You are currently browsing the tag archive for the ‘Outside in’ tag.

Bill Thurston, who made fundamental contributions to our understanding of low-dimensional manifolds and related structures, died on Tuesday, aged 65.

Perhaps Thurston’s best known achievement is the proof of the hyperbolisation theorem for Haken manifolds, which showed that 3-manifolds which obeyed a certain number of topological conditions, could always be given a hyperbolic geometry (i.e. a Riemannian metric that made the manifold isometric to a quotient of the hyperbolic 3-space ). This difficult theorem connecting the topological and geometric structure of 3-manifolds led Thurston to give his influential geometrisation conjecture, which (in principle, at least) completely classifies the topology of an arbitrary compact 3-manifold as a combination of eight model geometries (now known as *Thurston model geometries*). This conjecture has many consequences, including Thurston’s hyperbolisation theorem and (most famously) the Poincaré conjecture. Indeed, by placing that conjecture in the context of a conceptually appealing general framework, of which many other cases could already be verified, Thurston provided one of the strongest pieces of evidence towards the truth of the Poincaré conjecture, until the work of Grisha Perelman in 2002-2003 proved both the Poincaré conjecture and the geometrisation conjecture by developing Hamilton’s Ricci flow methods. (There are now several variants of Perelman’s proof of both conjectures; in the proof of geometrisation by Bessieres, Besson, Boileau, Maillot, and Porti, Thurston’s hyperbolisation theorem is a crucial ingredient, allowing one to bypass the need for the theory of Alexandrov spaces in a key step in Perelman’s argument.)

One of my favourite results of Thurston’s is his elegant method for everting the sphere (smoothly turning a sphere in inside out without any folds or singularities). The fact that sphere eversion can be achieved at all is highly unintuitive, and is often referred to as Smale’s paradox, as Stephen Smale was the first to give a proof that such an eversion exists. However, prior to Thurston’s method, the known constructions for sphere eversion were quite complicated. Thurston’s method, relying on corrugating and then twisting the sphere, is sufficiently conceptual and geometric that it can in fact be explained quite effectively in non-technical terms, as was done in the following excellent video entitled “Outside In“, and produced by the Geometry Center:

In addition to his direct mathematical research contributions, Thurston was also an amazing mathematical expositor, having the rare knack of being able to describe the *process* of mathematical thinking in addition to the *results* of that process and the *intuition* underlying it. His wonderful essay “On proof and progress in mathematics“, which I highly recommend, is the quintessential instance of this; more recent examples include his many insightful questions and answers on MathOverflow.

I unfortunately never had the opportunity to meet Thurston in person (although we did correspond a few times online), but I know many mathematicians who have been profoundly influenced by him and his work. His death is a great loss for mathematics.

Given that this blog is currently being devoted to a rather intensive study of flows on manifolds, I thought that it might be apropos to highlight an amazing 22-minute video from 1994 on this general topic by the (unfortunately now closed) Geometry Center, entitled “Outside In“, which depicts Smale’s paradox (which asserts that an 2-sphere in three-dimensional space can be smoothly inverted without ever ceasing to be an immersion), following a construction of Thurston (who was credited with the concept for the video). I first saw this video at the 1998 International Congress of Mathematicians in Berlin, where it won the first prize at the VideoMath Festival held there. It did a remarkably effective job of explaining the paradox, its resolution in three dimensions, and the lack of a similar paradox in two dimensions, all in a clear and non-technical manner.

A (rather low resolution) copy of the first half of the video can be found here, and the second half can be found here. Some higher resolution short movies of just the inversion process can be found at this Geometry Center page. Finally, the video (and an accompanying booklet with more details and background) can still be obtained today from A K Peters, although I believe the video is only available in the increasingly archaic VHS format.

There are a few other similar such high-quality expository videos of advanced mathematics floating around the internet, but I do not know of any page devoted to collecting such videos. If any readers have their own favourites, you are welcome to post some links or pointers to them here.

## Recent Comments