You are currently browsing the tag archive for the ‘nonlinear PDE’ tag.
[This lecture is also doubling as this week’s “open problem of the week”, as it (eventually) discusses the soliton resolution conjecture.]
In this third lecture, I will talk about how the dichotomy between structure and randomness pervades the study of two different types of partial differential equations (PDEs):
- Parabolic PDE, such as the heat equation
, which turn out to play an important role in the modern study of geometric topology; and
- Hamiltonian PDE, such as the Schrödinger equation
, which are heuristically related (via Liouville’s theorem) to measure-preserving actions of the real line (or time axis)
, somewhat in analogy to how combinatorial number theory and graph theory were related to measure-preserving actions of
and
respectively, as discussed in the previous lecture.
(In physics, one would also insert some physical constants, such as Planck’s constant , but for the discussion here it is convenient to normalise away all of these constants.)
Recent Comments