for any that went to infinity as . This bound is asserting that is locally Fourier-uniform on most short intervals; it can be written equivalently in terms of the “local Gowers norm” as

from which one can see that this is another averaged form of Chowla’s conjecture (stronger than the one I was able to prove with Matomaki and Radziwill, but a consequence of the unaveraged Chowla conjecture). If one inserted such a bound into the machinery I used to solve the Erdös discrepancy problem, it should lead to further averaged cases of Chowla’s conjecture, such as

though I have not fully checked the details of this implication. It should also have a number of new implications for sign patterns of the Liouville function, though we have not explored these in detail yet.

One can write (4) equivalently in the form

uniformly for all -dependent phases . In contrast, (3) is equivalent to the subcase of (6) when the linear phase coefficient is independent of . This dependency of on seems to necessitate some highly nontrivial additive combinatorial analysis of the function in order to establish (4) when is small. To date, this analysis has proven to be elusive, but I would like to record what one can do with more classical methods like Vaughan’s identity, namely:

Proposition 1The estimate (4) (or equivalently (6)) holds in the range for any fixed . (In fact one can improve the right-hand side by an arbitrary power of in this case.)

The values of in this range are far too large to yield implications such as new cases of the Chowla conjecture, but it appears that the exponent is the limit of “classical” methods (at least as far as I was able to apply them), in the sense that one does not do any combinatorial analysis on the function , nor does one use modern equidistribution results on “Type III sums” that require deep estimates on Kloosterman-type sums. The latter may shave a little bit off of the exponent, but I don’t see how one would ever hope to go below without doing some non-trivial combinatorics on the function . UPDATE: I have come across this paper of Zhan which uses mean-value theorems for L-functions to lower the exponent to .

Let me now sketch the proof of the proposition, omitting many of the technical details. We first remark that known estimates on sums of the Liouville function (or similar functions such as the von Mangoldt function) in short arithmetic progressions, based on zero-density estimates for Dirichlet -functions, can handle the “major arc” case of (4) (or (6)) where is restricted to be of the form for (the exponent here being of the same numerology as the exponent in the classical result of Ramachandra, tied to the best zero density estimates currently available); for instance a modification of the arguments in this recent paper of Koukoulopoulos would suffice. Thus we can restrict attention to “minor arc” values of (or , using the interpretation of (6)).

Next, one breaks up (or the closely related Möbius function) into Dirichlet convolutions using one of the standard identities (e.g. Vaughan’s identity or Heath-Brown’s identity), as discussed for instance in this previous post (which is focused more on the von Mangoldt function, but analogous identities exist for the Liouville and Möbius functions). The exact choice of identity is not terribly important, but the upshot is that can be decomposed into terms, each of which is either of the “Type I” form

for some coefficients that are roughly of logarithmic size on the average, and scales with and , or else of the “Type II” form

for some coefficients that are roughly of logarithmic size on the average, and scales with and . As discussed in the previous post, the exponent is a natural barrier in these identities if one is unwilling to also consider “Type III” type terms which are roughly of the shape of the third divisor function .

A Type I sum makes a contribution to that can be bounded (via Cauchy-Schwarz) in terms of an expression such as

The inner sum exhibits a lot of cancellation unless is within of an integer. (Here, “a lot” should be loosely interpreted as “gaining many powers of over the trivial bound”.) Since is significantly larger than , standard Vinogradov-type manipulations (see e.g. Lemma 13 of these previous notes) show that this bad case occurs for many only when is “major arc”, which is the case we have specifically excluded. This lets us dispose of the Type I contributions.

A Type II sum makes a contribution to roughly of the form

We can break this up into a number of sums roughly of the form

for ; note that the range is non-trivial because is much larger than . Applying the usual bilinear sum Cauchy-Schwarz methods (e.g. Theorem 14 of these notes) we conclude that there is a lot of cancellation unless one has for some . But with , is well below the threshold for the definition of major arc, so we can exclude this case and obtain the required cancellation.

The Chowla conjecture asserts, among other things, that one has the asymptotic

as for any distinct integers , where is the Liouville function. (The usual formulation of the conjecture also allows one to consider more general linear forms than the shifts , but for sake of discussion let us focus on the shift case.) This conjecture remains open for , though there are now some partial results when one averages either in or in the , as discussed in this recent post.

A natural generalisation of the Chowla conjecture is the Elliott conjecture. Its original formulation was basically as follows: one had

whenever were bounded completely multiplicative functions and were distinct integers, and one of the was “non-pretentious” in the sense that

for all Dirichlet characters and real numbers . It is easy to see that some condition like (2) is necessary; for instance if and has period then can be verified to be bounded away from zero as .

In a previous paper with Matomaki and Radziwill, we provided a counterexample to the original formulation of the Elliott conjecture, and proposed that (2) be replaced with the stronger condition

as for any Dirichlet character . To support this conjecture, we proved an averaged and non-asymptotic version of this conjecture which roughly speaking showed a bound of the form

whenever was an arbitrarily slowly growing function of , was sufficiently large (depending on and the rate at which grows), and one of the obeyed the condition

for some that was sufficiently large depending on , and all Dirichlet characters of period at most . As further support of this conjecture, I recently established the bound

under the same hypotheses, where is an arbitrarily slowly growing function of .

