You are currently browsing the tag archive for the ‘local limit theorems’ tag.

In the previous set of notes we established the central limit theorem, which we formulate here as follows:

Theorem 1 (Central limit theorem) Let ${X_1,X_2,X_3,\dots}$ be iid copies of a real random variable ${X}$ of mean ${\mu}$ and variance ${0 < \sigma^2 < \infty}$, and write ${S_n := X_1 + \dots + X_n}$. Then, for any fixed ${a < b}$, we have $\displaystyle {\bf P}( a \leq \frac{S_n - n \mu}{\sqrt{n} \sigma} \leq b ) \rightarrow \frac{1}{\sqrt{2\pi}} \int_a^b e^{-t^2/2}\ dt \ \ \ \ \ (1)$

as ${n \rightarrow \infty}$.

This is however not the end of the matter; there are many variants, refinements, and generalisations of the central limit theorem, and the purpose of this set of notes is to present a small sample of these variants.

First of all, the above theorem does not quantify the rate of convergence in (1). We have already addressed this issue to some extent with the Berry-Esséen theorem, which roughly speaking gives a convergence rate of ${O(1/\sqrt{n})}$ uniformly in ${a,b}$ if we assume that ${X}$ has finite third moment. However there are still some quantitative versions of (1) which are not addressed by the Berry-Esséen theorem. For instance one may be interested in bounding the large deviation probabilities $\displaystyle {\bf P}( |\frac{S_n - n \mu}{\sqrt{n} \sigma}| \geq \lambda ) \ \ \ \ \ (2)$

in the setting where ${\lambda}$ grows with ${n}$. Chebyshev’s inequality gives an upper bound of ${1/\lambda^2}$ for this quantity, but one can often do much better than this in practice. For instance, the central limit theorem (1) suggests that this probability should be bounded by something like ${O( e^{-\lambda^2/2})}$; however, this theorem only kicks in when ${n}$ is very large compared with ${\lambda}$. For instance, if one uses the Berry-Esséen theorem, one would need ${n}$ as large as ${e^{\lambda^2}}$ or so to reach the desired bound of ${O( e^{-\lambda^2/2})}$, even under the assumption of finite third moment. Basically, the issue is that convergence-in-distribution results, such as the central limit theorem, only really control the typical behaviour of statistics in ${\frac{S_n-n \mu}{\sqrt{n} \sigma}}$; they are much less effective at controlling the very rare outlier events in which the statistic strays far from its typical behaviour. Fortunately, there are large deviation inequalities (or concentration of measure inequalities) that do provide exponential type bounds for quantities such as (2), which are valid for both small and large values of ${n}$. A basic example of this is the Chernoff bound that made an appearance in Exercise 47 of Notes 4; here we give some further basic inequalities of this type, including versions of the Bennett and Hoeffding inequalities.

In the other direction, we can also look at the fine scale behaviour of the sums ${S_n}$ by trying to control probabilities such as $\displaystyle {\bf P}( a \leq S_n \leq a+h ) \ \ \ \ \ (3)$

where ${h}$ is now bounded (but ${a}$ can grow with ${n}$). The central limit theorem predicts that this quantity should be roughly ${\frac{h}{\sqrt{2\pi n} \sigma} e^{-(a-n\mu)^2 / 2n \sigma^2}}$, but even if one is able to invoke the Berry-Esséen theorem, one cannot quite see this main term because it is dominated by the error term ${O(1/n^{1/2})}$ in Berry-Esséen. There is good reason for this: if for instance ${X}$ takes integer values, then ${S_n}$ also takes integer values, and ${{\bf P}( a \leq S_n \leq a+h )}$ can vanish when ${h}$ is less than ${1}$ and ${a}$ is slightly larger than an integer. However, this turns out to essentially be the only obstruction; if ${X}$ does not lie in a lattice such as ${{\bf Z}}$, then we can establish a local limit theorem controlling (3), and when ${X}$ does take values in a lattice like ${{\bf Z}}$, there is a discrete local limit theorem that controls probabilities such as ${{\bf P}(S_n = m)}$. Both of these limit theorems will be proven by the Fourier-analytic method used in the previous set of notes.

We also discuss other limit theorems in which the limiting distribution is something other than the normal distribution. Perhaps the most common example of these theorems is the Poisson limit theorems, in which one sums a large number of indicator variables (or approximate indicator variables), each of which is rarely non-zero, but which collectively add up to a random variable of medium-sized mean. In this case, it turns out that the limiting distribution should be a Poisson random variable; this again is an easy application of the Fourier method. Finally, we briefly discuss limit theorems for other stable laws than the normal distribution, which are suitable for summing random variables of infinite variance, such as the Cauchy distribution.

Finally, we mention a very important class of generalisations to the CLT (and to the variants of the CLT discussed in this post), in which the hypothesis of joint independence between the variables ${X_1,\dots,X_n}$ is relaxed, for instance one could assume only that the ${X_1,\dots,X_n}$ form a martingale. Many (though not all) of the proofs of the CLT extend to these more general settings, and this turns out to be important for many applications in which one does not expect joint independence. However, we will not discuss these generalisations in this course, as they are better suited for subsequent courses in this series when the theory of martingales, conditional expectation, and related tools are developed. Symbols on Eigenvectors from eigenvalues Anonymous on Analysis I Anonymous on Real stable polynomials and th… Anonymous on Real stable polynomials and th… BabaDaga on Homogenization of iterated sin… Hollis Williams on Homogenization of iterated sin… BabaDaga on Homogenization of iterated sin… Jaikrishnan Janardha… on The inverse function theorem f… DSK MATHS MATH TREAS… on Mathematics Seminars List Shameka on Displaying mathematics on the… Anonymous on Continually aim just beyond yo… ES on Heath-Brown’s theorem on… ES on Heath-Brown’s theorem on… Anonymous on The Collatz conjecture, Little… Hollis Williams on Homogenization of iterated sin…