In view of these results, it is tempting to conjecture that the condition (4) for one of the should be sufficient to obtain the bound

when is large enough depending on . This may well be the case for . However, the purpose of this blog post is to record a simple counterexample for . Let’s take for simplicity. Let be a quantity much larger than but much smaller than (e.g. ), and set

For , Taylor expansion gives

and

and hence

and hence

On the other hand one can easily verify that all of the obey (4) (the restriction there prevents from getting anywhere close to ). So it seems the correct non-asymptotic version of the Elliott conjecture is the following:

Conjecture 1 (Non-asymptotic Elliott conjecture)Let be a natural number, and let be integers. Let , let be sufficiently large depending on , and let be sufficiently large depending on . Let be bounded multiplicative functions such that for some , one hasfor all Dirichlet characters of conductor at most . Then

The case of this conjecture follows from the work of Halasz; in my recent paper a logarithmically averaged version of the case of this conjecture is established. The requirement to take to be as large as does not emerge in the averaged Elliott conjecture in my previous paper with Matomaki and Radziwill; it thus seems that this averaging has concealed some of the subtler features of the Elliott conjecture. (However, this subtlety does not seem to affect the asymptotic version of the conjecture formulated in that paper, in which the hypothesis is of the form (3), and the conclusion is of the form (1).)

A similar subtlety arises when trying to control the maximal integral

In my previous paper with Matomaki and Radziwill, we could show that easier expression

was small (for a slowly growing function of ) if was bounded and completely multiplicative, and one had a condition of the form

for some large . However, to obtain an analogous bound for (5) it now appears that one needs to strengthen the above condition to

in order to address the counterexample in which for some between and . This seems to suggest that proving (5) (which is closely related to the case of the Chowla conjecture) could in fact be rather difficult; the estimation of (6) relied primarily of prior work of Matomaki and Radziwill which used the hypothesis (7), but as this hypothesis is not sufficient to conclude (5), some additional input must also be used.

Kaisa Matomaki, Maksym Radziwill, and I have just uploaded to the arXiv our paper “An averaged form of Chowla’s conjecture“. This paper concerns a weaker variant of the famous conjecture of Chowla (discussed for instance in this previous post) that

as for any distinct natural numbers , where denotes the Liouville function. (One could also replace the Liouville function here by the Möbius function and obtain a morally equivalent conjecture.) This conjecture remains open for any ; for instance the assertion

is a variant of the twin prime conjecture (though possibly a tiny bit easier to prove), and is subject to the notorious parity barrier (as discussed in this previous post).

Our main result asserts, roughly speaking, that Chowla’s conjecture can be established unconditionally provided one has non-trivial averaging in the parameters. More precisely, one has

Theorem 1 (Chowla on the average)Suppose is a quantity that goes to infinity as (but it can go to infinity arbitrarily slowly). Then for any fixed , we haveIn fact, we can remove one of the averaging parameters and obtain

Actually we can make the decay rate a bit more quantitative, gaining about over the trivial bound. The key case is ; while the unaveraged Chowla conjecture becomes more difficult as increases, the averaged Chowla conjecture does not increase in difficulty due to the increasing amount of averaging for larger , and we end up deducing the higher case of the conjecture from the case by an elementary argument.

The proof of the theorem proceeds as follows. By exploiting the Fourier-analytic identity

(related to a standard Fourier-analytic identity for the Gowers norm) it turns out that the case of the above theorem can basically be derived from an estimate of the form

uniformly for all . For “major arc” , close to a rational for small , we can establish this bound from a generalisation of a recent result of Matomaki and Radziwill (discussed in this previous post) on averages of multiplicative functions in short intervals. For “minor arc” , we can proceed instead from an argument of Katai and Bourgain-Sarnak-Ziegler (discussed in this previous post).

The argument also extends to other bounded multiplicative functions than the Liouville function. Chowla’s conjecture was generalised by Elliott, who roughly speaking conjectured that the copies of in Chowla’s conjecture could be replaced by arbitrary bounded multiplicative functions as long as these functions were far from a twisted Dirichlet character in the sense that

(This type of distance is incidentally now a fundamental notion in the Granville-Soundararajan “pretentious” approach to multiplicative number theory.) During our work on this project, we found that Elliott’s conjecture is not quite true as stated due to a technicality: one can cook up a bounded multiplicative function which behaves like on scales for some going to infinity and some slowly varying , and such a function will be far from any fixed Dirichlet character whilst still having many large correlations (e.g. the pair correlations will be large). In our paper we propose a technical “fix” to Elliott’s conjecture (replacing (1) by a truncated variant), and show that this repaired version of Elliott’s conjecture is true on the average in much the same way that Chowla’s conjecture is. (If one restricts attention to real-valued multiplicative functions, then this technical issue does not show up, basically because one can assume without loss of generality that in this case; we discuss this fact in an appendix to the paper.)

## Recent Comments